Skip to main content

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 971 Accesses

Abstract

Patients with Parkinson’s disease (PD) often have signs or symptoms indicating impaired reflexive cardiovascular regulation, including orthostatic intolerance from orthostatic hypotension. Orthostatic hypotension in PD has been thought to be a side effect of treatment with levodopa. However, recent studies have shown that virtually all patients with PD and orthostatic hypotension, regardless of levodopa treatment, have abnormal blood pressure responses to the Valsalva maneuver and markedly decreased baroreflex-cardiovagal gain. In contrast, only a minority of patients without orthostatic hypotension have abnormal Valsalva responses, and baroreflex-cardiovagal gain is often approximately normal. Plasma levels of the sympathetic neurotransmitter, norepinephrine, are lower in patients who have PD with rather than without orthostatic hypotension, suggesting a relatively smaller complement of sympathetic nerves. Almost all patients with PD and orthostatic hypotension have significantly reduced sympathetic noradrenergic innervation of the left ventricular myocardium, and most of those without orthostatic hypotension also have diffuse or localized loss of cardiac sympathetic innervation. These findings contrast with those in multiple system atrophy (MSA) with orthostatic hypotension, which can be difficult to distinguish clinically from PD. In MSA with orthostatic hypotension, sympathetic neurocirculatory failure occurs without evidence of sympathetic denervation of the heart. Therefore, PD involves not only a central catecholaminergic lesion, with the loss of dopamine cells of the nigrostriatal system, but also a peripheral catecholaminergic lesion, with the loss of postganglionic norepinephrine cells of the sympathetic nervous system, especially in the heart. The functional consequences of cardiac sympathetic denervation in PD, relationship between central dopaminergic and peripheral noradrenergic pathologies, and the bases for cardioselective sympathetic denervation in PD without orthostatic hypotension remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Magalhaes M, Wenning GK, Daniel SE, Quinn NP. Autonomic dysfunction in pathologically confirmed multiple system atrophy and idiopathic Parkinson’s disease—a retrospective comparison. Acta Neurol Scand 1995;91:98–102.

    Article  PubMed  CAS  Google Scholar 

  2. Martignoni E, Pacchetti C, Godi L, Micieli G, Nappi G. Autonomic disorders in Parkinson’s disease. J Neural Transm Suppl 1995;45:11–19.

    PubMed  CAS  Google Scholar 

  3. Wenning GK, Scherfler C, Granata R, et al. Time course of symptomatic orthostatic hypotension and urinary incontinence in patients with postmortem confirmed parkinsonian syndromes: a clinicopathological study. J Neurol Neurosurg Psychiatry 1999;67:620–623.

    PubMed  CAS  Google Scholar 

  4. Senard JM, Rai S, Lapeyre-Mestre M, et al. Prevalence of orthostatic hypotension in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;63:584–589.

    Article  PubMed  CAS  Google Scholar 

  5. Senard JM, Brefel-Courbon C, Rascol O, Montastruc JL. Orthostatic hypotension in patients with Parkinson’s disease: pathophysiology and management. Drugs Aging 2001;18:495–505.

    Article  PubMed  CAS  Google Scholar 

  6. Aminoff MJ, Wilcox CS. Control of blood pressure in Parkinsonism. Proc R Soc Med 1972;65:944–946.

    PubMed  CAS  Google Scholar 

  7. Appenzeller O, Goss JE. Autonomic deficits in Parkinson’s syndrome. Arch Neurol 1971;24:50–57.

    PubMed  CAS  Google Scholar 

  8. Birkmayer W, Birkmayer G, Lechner H, Riederer P. DL-3,4-threo-DOPS in Parkinson’s disease: effects on orthostatic hypotension and dizziness. J Neural Transm 1983;58:305–313.

    Article  PubMed  CAS  Google Scholar 

  9. Bloem BR. Postural instability in Parkinson’s disease. Clin Neurol Neurosurg 1992;94:S41–S45.

    Article  PubMed  Google Scholar 

  10. Micieli G, Martignoni E, Cavallini A, et al. Postprandial and orthostatic hypotension in Parkinson’s disease. Neurology 1987;37:386–393.

    PubMed  CAS  Google Scholar 

  11. Mathias CJ. Cardiovascular autonomic dysfunction in parkinsonian patients. Clin Neurosci 1998;5:153–166.

    PubMed  CAS  Google Scholar 

  12. Cardiovascular disorders in Parkinson disease are underrated. Fortschr Neurol Psychiatr 1999;67:A8–A9.

    Google Scholar 

  13. Hoehn MM. Levodopa-induced postural hypotension. Treatment with fludrocortisone. Arch Neurol 1975;32:50–51.

    PubMed  CAS  Google Scholar 

  14. Goldstein DS, Holmes C, Dendi R, et al. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 2002;58:1247–1255.

    PubMed  CAS  Google Scholar 

  15. Shy GM, Drager GA. A neurological syndrome associated with orthostatic hypotension. Arch Neurol 1960;3:511–527.

    Google Scholar 

  16. Braune S, Reinhardt M, Schnitzer R, et al. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 1999;53:1020–1025.

    PubMed  CAS  Google Scholar 

  17. Satoh A, Serita T, Seto M, et al. Loss of 123I-MIBG uptake by the heart in Parkinson’s disease: assessment of cardiac sympathetic denervation and diagnostic value. J Nucl Med 1999;40:371–375.

    PubMed  CAS  Google Scholar 

  18. Takatsu H, Nishida H, Matsuo H, et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: Clinical and experimental studies with radiolabeled MIBG J Nucl Med 2000;41:71–77.

    PubMed  CAS  Google Scholar 

  19. Yoshita M, Hayashi M, Hirai S. Decreased myocardial accumulation of 123I-meta-iodobenzyl guanidine in Parkinson’s disease. Nucl Med Commun 1998;19:137–142.

    Article  PubMed  CAS  Google Scholar 

  20. Niimi Y, Ieda T, Hirayama M, et al. Clinical and physiological characteristics of autonomic failure with Parkinson’s disease. Clin Auton Res 1999;9:139–144.

    Article  PubMed  CAS  Google Scholar 

  21. Senard JM, Valet P, Durrieu G, et al. Adrenergic supersensitivity in parkinsonians with orthostatic hypotension. Eur J Clin Invest 1990;20:613–619.

    PubMed  CAS  Google Scholar 

  22. Senard JM, Rascol O, Durrieu G, et al. Effects of yohimbine on plasma catecholamine levels in orthostatic hypotension related to Parkinson disease or multiple system atrophy. Clin Neuropharmacol 1993;16:70–76.

    Article  PubMed  CAS  Google Scholar 

  23. Tohgi H, Abe T, Yamazaki K, et al. Effects of the catechol-O-methyltransferase inhibitor tolcapone in Parkinson’s disease: correlations between concentrations of dopaminergic substances in the plasma and cerebrospinal fluid and clinical improvement. Neurosci Lett 1995;192:165–168.

    Article  PubMed  CAS  Google Scholar 

  24. Kaakkola S, Mannisto PT, Nissinen E, et al. The effect of an increased ratio of carbidopa to levodopa on the pharmacokinetics of levodopa. Acta Neurol Scand 1985;72:385–391.

    Article  PubMed  CAS  Google Scholar 

  25. Rose S, Jenner P, Marsden CD. The effect of carbidopa on plasma and muscle levels of L-dopa, dopamine and their metabolites following L-dopa administration to rats. Mov Disord 1988;3:117–125.

    Article  PubMed  CAS  Google Scholar 

  26. Myllyla VV, Sotaniemi KA, Illi A, et al. Effect of entacapone, a COMT inhibitor, on the pharmacokinetics of levodopa and on cardiovascular responses in patients with Parkinson’s disease. Eur J Clin Pharmacol 1993;45:419–423.

    Article  PubMed  CAS  Google Scholar 

  27. Yeh BK, McNay JL, Goldberg LI. Attenuation of dopamine renal and mesenteric vasodilation by haloperidol: Evidence for a specific dopamine receptor. J Pharmacol Exp Ther 1969;168:303–309.

    PubMed  CAS  Google Scholar 

  28. Lokhandwala MF, Hegde SS. Cardiovascular pharmacology of dopamine receptor agonists. In: Amenta F, ed. Peripheral Dopamine Pathophysiology. CRC Press, Inc., Boca Raton, FL, 1990, pp. 63–77.

    Google Scholar 

  29. Durrieu G, Senard JM, Tran MA, et al. Effects of levodopa and bromocriptine on blood pressure and plasma catecholamines in parkinsonians. Clin Neuropharmacol 1991;14:84–90.

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein DS, Tack C. Non-invasive detection of sympathetic neurocirculatory failure. Clin Auton Res 2000;10:285–291.

    Article  PubMed  CAS  Google Scholar 

  31. Ziegler MG, Lake CR, Kopin IJ. The sympathetic-nervous-system defect in primary orthostatic hypotension. N Engl J Med 1977;296:293–297.

    Article  PubMed  CAS  Google Scholar 

  32. Goldstein DS, Polinsky RJ, Garty M, et al. Patterns of plasma levels of catechols in neurogenic orthostatic hypotension. Ann Neurol 1989;26:558–563.

    Article  PubMed  CAS  Google Scholar 

  33. Senard JM, Rascol O, Durrieu G, et al. Effects of yohimbine on plasma catecholamine levels in orthostatic hypotension related to Parkinson disease or multiple system atrophy. Clin Neuropharmacol 1993;16:70–76.

    Article  PubMed  CAS  Google Scholar 

  34. Lake CR, Ziegler MG, Kopin IJ. Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sci 1976;18:1315–1325.

    Article  PubMed  CAS  Google Scholar 

  35. Ebert TJ, Morgan BJ, Barney JA, et al. Effects of aging on baroreflex regulation of sympathetic activity in humans. Am J Physiol 1992;263:H798–H803.

    PubMed  CAS  Google Scholar 

  36. Matsukawa T, Sugiyama Y, Mano T. Age-related changes in baroreflex control of heart rate and sympathetic nerve activity in healthy humans. J Auton Nerv Syst 1996;60:209–212.

    Article  PubMed  CAS  Google Scholar 

  37. Shimada K, Kitazumi T, Sadakane N, et al. Age-related changes of baroreflex function, plasma norepinephrine, and blood pressure. Hypertension 1985;7:113–117.

    PubMed  CAS  Google Scholar 

  38. Shimada K, Kitazumi T, Ogura H, et al. Effects of age and blood pressure on the cardiovascular responses to the Valsalva maneuver. J Am Geriatr Soc 1986;34:431–434.

    PubMed  CAS  Google Scholar 

  39. Ebert TJ, Morgan BJ, Barney JA, et al. Effects of aging on baroreflex regulation of sympathetic activity in humans. Am J Physiol 1992;263:H798–H803.

    PubMed  CAS  Google Scholar 

  40. Matsukawa T, Sugiyama Y, Mano T. Age-related changes in baroreflex control of heart rate and sympathetic nerve activity in healthy humans. J Auton Nerv Syst 1996;60:209–212.

    Article  PubMed  CAS  Google Scholar 

  41. Davy KP, Seals DR, Tanaka H. Augmented cardiopulmonary and integrative sympathetic baroreflexes but attenuated peripheral vasoconstriction with age. Hypertension 1998;32:298–304.

    PubMed  CAS  Google Scholar 

  42. Davy KP, Tanaka H, Andros EA, et al. Influence of age on arterial baroreflex inhibition of sympathetic nerve activity in healthy adult humans. Am J Physiol 1998;275:H1768–H1772.

    PubMed  CAS  Google Scholar 

  43. Matsukawa T, Sugiyama Y, Watanabe T, et al. Baroreflex control of muscle sympathetic nerve activity is attenuated in the elderly. J Auton Nerv Syst 1998;73:182–185.

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka H, Davy KP, Seals DR. Cardiopulmonary baroreflex inhibition of sympathetic nerve activity is preserved with age in healthy humans. J Physiol 1999;515:249–254.

    Article  PubMed  CAS  Google Scholar 

  45. Rudas L, Crossman AA, Morillo CA, et al. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol 1999;276:H1691–H1698.

    PubMed  CAS  Google Scholar 

  46. O’Mahony D, Bennett C, Green A, Sinclair AJ. Reduced baroreflex sensitivity in elderly humans is not due to efferent autonomic dysfunction. Clin Sci 2000;98:103–110.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrari AU. Modifications of the cardiovascular system with aging. Am J Geriatr Cardiol 2002;11:30–33.

    PubMed  Google Scholar 

  48. Seals DR, Monahan KD, Bell C, et al. The aging cardiovascular system: changes in autonomic function at rest and in response to exercise. Int J Sport Nutr Exerc Metab 2001;11Suppl:S189–S195.

    PubMed  Google Scholar 

  49. Niimi Y, Iwase S, Fu Q, et al. Effect of aging on muscle sympathetic nerve activity and peripheral venous pressure in humans. Environ Med 2000;44:56–59.

    PubMed  CAS  Google Scholar 

  50. Bristow JD, Honour J, Pickering GW, et al. Diminished baroreflex sensitivity in high blood pressure. Circulation 1969;39:48–54.

    PubMed  CAS  Google Scholar 

  51. Szili-Torok T, Kalman J, Paprika D, et al. Depressed baroreflex sensitivity in patients with Alzheimer’s and Parkinson’s disease. Neurobiol Aging 2001;22:435–438.

    Article  PubMed  CAS  Google Scholar 

  52. Robertson D, Hollister AS, Biaggioni I, et al. The diagnosis and treatment of baroreflex failure. N Engl J Med 1993;329:1449–1455.

    Article  PubMed  CAS  Google Scholar 

  53. Robertson D, Hollister AS, Biaggioni I. Arterial baroreflex failure in man. Clin Auton Res 1993;3:212.

    Google Scholar 

  54. Druschky A, Hilz MJ, Platsch G, et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 2000;175:3–12.

    Article  PubMed  CAS  Google Scholar 

  55. Reinhardt MJ, Jungling FD, Krause TM, Braune S. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake. Eur J Nucl Med 2000;27:595–600.

    Article  PubMed  CAS  Google Scholar 

  56. Orimo S, Ozawa E, Nakade S, et al. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:189–194.

    PubMed  CAS  Google Scholar 

  57. Ohmura M. Loss of 123I-MIBG uptake by the heart in Parkinson’s disease: assessment of cardiac sympathetic denervation and diagnostic value. J Nucl Med 2000;41:1594–1595.

    PubMed  CAS  Google Scholar 

  58. Braune S, Reinhardt M, Bathmann J, et al. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson’s disease with autonomic failure. Acta Neurol Scand 1998;97:307–314.

    PubMed  CAS  Google Scholar 

  59. Satoh A, Serita T, Tsujihata M. Total defect of metaiodobenzylguanidine (MIBG) imaging on heart in Parkinson’s disease: assessment of cardiac sympathetic denervation. Nippon Rinsho 1997;55:202–206.

    PubMed  CAS  Google Scholar 

  60. Goldstein DS, Holmes C, Cannon RO, III, et al. Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 1997;336:696–702.

    Article  PubMed  CAS  Google Scholar 

  61. Goldstein DS, Holmes C, Li ST, et al. Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 2000;133:338–347.

    PubMed  CAS  Google Scholar 

  62. Baron R, Feldmann R, Lindner V. Small fibre function in primary autonomic failure. J Neurol 1993;241:87–91.

    Article  PubMed  CAS  Google Scholar 

  63. De Marinis M, Stocchi F, Gregori B, Accornero N. Sympathetic skin response and cardiovascular autonomic function tests in Parkinson’s disease and multiple system atrophy with autonomic failure. Mov Disord 2000;15:1215–1220.

    Article  PubMed  Google Scholar 

  64. Haapaniemi TH, Korpelainen JT, Tolonen U, et al. Suppressed sympathetic skin response in Parkinson disease. Clin Auton Res 2000;10:337–342.

    Article  PubMed  CAS  Google Scholar 

  65. Choi BO, Bang OY, Sohn YH, Sunwoo IN. Sympathetic skin response and cardiovascular autonomic function tests in Parkinson’s disease. Yonsei Med J 1998;39:439–445.

    PubMed  CAS  Google Scholar 

  66. Braune HJ, Korchounov AM, Schipper HI. Autonomic dysfunction in Parkinson’s disease assessed by sympathetic skin response: a prospective clinical and neurophysiological trial on 50 patients. Acta Neurol Scand 1997;95:293–297.

    PubMed  CAS  Google Scholar 

  67. Denislic M, Meh D. Sympathetic skin response in parkinsonian patients. Electromyogr Clin Neurophysiol 1996;36:231–235.

    PubMed  CAS  Google Scholar 

  68. Hirashima F, Yokota T, Hayashi M. Sympathetic skin response in Parkinson’s disease. Acta Neurol Scand 1996;93:127–132.

    Article  PubMed  CAS  Google Scholar 

  69. Wang SJ, Fuh JL, Shan DE, et al. Sympathetic skin response and R-R interval variation in Parkinson’s disease. Mov Disord 1993;8:151–157.

    Article  PubMed  CAS  Google Scholar 

  70. Sharabi Y, Li ST, Dendi R, Holmes C, Goldstein DS. Neurotransmitter specificity of sympathetic denervation in Parkinson’s disease. Neurology 2003;60:1036–1039.

    PubMed  CAS  Google Scholar 

  71. Yoshita M, Hayashi M, Hirai S. Iodine 123-labeled meta-iodobenzylguanidine myocardial scintigraphy in the cases of idiopathic Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Rinsho Shinkeigaku 1997;37:476–482.

    PubMed  CAS  Google Scholar 

  72. Goldstein DS. Cardiac sympathetic neuroimaging to distinguish multiple system atrophy from Parkinson disease. Clin Auton Res 2001;11:341–342.

    Article  PubMed  CAS  Google Scholar 

  73. Orimo S, Ozawa E, Oka T, et al. Different histopathology accounting for a decrease in myocardial MIBG uptake in PD and MSA. Neurology 2001;57:1140–1141.

    PubMed  CAS  Google Scholar 

  74. Orimo S, Oka T, Miura H, et al. Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry 2002;73:776–777.

    Article  PubMed  CAS  Google Scholar 

  75. Cannon WB. A law of denervation. Am J Med Sci 1939;198:737–750.

    Article  Google Scholar 

  76. Davies B, Sudera D, Sagnella G, et al. Increased numbers of alpha receptors in sympathetic denervation supersensitivity in man. J Clin Invest 1982;69:779–784.

    Article  PubMed  CAS  Google Scholar 

  77. Kurvers H, Daemen M, Slaaf D, et al. Partial peripheral neuropathy and denervation induced adrenoceptor supersensitivity. Functional studies in an experimental model. Acta Orthop Belg 1998;64:64–70.

    PubMed  CAS  Google Scholar 

  78. Vatner DE, Lavallee M, Amano J, et al. Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res 1985;57:55–64.

    PubMed  CAS  Google Scholar 

  79. Warner MR, Wisler PL, Hodges TD, et al. Mechanisms of denervation supersensitivity in regionally denervated canine hearts. Am J Physiol 1993;264:H815–H820.

    PubMed  CAS  Google Scholar 

  80. Baser SM, Brown RT, Curras MT, et al. Beta-receptor sensitivity in autonomic failure. Neurology 1991;41:1107–1112.

    PubMed  CAS  Google Scholar 

  81. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: Supersensitivity that may be arrhythmogenic. Circulation 1987;75:877–887.

    PubMed  CAS  Google Scholar 

  82. Biaggioni I, Robertson RM. Hypertension in orthostatic hypotension and autonomic dysfunction. Cardiol Clin 2002;20:291–301.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Goldstein, D.S. (2005). Cardiovascular Autonomic Dysfunction. In: Pfeiffer, R.F., Bodis-Wollner, I. (eds) Parkinson’s Disease and Nonmotor Dysfunction. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-859-5:149

Download citation

  • DOI: https://doi.org/10.1385/1-59259-859-5:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-316-9

  • Online ISBN: 978-1-59259-859-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics