Skip to main content

Application of Viral Gene Transfer in Studies of Neurogenic Hypertension

  • Chapter

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

This chapter reviews the use of viral gene transfer to disentangle the complexities of neurogenic hypertension. Viral gene manipulation allows lasting and controllable genetic manipulation in selected areas of the brain in different species and strains, including experiments in the spontaneously hypertensive rat, an established model of hypertension. Recent evidence indicates that, in contrast to pharmacological tools that may act on any cellular target within a given area of the brain, viral vectors deliver transgene in a nonuniform manner, and its concentration in different types of cells may vary greatly. This occurs as a result of both transductional tropism of a viral vector system and the transciptional activity of the promoter in different cellular types which are present in any brain nucleus. Properties of adenoviral and lentiviral vectors are compared and contrasted. Application of viral vectors for overexpression of biologically active molecules, expression of dominant negative proteins, pathway tracking, and other experiments to study central mechanisms of cardiovascular control are discussed. In summary, virally mediated gene delivery to the brain is a powerful research tool that can be used to address a wide range of questions related to mechanisms of human essential hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mann SJ. Neurogenic essential hypertension revisited: the case for increased clinical and research attention. Am J Hypertens 2003;16:881–888.

    Article  PubMed  Google Scholar 

  2. Keeton TK, Campbell WB. The pharmacologic alteration of renin release. Pharmacol Rev 1980;31: 81–227.

    Google Scholar 

  3. Waki H, Kasparov S, Wong L-F, Murphy D, Shimizu T, Paton JFR. Chronic inhibition of eNOS activity in NTS enhances baroreceptor reflex in conscious rats. J Physiol 2003;546:233–242.

    Article  PubMed  CAS  Google Scholar 

  4. Paton JF, Waki H, Kasparov S. In vivo gene transfer to dissect neuronal mechanisms regulating cardiorespiratory function. Can J Physiol Pharmacol 2003;81:311–316.

    Article  PubMed  CAS  Google Scholar 

  5. Kishi T, Hirooka Y, Kimura Y, et al. Overexpression of eNOS in RVLM improves impaired baroreflex control of heart rate in SHRSP. Rostral ventrolateral medulla. Stroke-prone spontaneously hypertensive rats, Hypertension 2003; 41:255–260.

    CAS  Google Scholar 

  6. Ito K, Hirooka Y, Sakai K, et al. Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circulation Res 2003; 92:1337–1343.

    Article  PubMed  CAS  Google Scholar 

  7. Kishi T, Hirooka Y, Sakai K, Shigematsu H, Shimokawa H, Takeshita A. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 2001;38:896–901.

    PubMed  CAS  Google Scholar 

  8. Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL. Superoxide mediates the actions of angiotensin II in the central nervous system., Circulation Res 2002;91:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  9. Waki H, Kasparov S, Katahira K, Shimizu T, Murphy D, Paton JF. Dynamic exercise attenuates spontaneous baroreceptor reflex sensitivity in conscious rats. Exper Physiol 2003;88:517–526.

    Article  CAS  Google Scholar 

  10. Wong LF, Polson JW, Murphy D, Paton JF, Kasparov S. Genetic and pharmacological dissection of pathways involved in the angiotensin II-mediated depression of baroreflex function. FASEB J Online 2002;16: 1595–1601.

    Article  CAS  Google Scholar 

  11. Sinnayah P, Lindley TE, Staber PD, Cassell MD, Davidson BL, Davisson RL. Selective gene transfer to key cardiovascular regions of the brain: comparison of two viral vector systems. Hypertension 2002;39: 603–608.

    Article  PubMed  CAS  Google Scholar 

  12. Irnaten M, Walwyn WM, Wang J, et al. Pentobarbital enhances GABAergic neurotransmission to cardiac parasympathetic neurons, which is prevented by expression of GABAA e subuni. Anesthesiology 2002;97: 717–724.

    Article  PubMed  CAS  Google Scholar 

  13. Irnaten M, Neff RA, Wang J, Loewy AD, Mettenleiter TC, Mendelowitz D. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP. J Neurophysiol 2001;85:435–438.

    PubMed  CAS  Google Scholar 

  14. Chalmers J. Brain, blood pressure and stroke. J Hypertens 1998;16:1849–1858.

    Article  PubMed  CAS  Google Scholar 

  15. de Wardener HE. The hypothalamus and hypertension. Physiol Rev 2001;81:1599–1658.

    PubMed  Google Scholar 

  16. Haywood JR, Mifflin SW, Craig T, et al.-Aminobutyric acid (GABA)A function and binding in the paraventricular nucleus of the hypothalamus in chronic renal-wrap hypertension. Hypertension 2001;37:614–618.

    PubMed  CAS  Google Scholar 

  17. Arnolda L, Minson J, Kapoor V, Pilowsky P, Llewellyn-Smith I, Chalmers J, Amino acid neurotransmitters in hypertension. Kidney Int Suppl 1992;37:S2–S7.

    PubMed  CAS  Google Scholar 

  18. Yamada K, Moriguchi A, Mikami H, Okuda N, Higaki J, Ogihara T. The effect of central amino acid neurotransmitters on the antihypertensive response to angiotensin blockade in spontaneous hypertension. J Hypertens 1995;13:1624–1630.

    Article  PubMed  CAS  Google Scholar 

  19. Dampney RAL, Goodchild AK, Tan E. Identification of cardiovascular cell groups in the brain stem. Clin Exper Hypertens 1984;6:205–220.

    Article  CAS  Google Scholar 

  20. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994;74:323–364.

    PubMed  CAS  Google Scholar 

  21. Lu D, Yu K, Paddy MR, Rowland NE, Raizada MK. Regulation of norepinephrine transport system by angiotensin II in neuronal cultures of normotensive and spontaneously hypertensive rat brains. Endocrinology 1996;137: 763–772.

    Article  PubMed  CAS  Google Scholar 

  22. MacLean MR, Raizada MK, Sumners C. The influence of angiotensin II on catecholamine synthesis in neuronal cultures from rat brain. Biochem Biophys Res Comm 1990;167:492–497.

    Article  PubMed  CAS  Google Scholar 

  23. MacLean MR, Phillips MI, Summers C, Raizada MK. α1-Adrenergic receptors in the nucleus tractus solitarii region of rats with experimental and genetic hypertension. Brain Res 1990;519:261–265.

    Article  PubMed  CAS  Google Scholar 

  24. Baker AH. Adenoviral vectors for gene therapy. Mol Biotechnol 2003;25:101–102.

    Article  Google Scholar 

  25. Nicklin SA, Dishart KL, Buening H, et al. Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Lett 2003;201:165–173.

    Article  PubMed  CAS  Google Scholar 

  26. Wickham TJ. Targeting adenovirus. Gene Ther 2000;7:110–114.

    Article  PubMed  CAS  Google Scholar 

  27. Kasparov S, Teschemacher AG, Hwang D-Y, Kim K-S, Lonergan T, Paton JFR. Viral Vectors as Tools for Studies of Central Cardiovascular Control. Prog Biophys Mol Biol 2004;84:251–277.

    Article  PubMed  CAS  Google Scholar 

  28. Lonergan T, Teschemacher AG, Paton JFR, Kasparov S. Expression profile of adenoviral vectors incorporating hCMV, synapsin-1 and PRSx8 promoters in brainstem centres of cardiovascular control. J Physiol 2004; http://www.physoc.org/publications/proceedings/archive/index.asp.

  29. Katovich MJ, Reaves PY, Francis SC, Pachori AS, Wang HW, Raizada MK. Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin-resistant model of hypertension. J Hypertens 2001;19: 1553–1558.

    Article  PubMed  CAS  Google Scholar 

  30. Wang H, Lu D, Reaves PY, Katovich MJ, Raizada MK. Retrovirally mediated delivery of angiotensin II type 1 receptor antisense in vitro and in vivo. Methods Enzymol 1999;314:581–590.

    Article  Google Scholar 

  31. Stec DE, Davisson RL, Haskell HE, Davidson BL, Sigmund CD. Efficient liver-specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo. J Biol Chem 1999;274: 21,285–21,290.

    Article  PubMed  CAS  Google Scholar 

  32. Paton JFR, Deuchars J, Ahmad Z, Wong L-F, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 2001;531:445–458.

    Article  PubMed  CAS  Google Scholar 

  33. Hirooka Y, Sakai K, Kishi T, Takeshita A. Adenovirus-mediated gene transfer into the NTS in conscious rats. A new approach to examining the central control of cardiovascular regulation. Ann NY Acad Sci 2001;940: 197–205.

    Article  PubMed  CAS  Google Scholar 

  34. Phillips MI. Gene therapy for hypertension: the preclinical data. Hypertension 2001;38:543–548.

    Article  PubMed  CAS  Google Scholar 

  35. Phillips MI. Gene therapy for hypertension: sense and antisense strategies. Exp Opin Biol Ther 2001; 1:655–662.

    Article  CAS  Google Scholar 

  36. Kugler S, Kilic E, Bahr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 2003; 10:337–347.

    Article  PubMed  CAS  Google Scholar 

  37. Glover CP, Bienemann AS, Hopton M, Harding TC, Kew JN, Uney JB. Long-term transgene expression can be mediated in the brain by adenoviral vectors when powerful neuron-specific promoters are used. J Gene Med 2003; 5:554–559.

    Article  PubMed  CAS  Google Scholar 

  38. Hwang D-Y, Carlezon WA Jr, Isacson O, Kim K-S. A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Hum Gene Ther 2001;12:1731–1740.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: Toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000;97:7482–7487.

    Article  PubMed  CAS  Google Scholar 

  40. Iwakuma T, Cui Y, Chang L-J. Self-lnactivating lentiviral vectors with U3 and U5 modifications. Virology 1999;261:120–132.

    Article  PubMed  CAS  Google Scholar 

  41. Coleman JE, Huentelman MJ, Kasparov S, et al. Efficient Large-Scale Production and Concentration of HIV-1-Based Lentiviral Vectors For Use In vivo. Physiol Genom 2003;12:221–228.

    CAS  Google Scholar 

  42. Jin X, Mathers PH, Szabo G, Katarova Z, Agmon A. Vertical bias in dendritic trees of non-pyramidal neocortical neurons expressing GAD67-GFP in vitro. Cerebral Cortex 2001;11:666–678.

    Article  PubMed  CAS  Google Scholar 

  43. Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003;425:917–925.

    Article  PubMed  CAS  Google Scholar 

  44. Kugler S, Kilic E, Bahr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 2003; 10:337–347.

    Article  PubMed  CAS  Google Scholar 

  45. Chillon M, Bosch A, Zabner J, et al. Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 1999;73:2537–2540.

    PubMed  CAS  Google Scholar 

  46. Omori, N., Mizuguchi, H., Ohsawa, K., et al. Modification of a fiber protein in an adenovirus vector improves in vitro gene transfer efficiency to the mouse microglial cell line. Neurosci Lett 2002;324:145–148.

    Article  PubMed  CAS  Google Scholar 

  47. Nicklin SA, Von Seggern DJ, Work LM, et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001;4: 534–542.

    Article  PubMed  CAS  Google Scholar 

  48. White SJ, Nicklin SA, Sawamura T, Baker AH. Identification of peptides that target the endothelial cellspecific LOX-1 receptor. Hypertension 2001;37:449–455.

    PubMed  CAS  Google Scholar 

  49. Bilang-Bleuel, A., Revah, F., Colin, P., et al. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc Natl Acad Sci USA 1997;94:8818–8823.

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura I, Uetsuki T, Dani SU, et al. Degeneration in vivo of rat hippocampal neurons by wild-type Alzheimer amyloid precursor protein overexpressed by adenovirus-mediated gene transfer. J Neurosci 1998;18: 2387–2398.

    PubMed  CAS  Google Scholar 

  51. Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991;108:193–199.

    Article  PubMed  CAS  Google Scholar 

  52. Mazarakis ND, Azzouz M, Rohll JB, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  PubMed  CAS  Google Scholar 

  53. Kang Y, Stein CS, Heth JA, et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 2002;76:9378–9388.

    Article  PubMed  CAS  Google Scholar 

  54. Davidson BL, Chiorini JA. Recombinant adeno-associated viral vector types 4 and 5. Preparation and application for CNS gene transfer. Methods Mol Med 2003;76:269–285.

    PubMed  CAS  Google Scholar 

  55. Okada T, Nomoto T, Shimazaki K, et al. Adeno-associated virus vectors for gene transfer to the brain. Methods 2002;28:237–247.

    Article  PubMed  CAS  Google Scholar 

  56. Paterna JC, Büeler H. Recombinant adeno-associated virus vector design and gene expression in the mammalian brain. Methods 2002;28:208–218.

    Article  PubMed  CAS  Google Scholar 

  57. Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001;4:174–181.

    Article  PubMed  CAS  Google Scholar 

  58. Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage FH, Peterson DA. Targeted retrograde gene delivery for neuronal protection. Mol Ther 2002;5:50–56.

    Article  PubMed  CAS  Google Scholar 

  59. Büning H, Nicklin SA, Perabo L, Hallek M, Baker AH. AAV-based gene transfer. Curr Opin Mol Ther 2003;5:367–375.

    PubMed  Google Scholar 

  60. Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003;4;353-364.

    Google Scholar 

  61. Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 2003;26:325–331.

    Article  PubMed  CAS  Google Scholar 

  62. Hirooka Y, Kishi T, Sakai K, Shimokawa H, Takeshita A. Effect of overproduction of nitric oxide in the brain stem on the cardiovascular response in conscious rats. J Cardiovasc Pharmacol 2003;41(Suppl 1): S119–S126.

    PubMed  CAS  Google Scholar 

  63. Kishi T, Hirooka Y, Ito K, Sakai K, Shimokawa H, Takeshita A. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002;39:264–268.

    Article  PubMed  CAS  Google Scholar 

  64. Matsuo I, Hirooka Y, Hironaga K, et al. Glutamate release via NO production evoked by NMDA in the NTS enhances hypotension and bradycardia in vivo. Am J Physiol Reg Integr Comp Physiol 2001;280:R1285–R1291.

    CAS  Google Scholar 

  65. Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, Takeshita A. Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 2000;36:1023–1028.

    PubMed  CAS  Google Scholar 

  66. Paton JFR, Kasparov S, Paterson DJ. Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci 2002;25:626–631.

    Article  PubMed  CAS  Google Scholar 

  67. Lindley TE, Doobay MF, Sharma RV, Davisson RL. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circulation Res 2004;94:402–409.

    Article  PubMed  CAS  Google Scholar 

  68. Lu D, Raizada MK. Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin action in neurons from hypertensive rat brain. Proc Natl Acad Sci USA 1995;92:2914–2918.

    Article  PubMed  CAS  Google Scholar 

  69. Kagiyama S, Qian K, Kagiyama T, Phillips MI. Antisense to epidermal growth factor receptor prevents the development of left ventricular hypertrophy. Hypertension 2003;41:824–829.

    Article  PubMed  CAS  Google Scholar 

  70. Shi Y. Mammalian RNAi for the masses. Trends Genet 2003;19:9–12.

    Article  PubMed  Google Scholar 

  71. Couzin J. Breakthrough of the year. Small RNAs make big splash. Science 2002;298:2296–2297.

    Article  PubMed  CAS  Google Scholar 

  72. Czauderna F, Fechtner M, Aygun H, et al. Functional studies of the PI(3)-kinase signalling pathway employing synthetic and expressed siRNA, Nucleic Acids Res 2003;31:670–682.

    Article  PubMed  CAS  Google Scholar 

  73. Higuchi H, Yamashita T, Yoshikawa H, Tohyama M. Functional inhibition of the p75 receptor using a small interfering RNA. Biochem Biophys Res Comm 2003;301:804–809.

    Article  PubMed  CAS  Google Scholar 

  74. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003;327:761–766.

    Article  PubMed  CAS  Google Scholar 

  75. Miller VM, Xia H, Marrs GL, et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003;100:7195–7200.

    Article  PubMed  CAS  Google Scholar 

  76. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.

    Article  PubMed  CAS  Google Scholar 

  77. Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 2002;99:14,943–14,945.

    Article  PubMed  CAS  Google Scholar 

  78. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002;20:1006–1010.

    Article  PubMed  CAS  Google Scholar 

  79. Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003;77:8957–8961.

    Article  PubMed  CAS  Google Scholar 

  80. Casto R, Phillips MI. Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats. Am J Physiol Regul Integr Comp Physiol 1986;250:R193–R198.

    CAS  Google Scholar 

  81. Casto R, Phillips MI. Baroreflex resetting by infusions of angiotensin II into the nucleus tractus solitarius. Federation Proceedings 1985;44:3645.

    Google Scholar 

  82. Kantor DB, Lanzrein M, Stary SJ, et al. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 1996;274:1744–1748.

    Article  PubMed  CAS  Google Scholar 

  83. Lee CM, Robinson LJ, Michel T. Oligomerization of endothelial nitric oxide synthase. Evidence for a dominant negative effect of truncation mutants. J Biol Chem 1995;270:27,403–27,406.

    Article  PubMed  CAS  Google Scholar 

  84. Kasparov S, Waki H, Okwuadigbo E, Murphy D, Paton JFR. Endothelial nitric oxide synthase in the nucleus tractus solitarii (NTS) attentuates baroreflex and increases blood pressure in spontaneously hypertensive rat (SHR): evidence from in vivo gene transfer. Soc Neurosci Abst 2002;28:861.1.

    Google Scholar 

  85. Wong L-F, Kasparov S, Murphy D, Paton JFR. Angiotensin II-mediated signal transduction mechanisms in the nucleus of the solitary tract (NTS) that depress the baroreflex. Soc Neuroci Abst 2001;27:837.4.

    Google Scholar 

  86. Kasparov S, Teschemacher A, Paton JFR. Dynamic confocal imaging in acute brain slices and organotypic slice cultures using a spectral confocal microscope with single photon excitation. Exper Physiol 2002;87: 715–724.

    Article  CAS  Google Scholar 

  87. Kugler S, Kilic E, Bahr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 2003; 10:337–347.

    Article  PubMed  CAS  Google Scholar 

  88. Stokes CEL, Murphy D, Paton JFR, Kasparov S. Dynamics of a transgene expression in acute rat brain slices transfected with adenoviral vectors. Exper Physiol 2003;88:459–466.

    Article  CAS  Google Scholar 

  89. Kasparov S, Paton JFR. Somatic gene transfer: implications for cardiovascular control. Exper Physiol 2000;85:747–755.

    Article  CAS  Google Scholar 

  90. Aston-Jones G, Card JP. Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Method 2000;103:51–61.

    Article  CAS  Google Scholar 

  91. Loewy AD. Viruses as transneuronal tracers for defining neural circuits. Neurosci Biobehav Rev 1998; 22:679–684.

    Article  PubMed  CAS  Google Scholar 

  92. Phillips MI, Tang Y, Schmidt-Ott K, Qian K, Kagiyama S. Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 2002;39:651–655.

    Article  PubMed  CAS  Google Scholar 

  93. Stokes CEL, Teschemacher A, Murphy D, Paton JFR, Kasparov S. Visualisation of c-fos activation in living neurones of the paraventricular nucleus of hypothalamus using adenoviral gene transfer. FASEB J 2003;17: abstract# 564.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Kasparov, S., Teschemacher, A.G., Paton, J.F.R. (2005). Application of Viral Gene Transfer in Studies of Neurogenic Hypertension. In: Rai, M.K., Paton, J.F.R., Kasparov, S., Katovich, M.J. (eds) Cardiovascular Genomics. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-883-8:247

Download citation

  • DOI: https://doi.org/10.1385/1-59259-883-8:247

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-400-5

  • Online ISBN: 978-1-59259-883-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics