Skip to main content

The Spontaneously Hypertensive Rat as a Model of Attention Deficit Hyperactivity Disorder

  • Chapter
Attention Deficit Hyperactivity Disorder

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with multiple contributing factors, both genetic and environmental, as evidenced by the multiple susceptibility genes that have been identified and the inconsistencies in different family studies (1). Diagnosis of ADHD is based on behavioral symptoms because there is, as yet, no biological marker. Animal models of ADHD are useful because they mimic various aspects of the disorder and have the advantage of genetic homogeneity, environmental control, and the possibility of early intervention (2). Animal models include exposure to neurotoxins and genetic variants. The spontaneously hypertensive rat (SHR) is the most extensively investigated genetic model and the only animal model that has been shown to demonstrate all the behavioral characteristics of ADHD, namely, hyperactivity, impulsivity, and problems with sustained attention (25).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirley A, Hawi Z, Daly G, et al Dopaminergic system genes in ADHD: toward a biological hypothesis. Neuropsychopharmacology 2002;27:607–619.

    PubMed  CAS  Google Scholar 

  2. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci and Biobehav Rev 2000;24:31–39.

    Article  CAS  Google Scholar 

  3. Berger DF, Sagvolden T. Sex differences in operant discrimination behavior in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res 1998;94:73–82.

    Article  PubMed  CAS  Google Scholar 

  4. Sagvolden T, Metzger MA, Schiørbeck HK, Rugland A-L, Spinnangr I, Sagvolden G. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 1992;58:103–112.

    Article  PubMed  CAS  Google Scholar 

  5. Sagvolden T, Pettersen MB, Larsen MC. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 1993;54:1047–1055.

    Article  PubMed  CAS  Google Scholar 

  6. Christiansen RE, Roald AB, Tenstad O, Iversen B. Renal hemodynamics during development of hypertension in young spontaneously hypertensive rats. Kidney Blood Press Res 2002;25:322–328.

    Article  PubMed  Google Scholar 

  7. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circulation J 1963;27:282–293.

    CAS  Google Scholar 

  8. Marcil J, Thibault C, Anand-Srivastava MB. Enhanced expression of Gi-protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 1997;29:1009–1022.

    Article  PubMed  CAS  Google Scholar 

  9. Knardahl S, Sagvolden T. Open-field behavior of spontaneously hypertensive rats. Behav Neural Biol 1979;27:187–200.

    Article  PubMed  CAS  Google Scholar 

  10. Sagvolden T, Hendley ED, Knardahl S. Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav 1992;52:49–57.

    Article  PubMed  CAS  Google Scholar 

  11. Wultz B, Sagvolden T. The hyperactive spontaneously hypertensive rat learns to sit still, but not to stop bursts of responses with short interresponse times. Behav Genet 1992;22:415–433.

    Article  PubMed  CAS  Google Scholar 

  12. Mook DM, Jeffrey J, Neuringer A. Spontaneously hypertensive rats (SHR) easily learn to vary but not repeat instrumental responses. Behav Neural Biol 1993;59:126–135.

    Article  PubMed  CAS  Google Scholar 

  13. Sagvolden T, Sergeant JA. Attention deficit/hyperactivity disorder-from brain dysfunctions to behavior. Behav Brain Res 1998;94:1–10.

    Article  PubMed  CAS  Google Scholar 

  14. Myers MM, Musty RE, Hendley ED. Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol 1982;34:42–54.

    Article  PubMed  CAS  Google Scholar 

  15. Ueno KI, Togashi H, Mori K, et al Behavioral and pharmacological relevance of stroke-prone spontaneously hypertensive rats as an animal model of a developmental disorder. Behav Pharmacol 2002;13:1–13.

    PubMed  Google Scholar 

  16. De Jong W, Linthorst AC, Versteeg HG. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat. Arch Mal Coeur Vaiss 1995;88:1193–1196.

    PubMed  Google Scholar 

  17. Linthorst ACE, De Lang H, De Jong W, Versteeg DH. Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats. Eur J Pharmacol 1991;201:125–133.

    Article  PubMed  CAS  Google Scholar 

  18. Linthorst ACE, Van Den Buuse M, De Jong W, Versteeg DHG. Electrically stimulated [3H]dopamine and [14C]acetylcholine release from nucleus caudatus slices: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res 1990;509:266–272.

    Article  PubMed  CAS  Google Scholar 

  19. Russell VA. The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 2000;24:133–136.

    Article  PubMed  CAS  Google Scholar 

  20. Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Brain Res 1995;676:343–351.

    Article  PubMed  CAS  Google Scholar 

  21. Russell VA, de Villiers AS, Sagvolden T, Lamm MCL, Taljaard JJF. Impaired vesicular storage of dopamine in an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Soc Neurosci Abstr 1996;22:2082.

    Google Scholar 

  22. Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J. Differences between electrically-, ritalin-and d-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model for attention-deficit hyperactivity disorder. Behav Brain Res 1998;94:163–171.

    Article  PubMed  CAS  Google Scholar 

  23. Carey MP, Diewald LM, Esposito FJ, et al Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res 1998;94:173–185.

    Article  PubMed  CAS  Google Scholar 

  24. Kirouac G, Ganguly P. Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neurosci 1993;52:135–141.

    Article  CAS  Google Scholar 

  25. Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med 1997;38:470–474.

    PubMed  CAS  Google Scholar 

  26. Papa M, Sagvolden T, Sergeant JA, Sadile AG. Reduced CaMKII-positive neurones in the accumbens shell of an animal model of attention-deficit hyperactivity disorder. Neurorep 1996;7:3017–3020.

    Article  CAS  Google Scholar 

  27. Papa M, Sergeant JA, Sadile AG. Differential expression of transcription factors in the accumbens of an animal model of ADHD. Neurorep 1997;8:1607–1612.

    CAS  Google Scholar 

  28. Papa M, Sergeant JA, Sadile AG. Reduced transduction mechanisms in the anterior accumbal interface of an animal model of attention-deficit hyperactivity disorder. Behav Brain Res 1998;94:187–195.

    Article  PubMed  CAS  Google Scholar 

  29. Jones SR, Gainetdinov RR, Wightman RM, Caron MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 1998;18:1979–1986.

    PubMed  CAS  Google Scholar 

  30. Moore KE. Amphetamines: biochemical and behavioral actions in animals. In: Iversen LL, Iversen SD, Snyder S, eds. Handbook of psychopharmacology. New York: Plenum Press, 1978;41–98.

    Google Scholar 

  31. De Villiers A, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard J. α2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 1995;20:427–433.

    Article  PubMed  Google Scholar 

  32. Linthorst AC, van Giersbergen PL, Gras M, Versteeg DH, de Jong W. The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats. Brain Res 1994;639:261–268.

    Article  PubMed  CAS  Google Scholar 

  33. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci 1998;18:5901–5907.

    PubMed  CAS  Google Scholar 

  34. Ernst M, Zametkin A, Matochik J, Pascualvaca D, Jons P, Cohen R. High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry 1999;156:1209–1215.

    PubMed  CAS  Google Scholar 

  35. Russell VA, Allie S, Wiggins T. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder-the spontaneously hypertensive rat. Behav Brain Res 2000;117:69–74.

    Article  PubMed  CAS  Google Scholar 

  36. Tsuda K, Tsuda S, Masuyama Y, Goldstein M. Norepinephrine release and neuropeptide Y in medulla oblongata of spontaneously hypertensive rats. Hypertension 1990;15:784–790.

    PubMed  CAS  Google Scholar 

  37. Reja V, Goodchild AK, Pilowsky PM. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 2002;40:342–347.

    Article  PubMed  CAS  Google Scholar 

  38. Reja V, Goodchild AK, Phillips JK, Pilowsky PM. Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton Neurosci 2002;98:79–84.

    Article  PubMed  CAS  Google Scholar 

  39. Myers MM, Whittemore SR, Hendley ED. Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res 1981;220:325–338.

    Article  PubMed  CAS  Google Scholar 

  40. Mazei MS, Pluto CP, Kirkbride B, Pehek EA. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 2002;936:58–67.

    Article  PubMed  CAS  Google Scholar 

  41. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 2002;22:389–395.

    PubMed  CAS  Google Scholar 

  42. Russell VA. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 2002;130:191–196.

    Article  PubMed  CAS  Google Scholar 

  43. Russell VA. Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 2001;16:143–149.

    Article  PubMed  CAS  Google Scholar 

  44. Russell VA, Wiggins T. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis 2000;15:297–304.

    Article  PubMed  CAS  Google Scholar 

  45. Russell VA, Allie S, Wiggins T. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 2000;117:69–74.

    Article  PubMed  CAS  Google Scholar 

  46. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002;22:9134–9141.

    PubMed  CAS  Google Scholar 

  47. Glowinski J, Cheramy A, Romo R, Barbeito L. Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol 1988;8:7–17.

    Article  PubMed  CAS  Google Scholar 

  48. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41:1–24.

    Article  PubMed  CAS  Google Scholar 

  49. Howland JG, Taepavarapruk P, Phillips AG. Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J. Neurosci. 2002;22:1137–1145.

    PubMed  CAS  Google Scholar 

  50. Kulagina NV, Zigmond MJ, Michael AC. Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neurosci 2001;102:121–128.

    Article  CAS  Google Scholar 

  51. Golembiowska K, Konieczny J, Ossowska K, Wolfarth S. The role of striatal metabotropic glutamate receptors in degeneration of dopamine neurons: Review article. Amino Acids 2002;23:199–205.

    Article  PubMed  CAS  Google Scholar 

  52. Legault M, Wise RA. Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse 1999;31:241–249.

    Article  PubMed  CAS  Google Scholar 

  53. Maione S, Biggs CS, Rossi F, Fowler LJ, Whitton PS. Alpha-amino-3-hydroxy-5-methyl-4-isox-azolepropionate receptors modulate dopamine release in rat hippocampus and striatum. Neurosci Lett 1995;193:181–184.

    Article  PubMed  CAS  Google Scholar 

  54. Russell VA. In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneously hypertensive rats. Metab Brain Dis 2003;18:161–168.

    Article  PubMed  CAS  Google Scholar 

  55. Vorel SR, Campos A, Gardner EL. Prolonged electrical stimulation of the medial forebrain bundle elicits cocaine-seeking behavior. Program No. 876.8. 2002 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2002.

    Google Scholar 

  56. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 2001;292:1175–1178.

    Article  PubMed  CAS  Google Scholar 

  57. Seeman P, Madras B. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav Brain Res 2002;130:79–83.

    Article  PubMed  CAS  Google Scholar 

  58. Lehohla M, Russell V, Kellaway L. NMDA-stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats. Metab Brain Res 2001;16:165–174.

    Article  Google Scholar 

  59. Horn JL, Janicki PK, Franks JJ. Diminished brain synaptic plasma membrane Ca2+-ATPase activity in spontaneously hypertensive rats: association with reduced anesthetic requirements. Life Sci 1995;56:427–432.

    Google Scholar 

  60. Andersen SL. Changes in the second messenger cyclic AMP during development may underlie motoric symptonms in attention deficit/hyperactivity disorder (ADHD). Behav Brain Res 2002;130:197–201.

    Article  PubMed  CAS  Google Scholar 

  61. Li Y, Anand-Srivastava MB. Inactivation of enhanced expression of G(i) proteins by pertussis toxin attenuates the development of high blood pressure in spontaneously hypertensive rats. Circ Res 2002;91:247–254.

    Article  PubMed  CAS  Google Scholar 

  62. Haber SN, Fudge JL, McFarland NR. Striatonigral pathways in primates form an ascending spiral from the shell to the dorsal striatum. J Neurosci 2000;20:2369–2382.

    PubMed  CAS  Google Scholar 

  63. Morgenson GJ, Douglas LJ, Yim CY. From motivation to action: functional interface between the limbic system and the motor system, Prog Neurobiol 1980;14:69–97.

    Google Scholar 

  64. Alexander GE, De Long MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986;9:357–381.

    Article  PubMed  CAS  Google Scholar 

  65. Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 2000;114:42–63.

    Article  PubMed  CAS  Google Scholar 

  66. Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S. Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc Psychiatry 2002;41:378–385.

    Article  PubMed  Google Scholar 

  67. Bonci A, Bernardi G, Grillner P, Mercuri NB. The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction? TIPS 2003;24:172–177.

    PubMed  CAS  Google Scholar 

  68. Carlezon WA, Nestler EJ. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? TINS 2002;25:610–615.

    PubMed  CAS  Google Scholar 

  69. Yang PB, Amini B, Swann AC, Dafny N. Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res 2003;971:139–152.

    Article  PubMed  CAS  Google Scholar 

  70. Russell VA, de Villiers AS, Sagvolden T, Lamm MCL, Taljaard JJF. Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder—the spontaneously hypertensive rat. Brain Res Bull 2000;53:187–192.

    Article  PubMed  CAS  Google Scholar 

  71. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci 1999;877:412–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Russell, V.A. (2005). The Spontaneously Hypertensive Rat as a Model of Attention Deficit Hyperactivity Disorder. In: Gozal, D., Molfese, D.L. (eds) Attention Deficit Hyperactivity Disorder. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-891-9:079

Download citation

  • DOI: https://doi.org/10.1385/1-59259-891-9:079

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-312-1

  • Online ISBN: 978-1-59259-891-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics