Skip to main content

Novel Molecular and Genetic Prognostic Biomarkers in Prostate Cancer

  • Chapter
The Oncogenomics Handbook

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 968 Accesses

Abstract

Prostate cancer is responsible for 3% of all deaths in the Western world in men over 55 yr of age. An urgent yet challenging priority in cancer biology is to detect or identify the sequential genetic and epigenetic events early enough through characterizing cancer-associated genes and their protein products. At a specific stage, biomarkers reflect the physiologic state of a cell and might be vital for the identification of early cancer and subjects at risk of developing cancer. Biomarkers have become an important diagnostic tool in prostate cancer. With the advent and recent successes in functional genomics and proteomics, we are experiencing growing interest in discovering more molecular-based prognostic factors that could be utilized to assay the original needle biopsy specimen to tailor the primary treatment for individual prostate cancer patients. As targeted therapy in oncology becomes increasingly powerful, there is a significant interest in finding prognostic markers in prostate cancer that could be used as targets for novel biotherapies. This chapter discusses a series of existing and emerging molecular-based prognostic markers generated from the ongoing research in genomic, genetic, and proteomic approaches that identify molecular signatures such as gene expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Garnick MB, Fair WR. Combating prostate cancer. Sci Am 1998; 279:74–83.

    Article  CAS  PubMed  Google Scholar 

  3. Augustus M, Moul JW, Srivastava S. Gene expression profiling of normal and tumor specimens of patients with prostate cancer. In: Srivastava S, Henson DE, Gazden A, eds. Molecular pathology of early cancer. Amsterdam, IOS, 1999:321–340.

    Google Scholar 

  4. Bubendorf L. High-throughput microarray technologies: from genomics to clinics. Eur Urol 2001; 40: 231–238.

    Article  CAS  PubMed  Google Scholar 

  5. Bok RA, Small EJ. Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2002; 2:918–926.

    Article  CAS  PubMed  Google Scholar 

  6. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002; 2:210–219.

    Article  CAS  PubMed  Google Scholar 

  7. Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, et al. Identification of genetic markers for prostatic cancer progression. Lab Invest 2000; 80:931–942.

    CAS  PubMed  Google Scholar 

  8. Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000; 14:2410–2434.

    Article  CAS  PubMed  Google Scholar 

  9. Amanatullah DF, Reutens AT, Zafonte BT, Fu M, Mani S, Pestell RG. Cell-cycle dysregulation and the molecular mechanisms of prostate cancer. Front Biosci 2000; 5:D372–D390.

    Article  CAS  PubMed  Google Scholar 

  10. Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C. Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 2000; 6:1891–1895.

    CAS  PubMed  Google Scholar 

  11. Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, et al. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 1998; 159:941–945.

    Article  CAS  PubMed  Google Scholar 

  12. Kuczyk M, Machtens S, Hradil K, Schubach J, Christian W, Knuchel R, et al. Predictive value of decreased p27Kip1 protein expression for the recurrence-free and long-term survival of prostate cancer patients. Br J Cancer 1999; 81:1052–1058.

    Article  CAS  PubMed  Google Scholar 

  13. Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufman RP Jr, Ross JS. Prognostic significance of p34cdc2 and cyclin D1 protein expression in prostatic adenocarcinomas. Cancer 1997; 80:753–763.

    Article  CAS  PubMed  Google Scholar 

  14. Goel A, Abou-Ellela A, DeRose PB. The prognostic significance of proliferation in prostate cancer. J Urol Pathol 1996; 4:213–223.

    Google Scholar 

  15. Scalzo DA, Kallakury BV, Gaddipati RV, Sheehan CE, Keys HM, Savage D, et al. Cell proliferation rate by MIB-1immunohistochemistry predicts post-radiation recurrence of prostatic adenocarcinomas. Am J Clin Pathol 1998; 109:163–168.

    CAS  PubMed  Google Scholar 

  16. Visakorpi T. Proliferative activity determined by DNA flow cytometry and proliferating cell nuclear anti-gen (pcna) immunohistochemistry as a prognostic factor in prostatic carcinoma. J Pathol 1992; 168:7–13.

    Article  CAS  PubMed  Google Scholar 

  17. Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R, et al. Overexpression of HER-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 1993; 150:126–131.

    CAS  PubMed  Google Scholar 

  18. Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P. Numerical chromosomal aberrations in prostate cancer: correlation with morphology and cell kinetics. Virchows Arch Pathol Anat Histopathol 1993; 422:61–66.

    Article  CAS  Google Scholar 

  19. Kaibuchi T, Furuya Y, Akakura K, Masai M, Ito H. Changes in cell proliferation and apoptosis during local progression of prostate cancer. Anticancer Res 2000; 20:1135–1139.

    CAS  PubMed  Google Scholar 

  20. Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 2002b; 8:47–54.

    Article  PubMed  Google Scholar 

  21. Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59:3374–3378.

    CAS  PubMed  Google Scholar 

  22. Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 2001; 61: 2413–2419.

    CAS  PubMed  Google Scholar 

  23. Battistini B, D’Orleans-Juste P, Sirois P. Endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest 1993; 68:600–628.

    CAS  PubMed  Google Scholar 

  24. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995; 1: 944–949.

    Article  CAS  PubMed  Google Scholar 

  25. Kopetz ES, Nelson JB, Carducci MA. Endothelin-1 as a target for therapeutic intervention in prostate cancer. Invest New Drugs 2002; 20:173–182.

    Article  CAS  PubMed  Google Scholar 

  26. Reed JC. bcl-2 family proteins. Oncogene 1998; 17:3225–3236.

    Article  PubMed  Google Scholar 

  27. Harima Y, Nagata K, Harima K, Oka A, Ostapenko VV, Shikata N, et al. Bax and bcl-2 protein expression following radiation therapy versus radiation plus thermoradiotherapy in stage IIIB cervical carcinoma. Cancer 2000; 88:132–138.

    Article  CAS  PubMed  Google Scholar 

  28. Apakama I, Robinson MC, Walter NM, Charlton RG, Royds JA, Fuller CE, et al. bcl-2 overexpression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. Br J Cancer 1996; 74: 1258–1262.

    CAS  PubMed  Google Scholar 

  29. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT. Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin Cancer Res 1996; 2:389–398.

    CAS  PubMed  Google Scholar 

  30. Kallakury BV, Figge J, Leibovich B, Hwang J, Rifkin M, Kaufman R, et al. Increased bcl-2 protein levels in prostatic adenocarcinomas are not associated with rearrangements in the 2.8 kb major breakpoint region or with p53 protein accumulation. Mod Pathol 1996; 9:41–47.

    CAS  PubMed  Google Scholar 

  31. Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch AD, White RW. p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 1998; 51:346–351.

    Article  CAS  PubMed  Google Scholar 

  32. Rakozy C, Grignon DJ, Sarkar FH, Sakr WA, Littrup P, Forman J. Expression of bcl-2, p53, and p21 in benign and malignant prostatic tissue before and after radiation therapy. Mod Pathol 1998; 11:892–899.

    CAS  PubMed  Google Scholar 

  33. Grossfeld GD, Olumi AF, Connolly JA, Chew K, Gibney J, Bhargava V, et al. Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl-2 immunoreactivity. J Urol 1998; 159:1437–1443.

    Article  CAS  PubMed  Google Scholar 

  34. Gettman MT, Bergstrahl EJ, Blute M. Prediction of patient outcome in pathologic stage T2 adenocarcinoma of the prostate: lack of significance for microvessel density. Urology 1998; 51:79–85.

    Article  CAS  PubMed  Google Scholar 

  35. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 1998; 52:1085–1090.

    Article  CAS  PubMed  Google Scholar 

  36. Szostak MJ, Kaur P, Amin P, Jacobs SC, Kyprianou N. Apoptosis and bcl-2 expression in prostate cancer: significance in clinical outcome after brachytherapy. J Urol 2001; 165(6 Pt 1):2126–2130.

    CAS  PubMed  Google Scholar 

  37. Agarwal ML, Agarwal A, Taylor WR, Stark GR. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92:8493–8497.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR. The p53 network. J Biol Chem 1998; 273:1–4.

    Article  CAS  PubMed  Google Scholar 

  39. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362:849–852.

    Article  CAS  PubMed  Google Scholar 

  40. Chang EH, Jang YJ, Hao Z, Murphy G, Rait A, Fee WE Jr, et al. Restoration of the G1 checkpoint and the apoptotic pathway mediated by wild-type p53 sensitizes squamous cell carcinoma of the head and neck to radiotherapy. Arch Otolaryngol Head Neck Surg 1997; 123:507–512.

    CAS  PubMed  Google Scholar 

  41. Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, et al. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 2000; 19:649–660.

    Article  CAS  PubMed  Google Scholar 

  42. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358:15–16.

    Article  CAS  PubMed  Google Scholar 

  43. El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54:1169–1174.

    CAS  PubMed  Google Scholar 

  44. Jackel MC, Sellmann L, Dorudian MA, Youssef S, Fuzesi L. Prognostic significance of p53/bcl-2 coexpression in patients with laryngeal squamous cell carcinoma. Laryngoscope 2000; 110:1339–1345.

    Article  CAS  PubMed  Google Scholar 

  45. Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 2000; 275:24,500–24,505.

    Article  CAS  PubMed  Google Scholar 

  46. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999; 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  47. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95: 15,587–15,591.

    Article  CAS  PubMed  Google Scholar 

  48. Heidenreich B, Heidenreich A, Sesterhenn A, Srivastava S, Moul JW, Sesterhenn IA. Aneuploidy of chromosome 9 and the tumor suppressor genes p16(INK4) and p15(INK4B) detected by in situ hybridization in locally advanced prostate cancer. Eur Urol 2000; 38:475–482.

    Article  CAS  PubMed  Google Scholar 

  49. Brinker DA, Ross JS, Tran TA, Jones DM, Epstein JI. Can ploidy of prostate carcinoma diagnosed on needle biopsy predict radical prostatectomy and grade? J Urol 1999; 162:2036–2039.

    Article  CAS  PubMed  Google Scholar 

  50. Razani B, Schlegel A, Liu J, Lisanti MP. Caveolin-1, a putative tomor suppressor gene. Biochem Soc Trans 2001; 29(Pt 4):494–499.

    Article  CAS  PubMed  Google Scholar 

  51. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, et al. Caveolin-1mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 2001; 61: 4386–4392.

    CAS  PubMed  Google Scholar 

  52. Mouraviev V, Li L, Tahir SA, Yang G, Timme TM, Goltsov A, et al. The role of caveolin-1 in androgen insensitive prostate cancer. J Urol 2002; 168(4 Pt 1):1589–1596.

    CAS  PubMed  Google Scholar 

  53. Tahir SA, Ren C, Timme TL, Gdor Y, Hoogeveen R, Morrisett JD, et al. Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 2003; 9(10 Pt 1): 3653–3659.

    CAS  PubMed  Google Scholar 

  54. Yang G, Truong LD, Wheeler TM, Thompson TC. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59:5719–5723.

    CAS  PubMed  Google Scholar 

  55. Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 2001; 46:249–256.

    Article  CAS  PubMed  Google Scholar 

  56. Xia F, Powell SN. The molecular basis of radiosensitivity and chemosensitivity in the treatment of breast cancer. Semin Radiat Oncol 2002; 12:296–304.

    Article  PubMed  Google Scholar 

  57. Formenti SC, Spicer D, Skinner K, Cohen D, Groshen S, Bettini A, et al. Low HER2/neu gene expression is associated with pathological response to concurrent paclitaxel and radiation therapy in locally advanced breast cancer. Int J Radiat Oncol Biol Phys 2002; 52:397–405.

    Article  CAS  PubMed  Google Scholar 

  58. Ross JS, Nazeer T, Church K, Amato C, Figge H, Rifkin MD, et al. Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer 1993; 72:3020–3028.

    Article  CAS  PubMed  Google Scholar 

  59. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor and target of therapy. Oncologist 1998; 3:237–252.

    PubMed  Google Scholar 

  60. Wells A. EGF receptor. Int J Biochem Cell Biol 31:637–643.

    Google Scholar 

  61. Nicholson RI, Gee JM, Harper ME. 2001; EGFR and cancer prognosis. Eur J Cancer 1999; 37(Suppl 4): S9–S15.

    Google Scholar 

  62. Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA, et al. Modulation of epidermal growth factor receptor in endocrine-resistant, estrogen-receptor-positive breast cancer. Ann NY Acad Sci 2002; 963:104–115.

    Article  CAS  PubMed  Google Scholar 

  63. Harari PM, Huang SM. Epidermal growth factor receptor modulation of radiation response: preclinical and clinical development. Semin Radiat Oncol 2002; 12:21–26.

    Article  PubMed  Google Scholar 

  64. Huang SM, Li J, Armstrong EA, Harari PM. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 2002; 62:4300–4306.

    CAS  PubMed  Google Scholar 

  65. Wollman R, Yahalom J, Maxy R, Pinto J, Fuks Z. Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol Biol Phys 1994; 30:91–98.

    CAS  PubMed  Google Scholar 

  66. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7:2958–2970.

    CAS  PubMed  Google Scholar 

  67. Zellweger T, Ninck C, Mirlacher M, Annefeld M, Glass AG, Gasser TC, et al. Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate 2003; 55:20–29.

    Article  PubMed  Google Scholar 

  68. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalié A, et al. Expression of cat-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J BiolChem 2001; 276:19,461–19,468.

    CAS  Google Scholar 

  69. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 2003; 22:7858–7861.

    Article  CAS  PubMed  Google Scholar 

  70. Watanabe T, Inoue S, Hiroi H, Orimo A, Kawashima H, Muramatsu M. Isolation of estrogen-responsive genes with a CpG island library. Mol Cell Biol 1998; 18:442–449.

    CAS  PubMed  Google Scholar 

  71. Nakashima M, Sonoda K, Watanabe T. Inhibition of cell growth and induction of apoptotic cell death by the human tumor-associated antigen RCAS1. Nat Med 1999; 5:938–942.

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi S, Urano T, Tsuchiya F, Fujimura T, Kitamura T, Ouchi Y, et al. EBAG9/RCAS1 expression and its prognostic significance in prostatic cancer. Int J Cancer 2003; 106:310–315.

    Article  CAS  PubMed  Google Scholar 

  73. Grzmil M, Thelen P, Hemmerlein B, Schweyer S, Voigt S, Mury D, et al. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 2003; 163:543–542.

    CAS  PubMed  Google Scholar 

  74. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419:624–629.

    Article  CAS  PubMed  Google Scholar 

  75. Cheng L, Lloyd RV, Weaver AL, Pisansky TM, Cheville JC, Ramnani DM, et al. The cell cycle inhibitors p21WAF1 and p27KIP1 are associated with survival in patients treated by salvage prostatectomy after radiation therapy. Clin Cancer Res 2000; 6:1896–1899.

    CAS  PubMed  Google Scholar 

  76. Kuczyk MA, Bokemeyer C, Hartmann J, Schubach J, Walter C, Machtens S, et al. Predictive value of altered p27Kip1 and p21WAF/Cip1 protein expression for the clinical prognosis of patients with localized prostate cancer. Oncol Rep 2001; 8:1401–1407.

    CAS  PubMed  Google Scholar 

  77. Omar EA, Behlouli H, Chevalier S, Aprikian AG. Relationship of p21(WAF-I) protein expression with prognosis in advanced prostate cancer treated by androgen ablation. Prostate 2001; 49:191–199.

    Article  CAS  PubMed  Google Scholar 

  78. Cowen D, Troncoso P, Khoo VS, Zagars GK, von Eschenbach AC, Meistrich ML, et al. Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 2002; 8:1148–1154.

    PubMed  Google Scholar 

  79. Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 1990; 335:675–679.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson GD, Richman PI, Dische S, Saunders MI, Robinson B, Daley FM, et al. p53 status of head and neck cancer: relation to biological characteristics and outcome of radiotherapy. Br J Cancer 1995; 71: 1248–1252.

    CAS  PubMed  Google Scholar 

  81. Agarwal MK, Wolfman A, Stark GR. Regulation of p53 expression by the RAS-MAP kinase pathway. Oncogene 2001; 20:2527–2536.

    Article  CAS  PubMed  Google Scholar 

  82. Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, et al. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 1997; 14:1735–1746.

    Article  CAS  PubMed  Google Scholar 

  83. Mineta H, Borg A, Dictor M, Wahlberg P, Akervall J, Wennerberg J. p53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma. Br J Cancer 1998; 78:1084–1090.

    CAS  PubMed  Google Scholar 

  84. Wouters BG, Denko NC, Giaccia AJ, Brown JM. A p53 and apoptotic independent role for p21waf1 in tumour response to radiation therapy. Oncogene 1999; 18:6540–6545.

    Article  CAS  PubMed  Google Scholar 

  85. Overgaard J, Yilmaz M, Guldberg P, Hansen LL, Alsner J. TP53 mutation is an independent prognostic marker for poor outcome in both node-negative and node-positive breast cancer. Acta Oncol 2000; 39:327–333.

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, et al. Radiosensitization of p53 mutant cells by PDD0166285, a novel G(2) checkpoint abrogator. Cancer Res 2001; 61:8211–8217.

    CAS  PubMed  Google Scholar 

  87. Nguyen TT, Nguyen CT, Gonzales FA, Nichols PW, Yu MC, Jones PA. Analysis of cyclin-dependent kinase inhibitor expression and methylation patterns in human prostate cancers. Prostate 2000; 43:233–242.

    Article  CAS  PubMed  Google Scholar 

  88. Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ, Gilchrist KW, et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 1992; 23:974–979.

    Article  CAS  PubMed  Google Scholar 

  89. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 1999; 344: 783–792.

    Article  Google Scholar 

  90. Agrup M, Stal O, Olsen K, Wingren S. C-erbB-2 overexpression and survival in early onset breast cancer. Breast Cancer Res Treat 2000; 63:23–29.

    Article  CAS  PubMed  Google Scholar 

  91. Piccart M, Lohrisch C, Di Leo A, Larsimont D. The predictive value of HER2 in breast cancer. Oncology 2001; 61(Suppl 2):73–82.

    Article  CAS  PubMed  Google Scholar 

  92. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G, et al. HER-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 2000; 92:1918–1925.

    Article  CAS  PubMed  Google Scholar 

  93. Fossa A, Lilleby W, Fossa SD, Gaudernack G, Torlakovic G, Berner A. Independent prognostic significance of HER-2 oncoprotein expression in pN0 prostate cancer undergoing curative radiotherapy. Int J Cancer 2002; 99: 100–105.

    Article  CAS  PubMed  Google Scholar 

  94. Pierce L. Radiotherapy for breast cancer in BRCA1/BRCA2 carriers: clinical issues and management dilemmas. Semin Radiat Oncol 2002; 12:352–361.

    Article  PubMed  Google Scholar 

  95. Ringberg A, Anagnostaki L, Anderson H, Idvall I, Ferno M. Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics. Eur J Cancer 2001; 37:1514–1522.

    Article  CAS  PubMed  Google Scholar 

  96. Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 2002; 20:3095–3105.

    CAS  PubMed  Google Scholar 

  97. Milas L. Cyclooxygenase-2 (COX-2) enzyme inhibitors as potential enhancers of tumor radioresponse. Semin Radiat Oncol 2001; 11:290–299.

    Article  CAS  PubMed  Google Scholar 

  98. Pyo H, Choy H, Amorino GP, Kim JS, Cao Q, Hercules SK, et al. A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res 2001; 7:2998–3005.

    CAS  PubMed  Google Scholar 

  99. Ferrandina G, Lauriola L, Distefano MG, Zannoni GF, Gessi M, Legge F, et al. Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol 2002a; 20:973–981.

    Article  CAS  PubMed  Google Scholar 

  100. Ferrandina G, Lauriola L, Zannoni GF, Distefano MG, Legge F, Salutari V, et al. Expression of cyclooxygenase-2 (COX-2) in tumour and stroma compartments in cervical cancer: clinical implications. Br J Cancer 2002b; 87:1145–1152.

    Article  CAS  PubMed  Google Scholar 

  101. Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, et al. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 2000; 60:1326–1331.

    CAS  PubMed  Google Scholar 

  102. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17:2941–2953.

    CAS  PubMed  Google Scholar 

  103. Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to antiepidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 2002; 62:200–207.

    CAS  PubMed  Google Scholar 

  104. Hassan AB, Macaulay VM. The insulin-like growth factor system as a therapeutic target in colorectal cancer. Ann Oncol 2002; 13:349–356.

    Article  CAS  PubMed  Google Scholar 

  105. Peretz S, Kim C, Rockwell S, Baserga R, Glazer PM. IGF1 receptor expression protects against microenvironmental stress found in the solid tumor. Radiat Res 2002; 158:174–180.

    Article  CAS  PubMed  Google Scholar 

  106. Tezuka M, Watanabe H, Nakamura S, Yu D, Aung W, Sasaki T, et al. Antiapoptotic activity is dispensable for insulin-like growth factor I receptor-mediated clonogenic radioresistance after gamma-irradiation. Clin Cancer Res 2001; 7:3206–3214.

    CAS  PubMed  Google Scholar 

  107. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, et al. Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 1997; 57:3079–3083.

    CAS  PubMed  Google Scholar 

  108. Joensuu H, Anttonen A, Eriksson M, Makitaro R, Alfthan H, Kinnula V, et al. Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 2002; 62:5210–5217.

    CAS  PubMed  Google Scholar 

  109. Anttonen A, Heikkila P, Kajanti M, Jalkanen M, Joensuu H. High syndecan-1 expression is associated with favorable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer 2001; 32: 297–305.

    Article  CAS  PubMed  Google Scholar 

  110. Wiksten JP, Lundin J, Nordling S, Kokkola A, Haglund CA. Prognostic value of syndecan-1 in gastric cancer. Anticancer Res 2000; 20(6D):4905–4907.

    CAS  PubMed  Google Scholar 

  111. Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 2000; 95:388–392.

    CAS  PubMed  Google Scholar 

  112. Anttonen A, Kajanti M, Heikkila P, Jalkanen M, Joensuu H. Syndecan-1 expression has prognostic significance in head and neck carcinoma. Br J Cancer 1999; 79:558–564.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chakravarti, A., Zhai, G.G. (2005). Novel Molecular and Genetic Prognostic Biomarkers in Prostate Cancer. In: LaRochelle, W.J., Shimkets, R.A. (eds) The Oncogenomics Handbook. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-893-5:377

Download citation

  • DOI: https://doi.org/10.1385/1-59259-893-5:377

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-425-8

  • Online ISBN: 978-1-59259-893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics