Skip to main content

Gene Therapy for Celebral Arterial Diseases

  • Chapter
Cardiovascular Genomics

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Although there has been steady progress towards cardiovascular gene therapy in humans, gene therapy for cerebrovascular disorders is still in its infancy. Several major steps, including gene transfer to cerebral arteries and alteration of gene expression, have been taken. There are several promising targets for cerebrovascular gene therapy, such as prevention of cerebral vasospasm after subarachnoid hemorrhage, stimulation of formation of collateral vessels to ischemic brain, and treatment of atherosclerotic lesions in carotid arteries. Some major obstacles, however, must be overcome before cerebrovascular gene therapy can be clinically used in humans. A key to cerebrovascular gene therapy is the development of safe and effective vectors for gene/nucleotide delivery. In addition, advances in understanding the biology of diseases and vectors will be of great value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 1990;249:1285–1288.

    PubMed  CAS  Google Scholar 

  2. Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1291–1297.

    PubMed  CAS  Google Scholar 

  3. Kutryk MJB, Foley DP, van den Brand M, et al. Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis. J Am Coll Cardiol 2002;39:281–287.

    PubMed  CAS  Google Scholar 

  4. Rajagopalan S, Mohler ER III, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108:1933–1938.

    PubMed  CAS  Google Scholar 

  5. Heistad DD, Faraci FM. Gene therapy for cerebral vascular disease. Stroke 1996;27:1688–1693.

    PubMed  CAS  Google Scholar 

  6. Lehrman S. Virus treatment questioned after gene therapy death. Nature 1999;401:517–518.

    PubMed  CAS  Google Scholar 

  7. Marshall E. Second child in French trial is found to have leukemia. Science 2003;299:320.

    PubMed  CAS  Google Scholar 

  8. Khurana VG, Meyer FB. Translational paradigms in cerebrovascular gene transfer. J Cereb Blood Flow Metab 2003;23:1251–1262.

    PubMed  CAS  Google Scholar 

  9. Smith RC, Walsh K. Local gene delivery to the vessel wall. Acta Physiol Scand 2001;173:93–102.

    PubMed  CAS  Google Scholar 

  10. Isner JM, Vale PR, Symes JF, Losordo DW. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89:389–400.

    PubMed  CAS  Google Scholar 

  11. Chu Y, Heistad DD. Gene transfer to blood vessels using adenoviral vectors. Methods Enzymol 2002; 346:263–276.

    PubMed  CAS  Google Scholar 

  12. Newman KD, Dunn PF, Owens JW, et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 1995;96: 2955–2965.

    PubMed  CAS  Google Scholar 

  13. Vassalli G, Agah R, Qiao R, Aguilar C, Dichek DA. A mouse model of arterial gene transfer: antigenspecific immunity is a minor determinant of the early loss of adenovirus-mediated transgene expression. Circ Res 1999; 85:25e–32e.

    Google Scholar 

  14. Channon KM, Qian H, Youngblood SA, et al. Acute host-mediated endothelial injury after adenoviral gene transfer in normal rabbit arteries: impact on transgene expression and endothelial function. Circ Res 1998;82: 1253–1262.

    PubMed  CAS  Google Scholar 

  15. Wen S, Schneider DB, Driscoll RM, Vassalli G, Sassani AB, Dichek DA. Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler Thromb Vasc Biol 2000;20:1452–1458.

    PubMed  CAS  Google Scholar 

  16. Qian HS, Channon K, Neplioueva V, W et al. Improved adenoviral vector for vascular gene therapy: beneficial effects on vascular function and inflammation. Circ Res 2001;88:911–917.

    PubMed  CAS  Google Scholar 

  17. Rolling F, Nong Z, Pisvin S, Collen D. Adeno-associated virus-mediated gene transfer into rat carotid arteries. Gene Ther 1997;4:757–761.

    PubMed  CAS  Google Scholar 

  18. Richter M, Iwata A, Nyhuis J, et al. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo. Physiol Genomics 2000;2:117–127.

    PubMed  CAS  Google Scholar 

  19. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33–40.

    PubMed  CAS  Google Scholar 

  20. Nabel GJ, Nabel EG, Yang Z, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 1993;90:11,307–11,311.

    PubMed  CAS  Google Scholar 

  21. Templeton NS, Lasic DD. New directions in liposome gene delivery. Mol Biotechnol 1999;11: 175–180.

    PubMed  CAS  Google Scholar 

  22. Laitinen M, Pakkanen T, Donetti E, et al. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther 1997;8:1645–1650.

    PubMed  CAS  Google Scholar 

  23. Lee SW, Trapnell BC, Rade JJ, Virmani R, Dichek DA. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res 1993;73:797–807.

    PubMed  CAS  Google Scholar 

  24. Morishita R, Aoki M, Kaneda Y, Ogihara T. Gene therapy in vascular medicine: recent advances and future perspectives. Pharmacol Ther 2001;91:105–114.

    PubMed  CAS  Google Scholar 

  25. Onoda K, Ono S, Ogihara K, et al. Inhibition of vascular contraction by intracisternal administration of preproendothelin-1 mRNA antisense oligoDNA in a rat experimental vasospasm model. J Neurosurg 1996;85: 846–852.

    PubMed  CAS  Google Scholar 

  26. Channon KM, Qian H, Neplioueva V, et al. In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterol-fed rabbits. Circulation 1998;98:1905–1911.

    PubMed  CAS  Google Scholar 

  27. Ooboshi H, Welsh MJ, Rios CD, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Circ Res 1995;77:7–13.

    PubMed  CAS  Google Scholar 

  28. Toyoda K, Faraci FM, Russo AF, Davidson BL, Heistad DD. Gene transfer of calcitonin gene-related peptide to cerebral arteries. Am J Physiol 2000;278:H586–H594.

    CAS  Google Scholar 

  29. Christenson SD, Lake KD, Ooboshi H, Faraci FM, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue in mice. Stroke 1998;29:1411–1416.

    PubMed  CAS  Google Scholar 

  30. Chen AFY, Jiang S, Crotty TB, et al. Effects of in vivo adventitial expression of recombinant endothelial nitric oxide synthase gene in cerebral arteries. Proc Natl Acad Sci USA 1997;94:12,568–12,573.

    PubMed  CAS  Google Scholar 

  31. Driesse MJ, Kros JM, Avezaat CJJ, et al. Distribution of recombinant adenovirus in the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 1999;10:2347–2354.

    PubMed  CAS  Google Scholar 

  32. Ono S, Date I, Onoda K, et al. Decoy administration of NF-κB into the subarachnoid space for cerebral angiopathy. Hum Gene Ther 1998;9:1003–1011.

    PubMed  CAS  Google Scholar 

  33. Ríos CD, Ooboshi H, Piegors D, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer to normal and atherosclerotic arteries: a novel approach. Arterioscler Thromb Vasc Biol 1995;15:2241–2245.

    PubMed  Google Scholar 

  34. Schneider DB, Sassani AB, Vassalli G, Driscoll RM, Dichek DA. Adventitial delivery minimizes the proinflammatory effects of adenoviral vectors. J Vasc Surg 1999:543–550.

    Google Scholar 

  35. Khurana VG, Weiler DA, Witt TA, et al. A direct mechanical method for accurate and efficient adenoviral vector delivery to tissues. Gene Ther 2003;10:443–452.

    PubMed  CAS  Google Scholar 

  36. Edelman ER, Simons M, Sirois MG, Rosenberg RD. c-myc in vasculoproliferative disease. Nature 1995;359:67–70.

    Google Scholar 

  37. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1995:541–545.

    Google Scholar 

  38. Porter TR, Hiser WL, Kricsfeld D, et al. Inhibition of carotid artery neointimal formation with intravenous microbubbles. Ultrasound Med Biol 2001;27:259–265.

    PubMed  CAS  Google Scholar 

  39. Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into carotid artery using ultrasound. Circulation 2002;105:1233–1239.

    PubMed  CAS  Google Scholar 

  40. Huber PE, Mann MJ, Melo LG, et al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther 2003;10:1600–1607.

    PubMed  CAS  Google Scholar 

  41. Kullo IJ, Mozes G, Schwartz RS, et al. Adventitial gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries alters vascular reactivity. Circulation 1997;96:2254–2261.

    PubMed  CAS  Google Scholar 

  42. Schulick AH, Dong G, Newman KD, Virmani R, Dichek DA. Endothelium-specific in vivo gene transfer. Circ Res 1995;77:475–485.

    PubMed  CAS  Google Scholar 

  43. Dorsch NWC. Cerebral arterial spasm—a clinical review. Br J Neurosurg 1995;9:403–412.

    PubMed  CAS  Google Scholar 

  44. Treggiari-Venzi MM, Suter PM, Romand J. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery 2001;48:249–262.

    PubMed  CAS  Google Scholar 

  45. Onoue H, Tsutsui M, Smith L, Stelter A, O’Brien T, Katusic ZS. Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 1998;29:1959–1966.

    PubMed  CAS  Google Scholar 

  46. Muhonen MG, Ooboshi H, Welsh MJ, Davidson BL, Heistad DD. Gene transfer to cerebral blood vessels after subarachnoid hemorrhage. Stroke 1997;28:822–829.

    PubMed  CAS  Google Scholar 

  47. Sobey CG, Faraci FM. Subarachnoid haemorrhage. What happens to the cerebral arteries? Clin Exp Pharmacol Physiol 1998;25:867–876.

    PubMed  CAS  Google Scholar 

  48. Dietrich HH, Dacey RG Jr. Molecular keys to the problems of cerebral vasospasm. Neurosurgery 2000; 46:517–530.

    PubMed  CAS  Google Scholar 

  49. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998;78:53–97.

    PubMed  CAS  Google Scholar 

  50. Stoodley M, Weihl CC, Zhang Z, et al. Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 2000;46:1193–1203.

    PubMed  CAS  Google Scholar 

  51. Khurana VG, Smith LA, Baker TA, Eguchi D, O’Brien T, Katusic ZS. Protective vasomotor effects of in vivo recombinant endothelial nitric oxide synthase gene expression in a canine model of cerebral vasospasm. Stroke 2002;33:782–789.

    PubMed  CAS  Google Scholar 

  52. Macdonald RL, Weir BKA. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 1991; 22:971–982.

    PubMed  CAS  Google Scholar 

  53. Sobey CG, Heistad DD, Faraci FM. Effect of subarachnoid hemorrhage on dilatation of rat basilar artery in vivo. Am J Physiol 1996;271:H126–H132.

    PubMed  CAS  Google Scholar 

  54. Sobey CG, Quan L. Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage. Am J Physiol 1999;277:H1718–H1724.

    PubMed  CAS  Google Scholar 

  55. Toyoda K, Faraci FM, Watanabe Y, et al. Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 2000;87:818–824.

    PubMed  CAS  Google Scholar 

  56. Satoh M, Perkins E, Kimura H, Tang J, Chu Y, Heistad DD, Zhang JH. Posttreatment with adenovirusmediated gene transfer of calcitonin gene-related peptide to reverse cerebral vasospasm in dogs. J Neurosurg 2002; 97:136–142.

    PubMed  CAS  Google Scholar 

  57. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 1990;344:770–773.

    PubMed  CAS  Google Scholar 

  58. Kitazono T, Heistad DD, Faraci FM. Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo. Am J Physiol 1993;265:H581–H585.

    PubMed  CAS  Google Scholar 

  59. Harder DR, Dernbach P, Waters A. Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. J Clin Invest 1987;80:875–880.

    PubMed  CAS  Google Scholar 

  60. Sobey CG, Heistad DD, Faraci FM. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K+ channels in chronically hypertensive rats. Stroke 1997:392–397.

    Google Scholar 

  61. Zuccarello M, Bonasso CL, Lewis AI, Sperelakis N, Rapoport RM. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim. Stroke 1996;27:311–316.

    PubMed  CAS  Google Scholar 

  62. Zimmermann M, Seifert V. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 1998;43: 863–876.

    PubMed  CAS  Google Scholar 

  63. Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab 2001;21: 887–906.

    PubMed  CAS  Google Scholar 

  64. Fujikawa H, Tani E, Yamaura I, et al. Activation of protein kinases in canine basilar artery in vasospasm. J Cereb Blood Flow Metab 1999;19:44–52.

    PubMed  CAS  Google Scholar 

  65. Ohkuma H, Parney I, Megyesi J, Ghahary A, Findlay JM. Antisense preproendothelin-oligoDNA therapy for vasospasm in a canine model of subarachnoid hemorrhage. J Neurosurg 1999;90:1105–1114.

    PubMed  CAS  Google Scholar 

  66. Satoh M, Parent AD, Zhang JH. Inhibitory effect with antisense mitogen-activated protein kinase oligodeoxynucleotide against cerebral vasospasm in rats. Stroke 2002;33:775–781.

    PubMed  CAS  Google Scholar 

  67. Peterson JW, Kwun B, Hackett JD, Zervas NT. The role of inflammation in experimental cerebral vasospasm. J Neurosurg 1990;72:767–774.

    PubMed  CAS  Google Scholar 

  68. Bavbek M, Polin R, Kwan A, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM-1 and CD18 attenuate Cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 1998;29: 1930–1936.

    PubMed  CAS  Google Scholar 

  69. Handa Y, Kabuto M, Kobayashi H, Kawano H, Takeuchi H, Hayashi M. The correlation between immunological reaction in the arterial wall and the time course of the development of cerebral vasospasm in a primate model. Neurosurgery 1991;28:542–549.

    PubMed  CAS  Google Scholar 

  70. Suzuki H, Kanamaru K, Tsunoda H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest 1999;104:59–66.

    PubMed  CAS  Google Scholar 

  71. Ono S, Zhang Z-D, Marton LS, et al. Heme oxygenase-1 and ferritin are increased in cerebral arteries after subarachnoid hemorrhage in monkeys. J Cereb Blood Flow Metab 2000;20:1066–1076.

    PubMed  CAS  Google Scholar 

  72. Suzuki H, Muramatsu M, Kojima T, Taki W. Intracranial heme metabolism and cerebral vasospasm after aneurismal subarachnoid hemorrhage. Stroke 2003;34:2796–2800.

    PubMed  Google Scholar 

  73. Ono S, Komuro T, Macdonald RL. Heme oxygenase-1 gene therapy for prevention of vasospasm in rats. J Neurosurg 2002;96:1094–1102.

    PubMed  CAS  Google Scholar 

  74. Mori T, Nagata K, Town T, Tan J, Matsui T, Asano T. Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model. Stroke 2001;32:636–642.

    PubMed  CAS  Google Scholar 

  75. Shishido T, Suzuki R, Qian L, Hirakawa K. The role of superoxide anions in the pathogenesis of cerebral vasospasm. Stroke 1994;25:864–868.

    PubMed  CAS  Google Scholar 

  76. McGirt MJ, Parra A, Sheng H, et al. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke 2002;33:2317–2323.

    PubMed  CAS  Google Scholar 

  77. Nakane H, Chu Y, Faraci FM, Oberley LW, Heistad DD. Gene transfer of extracellular superoxide dismutase increases superoxide dismutase activity in cerebrospinal fluid. Stroke 2001;32:184–189.

    PubMed  CAS  Google Scholar 

  78. Watanabe Y, Chu Y, Andresen JJ, Nakane H, Faraci FM, Heistad DD. Gene transfer of extracellular superoxide dismutase reduces cerebral vasospasm following subarachnoid hemorrhage. Stroke 2003;34:434–440.

    PubMed  CAS  Google Scholar 

  79. Ylä-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694–701.

    PubMed  Google Scholar 

  80. Yoshimura S, Morishita R, Hayashi K, et al. Gene transfer of hepatocyte growth factor to subarachnoid space in cerebral hypoperfusion model. Hypertension 2002;39:1028–1034.

    PubMed  CAS  Google Scholar 

  81. Yukawa H, Takahashi JC, Miyatake S, et al. Adenoviral gene transfer of basic fibroblast growth factor promotes angiogenesis in rat brain. Gene Ther 2000;7:942–949.

    PubMed  CAS  Google Scholar 

  82. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002;105:732–738.

    PubMed  CAS  Google Scholar 

  83. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 2002;33:1362–1368.

    PubMed  Google Scholar 

  84. Shimamura M, Sato N, Oshima K, et al. Novel therapeutic strategy to treat brain ischemia: overexpression of hepatocyte growth factor gene reduced ischemic injury without cerebral edema in rat model. Circulation 2004; 109:424–431.

    PubMed  CAS  Google Scholar 

  85. Kibbe MR, Billiar TR, Tzeng E. Gene therapy for restenosis. Circ Res 2000;86:829–833.

    PubMed  CAS  Google Scholar 

  86. Strandness DE Jr. Screening for carotid disease and surveillance for carotid restenosis. Semin Vasc Surg 2001;14:200–205.

    PubMed  Google Scholar 

  87. Chakhtoura EY, Hobson RW II, Goldstein J, et al. In-stent restenosis after carotid angioplasty-stenting: incidence and management. J Vasc Surg 2001;33:220–226.

    PubMed  CAS  Google Scholar 

  88. Ecker RD, Pichelmann MA, Meissner I, Meyer FB. Durability of carotid endarterectomy. Stroke 2003; 34:2941–2944.

    PubMed  Google Scholar 

  89. Morishita R, Gibbons GH, Ellison KE, et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 1993;90:8474–8478.

    PubMed  CAS  Google Scholar 

  90. Abe J, Zhou W, Taguchi J, et al. Suppression of neointimal smooth muscle cell accumulation in vivo by antisense cdc2 and cdk2 oligonucleotides in rat carotid artery. Biochem Biophys Res Commun 1994;198: 16–24.

    PubMed  CAS  Google Scholar 

  91. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and cdc 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome delivery. Gene 1994;149:13–19.

    PubMed  CAS  Google Scholar 

  92. Simons M, Edelman ER, DeKeyser J, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992;359:67–70.

    PubMed  CAS  Google Scholar 

  93. Bennet MR, Anglin S, McEwan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 1994;93: 820–828.

    Google Scholar 

  94. Morishita R, Gibbons GH, Horiuchi M, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 1995;92:5855–5859.

    PubMed  CAS  Google Scholar 

  95. Chang MW, Barr E, Lu MM, Barton K, Leiden MJ. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995;96:2260–2268.

    PubMed  CAS  Google Scholar 

  96. Chen D, Krasinski K, Chen D, et al. Down regulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27KIP1, an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 1997;99:2334–2341.

    PubMed  CAS  Google Scholar 

  97. Yonemitsu Y, Kaneda Y, Tanaka S, et al. Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo. Circ Res 1998;82:147–156.

    PubMed  CAS  Google Scholar 

  98. Smith RC, Branellec D, Gorski DH, et al. p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Gene Dev 1997;11:1674–1689.

    PubMed  CAS  Google Scholar 

  99. Mano T, Luo Z, Malendowicz SL, Evans T, Walsh K. Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. Circ Res 1999;84: 647–654.

    PubMed  CAS  Google Scholar 

  100. Chang MW, Eliav B, Seltzer J, et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995;267:518–522.

    PubMed  CAS  Google Scholar 

  101. Mann MJ, Whittemore AD, Donaldson MC, et al. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomized, controlled trial. Lancet 1999;354:1493–1498.

    PubMed  CAS  Google Scholar 

  102. Hanna AK, Fox JC, Neschis DG, Safford SD, Swain JL, Golden MA. Antisense basic fibroblast growth factor gene transfer reduces neointimal thickening after arterial injury. J Vasc Surg 1997;25:320–325.

    PubMed  CAS  Google Scholar 

  103. Sirois MG, Simons M, Edelman ER. Antisense oligonucleotide inhibition of PDGFR-β receptor subunit expression directs suppression of intimal thickening. Circulation 1997;95:669–676.

    PubMed  CAS  Google Scholar 

  104. Merrilees M, Beaumont B, Scott L, Hermanutz V, Fennessy P. Effect of TGF-β1 antisense S-oligonucleotide on synthesis and accumulation of matrix proteoglycans in balloon catheter-injured neointima of rabbit carotid arteries. J Vasc Res 2000;37:50–60.

    PubMed  CAS  Google Scholar 

  105. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. In vivo gene transfer: prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase. Bas Res Cardiol 1997;92:378–384.

    CAS  Google Scholar 

  106. Shibata R, Kai H, Seki Y, et al. Inhibition of STAT3 prevents neointima formation by inhibiting proliferation and promoting apoptosis of neointimal smooth muscle cells. Hum Gene Ther 2003;14:601–610.

    PubMed  CAS  Google Scholar 

  107. Kume M, Komori K, Matsumoto T, et al. Administration of a decoy against the activator protein-1 binding site suppresses neointimal thickening in rabbit balloon-injured arteries. Circulation 2002;105:1226–1232.

    PubMed  CAS  Google Scholar 

  108. Ohtani K, Egashira K, Usui M, et al. Inhibition of neointimal hyperplasia after balloon injury by cis-element ‘decoy’ of early growth response gene-1 in hypercholesterolemic rabbits. Gene Ther 2004;11: 126–132.

    PubMed  CAS  Google Scholar 

  109. Sata M, Perlman H, Muruve DA, et al. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci USA 1998;95:1213–1217.

    PubMed  CAS  Google Scholar 

  110. Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998;4:222–227.

    PubMed  CAS  Google Scholar 

  111. Cheng L, Mantile G, Pauly R, et al. Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998;98:2195–2201.

    PubMed  CAS  Google Scholar 

  112. Dollery CM, Humphries SE, McClelland A, Latchman DS, McEwan JR. Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury. Circulation 1999;99:3199–3205.

    PubMed  CAS  Google Scholar 

  113. Asahara T, Chen D, Tsurumi Y, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation 1996;94:3291–3302.

    PubMed  CAS  Google Scholar 

  114. Laitinen M, Hartikainen J, Hiltunen MO, et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000;11:263–270.

    PubMed  CAS  Google Scholar 

  115. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995;92:1137–1141.

    PubMed  Google Scholar 

  116. Qian H, Neplioueva V, Shetty GA, Channon KM, George SE. Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 1999;99:2979–2982.

    PubMed  CAS  Google Scholar 

  117. Shears LL II, Kibbe MR, Murdock AD, et al. Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 1998;187:295–306.

    PubMed  Google Scholar 

  118. Todaka T, Yokoyama C, Yanamoto H, et al. Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 1999;30:419–426.

    PubMed  CAS  Google Scholar 

  119. Numaguchi Y, Naruse K, Harada M, et al. Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol 1999;19:727–733.

    PubMed  CAS  Google Scholar 

  120. Sinnaeve P, Chiche J, Gillijns H, et al. Overexpression of a constitutively active protein kinase G mutant reduces neointima formation and in-stent restenosis. Circulation 2002;105:2911–2916.

    PubMed  CAS  Google Scholar 

  121. Rade JJ, Schulick AH, Virmani R, Dichek DA. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med 1996;2:293–298.

    PubMed  CAS  Google Scholar 

  122. Atsuchi N, Nishida T, Marutsuka K, et al. Combination of a brief irrigation with tissue factor pathway inhibitor (TFPI) and adenovirus-mediated local TFPI gene transfer additively reduces neointima formation in balloon-injured rabbit carotid arteries. Circulation 2001;103:570–575.

    PubMed  CAS  Google Scholar 

  123. Marshall DJ, Palasis M, Lepore JJ, Leiden JM. Biocompatibility of cardiovascular gene delivery catheters with adenovirus vectors: an important determinant of the efficiency of cardiovascular gene transfer. Mol Ther 2000; 1:423–429.

    PubMed  CAS  Google Scholar 

  124. Perlstein I, Connolly JM, Cui X, et al. DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther 2003;10:1420–1428.

    PubMed  CAS  Google Scholar 

  125. Takahashi A, Palmer-Opolski K, Smith RC, Walsh K. Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent. Gene Ther 2003;10:1471–1478.

    PubMed  CAS  Google Scholar 

  126. Inoue S, Egashira K, Ni W, et al. Anti-monocyte chemoattractant protein-1gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 2002;106:2700–2706.

    PubMed  CAS  Google Scholar 

  127. Belalcazar LM, Merched A, Carr B, et al. Long-term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia. Circulation 2003;107:2726–2732.

    PubMed  CAS  Google Scholar 

  128. Jalkanen J, Leppänen P, Pajusola K, et al. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Mol Ther 2003;8:903–910.

    PubMed  CAS  Google Scholar 

  129. Toyoda K, Nakane H, Heistad DD. Cationic polymer and lipids augment adenovirus-mediated gene transfer to cerebral arteries in vivo. J Cereb Blood Flow Metab 2001;21:1125–1131.

    PubMed  CAS  Google Scholar 

  130. Toyoda K, Andresen JJ, Zabner J, Faraci FM, Heistad DD. Calcium phosphate precipitates augment adenovirus-mediated gene transfer to blood vessels in vitro and in vivo. Gene Ther 2000;7:1284–1291.

    PubMed  CAS  Google Scholar 

  131. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004;15: 35–46.

    PubMed  CAS  Google Scholar 

  132. Sakhuja K, Reddy PS, Ganesh S, et al. Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther 2003;14:243–254.

    PubMed  CAS  Google Scholar 

  133. Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8:846–852.

    PubMed  CAS  Google Scholar 

  134. Peng K, Russell SJ. Viral vector targeting. Curr Opin Biotechnol 1999;10:454–457.

    PubMed  CAS  Google Scholar 

  135. Wickham TJ. Targeting adenovirus. Gene Ther 2000;7:110–114.

    PubMed  CAS  Google Scholar 

  136. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther 2003;10:1535–1542.

    PubMed  CAS  Google Scholar 

  137. Pislaru S, Janssens SP, Gersh BJ, Simari RD. Defining gene transfer before expecting gene therapy: putting the horse before the cart. Circulation 2002;106:631–636.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Watanabe, Y., Heistad, D.D. (2005). Gene Therapy for Celebral Arterial Diseases. In: Rai, M.K., Paton, J.F.R., Kasparov, S., Katovich, M.J. (eds) Cardiovascular Genomics. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-883-8:285

Download citation

  • DOI: https://doi.org/10.1385/1-59259-883-8:285

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-400-5

  • Online ISBN: 978-1-59259-883-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics