• Joren C. Madsen
  • Ruediger Hoerbelt
Part of the Contemporary Cardiology book series (CONCARD)


Data from the United Network for Organ Sharing (UNOS) indicated that status 1 patients waiting for a heart transplant in the United States have a mortality rate as high as 45% because of the shortage of donor organs (1). The discrepancy between the number of patients waiting for an organ transplant and the number of organs that become available each year is increasing. In 1999, the number of heart transplant candidates on US waiting lists was 4277, but less than 50% received an organ (1). Although it is difficult to determine the overall number of patients who would benefit from cardiac transplantation in the United States if the source of donor organs were unlimited, estimates range from 35,000 to 100,000 patients (reviewed in ref. 2).


Natural Antibody Hyperacute Rejection Miniature Swine Xenograft Rejection Cobra Venom Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United Network for Organ Sharing. Waiting List Data. 2001. United Network for Organ Sharing, Washington DC, 2001.Google Scholar
  2. 2.
    Cooper DKC, Keogh AM, Brink J, et al. Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. J Heart Lung Transplant 2000; 19:1125–1165.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanderpool HY. Critical ethical issues in clinical trials with xenotransplants. Lancet 1998;351:1347–1350.PubMedCrossRefGoogle Scholar
  4. 4.
    Pierson RN III, White DJ, Wallwork J. Ethical considerations in clinical cardiac xenografting. J Heart Lung Transplant 1993;12:876–878.PubMedGoogle Scholar
  5. 5.
    Cooper DKC, Lanza RP. Xeno-The Promise of Transplanting Animal Organs Into Humans, 1st ed. Oxford University Press, New York: 2000.Google Scholar
  6. 6.
    Sachs DH, Colvin RB, Cosimi AB, et al. Xenotransplantation-caution, but no moratorium. Nat Med 1998;4:372–373.PubMedCrossRefGoogle Scholar
  7. 7.
    Pratschke J, Wilhelm MJ, Kusaka M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 1999;67:343–348.PubMedCrossRefGoogle Scholar
  8. 8.
    Laskowski I, Pratschke J, Wilhelm MJ, Gasser M, Tilney NL. Molecular and cellular events associated with ischemia/reperfusion injury. Ann Transplant 2000;5:29–35.PubMedGoogle Scholar
  9. 9.
    Terasaki PI. The HLA-matching effect in different cohorts of kidney transplant recipients. Clin Transpl 2000;497–514.Google Scholar
  10. 10.
    Sykes M, Sachs DH. Mixed chimerism. Philos Trans R Soc Lond B Biol Sci 2001;356:707–726.PubMedCrossRefGoogle Scholar
  11. 11.
    Sonntag KC, Emery DW, Yasumoto A, et al. Tolerance to solid organ transplants through transfer of MHC class II genes. J Clin Invest 2001;107:65–71.PubMedGoogle Scholar
  12. 12.
    Vial CM, Ostlie DJ, Bhatti FN, et al. Life supporting function for over 1 month of a transgenic porcine heart in a baboon. J Heart Lung Transplant 2000; 19:224–229.PubMedCrossRefGoogle Scholar
  13. 13.
    Salama AD, Delikouras A, Pusey CD, et al. Transplant accommodation in highly sensitized patients: a potential role of Bcl-xL and alloantibody. Am J Transplant 2001;1:260–269.PubMedCrossRefGoogle Scholar
  14. 14.
    Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 2000;407:86–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Hajjar RJ, del Monte F, Matsui T, Rosenzweig A. Prospects for gene therapy for heart failure. Circ Res 2000;86:616–621.PubMedGoogle Scholar
  16. 16.
    Jonas RA, Giglia TM, Sanders SP, et al. Rapid, two-stage arterial switch for transposition of the great arteries and intact ventricular septum beyond the neonatal period. Circulation 1989;80:I203–I208.PubMedGoogle Scholar
  17. 17.
    Bonhoeffer P, Carminati M, Parenzan L, Tynan M. Non-surgical left ventricular preparation for arterial switch in transposition of the great arteries. Lancet 1992; 340:549–550.PubMedCrossRefGoogle Scholar
  18. 18.
    Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 1986;7:1140–1149.PubMedCrossRefGoogle Scholar
  19. 19.
    Calne RY. Organ transplantation between widely disparate species. Transplant Proc 1970;2:550.PubMedGoogle Scholar
  20. 20.
    US Department of Health and Human Services Public Health Service. Guidance for industry: public health issues posed by the use of nonhuman primate xenografts in humans. Federal Regulations 64, 16743–16744 (1999).Google Scholar
  21. 21.
    Sachs DH. MHC homozygous miniature swine. In: Swindle MM, Moody DC, Phillips LD, eds. Swine as Models in Biomedical Research. Iowa State University Press, Ames: 1992, pp. 3–15.Google Scholar
  22. 22.
    Sachs DH. The pig as a potential xenograft donor. Pathol Biol 1994;42:217–228.PubMedGoogle Scholar
  23. 23.
    Allan JS, Rose GA, Choo JK, et al. Morphometric analysis of miniature swine hearts as potential human xenografts. Xenotransplantation 2001;8:90–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Sullivan JA, Oettinger HF, Sachs DH, Edge AS. Analysis of polymorphism in porcine MHC class I genes: alterations in signals recognized by human cytotoxic lymphocytes. J Immunol 1997;159:2318–2326.PubMedGoogle Scholar
  25. 25.
    Gustafsson K, Leguern C, Hirsch F, Germana S, Pratt K, Sachs DH. Class II genes of miniature swine. IV. Characterization and expression of two allelic class II DQB cDNA clones. J Immunol 1990;145:1946–1951.PubMedGoogle Scholar
  26. 26.
    Gustafsson K, Germana S, Hirsch F, Pratt K, Leguern C, Sachs DH. Structure of miniature swine class II DRB genes: conservation of hypervariable amino acid residues between distantly related mammalian species. Proc Natl Acad Sci USA 1990;87:9798–9802.PubMedCrossRefGoogle Scholar
  27. 27.
    Emery DW, Sablinski T, Shimada H, et al. Expression of an allogeneic MHC DRB transgene, through retroviral transduction of bone marrow, induces specific reduction of alloreactivity. Transplantation 1997;64:1414–1423.PubMedCrossRefGoogle Scholar
  28. 28.
    Fishman JA. Infection and xenotransplantation. Developing strategies to minimize risk. Ann NY Acad Sci 1998;862:52–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Reemtsma K, McCracken BH, Schlegel JV, Pearl M. Heterotransplantation of the kidney: two clinical experiences. Science 1964; 143:700–702.PubMedCrossRefGoogle Scholar
  30. 30.
    Hardy JD, Chavez CM, Kurrus FD, et al. Heart transplantation in man. Developmental studies and report of a case. JAMA 1964; 188:1132–1140.PubMedGoogle Scholar
  31. 31.
    Taniguchi S, Cooper DK. Clinical xenotransplantation: past, present and future. Ann R Coll Surg Engl 1997;79:13–19.PubMedGoogle Scholar
  32. 32.
    Beecher HK, Adams RD, Barger AC, et al., A definition of reversible coma. JAMA 1968;2O5:85–88.Google Scholar
  33. 33.
    Bailey LL, Nehlsen-Cannarella WSL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA 1985;254:3321–3329.PubMedCrossRefGoogle Scholar
  34. 34.
    Makowka L, Cramer DV, Hoffman A, et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation 1995;59:1654–1659.CrossRefGoogle Scholar
  35. 35.
    Groth CG, Korsgren O, Wennberg L, et al. Xenoislet rejection following pig-to-rat, pig-to-primate, and pig-to-man transplantation. Transplant Proc 1996;28:538–539.PubMedGoogle Scholar
  36. 36.
    Ildstad ST. Xenotransplantation for AIDS. Lancet 1996;347:761–766.PubMedCrossRefGoogle Scholar
  37. 37.
    Brevig T, Holgersson J, Widner H. Xenotransplantation for CNS repair: immuno-logical barriers and strategies to overcome them. Trends Neurosci 2000;23:337–344.PubMedCrossRefGoogle Scholar
  38. 38.
    Subramanian T. Cell transplantation for the treatment of Parkinson’s disease. Semin Neurol 2001;21:103–115.PubMedCrossRefGoogle Scholar
  39. 39.
    Deacon T, Schumacher J, Dinsmore J, et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat Med 1997;3:350–353.PubMedCrossRefGoogle Scholar
  40. 40.
    Perper RJ, Najarian JS. Experimental renal heterotransplantation. III. Passive transfer of transplantation immunity. Transplantation 1967;5:514–533.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoffmann MW, Heath WR, Ruschmeyer D, Miller JFAP. Deletion of high-avidity T cells by thymic epithelium. Proc Natl Acad Sci U S A 1995;92:9851–9855.PubMedCrossRefGoogle Scholar
  42. 42.
    Bravery CA, Batten P, Yacoub MH, Rose ML. Direct recognition of SLA-and HLA-like class II antigens on porcine endothelium by human T cells results in T cell activation and release of interleukin-2. Transplantation 1995;60:1024–1033.PubMedCrossRefGoogle Scholar
  43. 43.
    Cooper DKC, Good AH, Koren E, et al. Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transplant Immunol 1993;1:198–205.CrossRefGoogle Scholar
  44. 44.
    Galili U, Macher BA, Buehler J, Shohet SB. Human natural anti-α-galactosyl IgG. II. The specific recognition of α(l-3) linked galactose residues. J Exp Med 1985; 162:573–582.PubMedCrossRefGoogle Scholar
  45. 45.
    Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 1984;160:1519–1531.PubMedCrossRefGoogle Scholar
  46. 46.
    Minanov OP, Itescu S, Neethling FA, et al. Anti-Gal IgG antibodies in sera of newborn humans and baboons and its significance in pig xenotransplantation. Transplantation 1997;63:182–186.PubMedCrossRefGoogle Scholar
  47. 47.
    Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM. The interaction between the human natural anti-α?galactosyl IgG (anti-Gal) and bacteria of the human flora. Infect Immunol 1988;57:1730–1737.Google Scholar
  48. 48.
    Rother RP, Fodor WL, Springhorn JP, et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J Exp Med 1995;182:1345–1355.PubMedCrossRefGoogle Scholar
  49. 49.
    Parker W, Bruno D, Holzknecht ZE, Platt JL. Characterization and affinity isolation of xenoreactive human natural antibodies. J Immunol 1994;153:3791–3803.PubMedGoogle Scholar
  50. 50.
    Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IF. Anti-pig IgM antibodies in human serum react predominantly with Gal(alpha l–3)Gal epitopes. Proc Natl Acad Sci U S A 1993;90:l1,391–11,395.CrossRefGoogle Scholar
  51. 51.
    Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG. Increased anti-Gal activity in diabetic patients transplanted with porcine islet cells. Transplant Proc 1996;28:564–566.PubMedGoogle Scholar
  52. 52.
    Bartholomew A, Latinne D, Sachs DH, et al. Utility of xenografts: lack of correlation between PRA and natural antibodies to swine. Xenotransplantation 1997;4:34–39.Google Scholar
  53. 53.
    Cascalho M, Platt JL. The immunological barrier to xenotransplantation. Immunity 2001;14:437–446.PubMedCrossRefGoogle Scholar
  54. 54.
    Miyagawa S, Hirose H, Shirakura R, et al. The mechanism of discordant xenograft rejection. Transplantation 1988;46:825–829.PubMedCrossRefGoogle Scholar
  55. 55.
    Gambiez L, Weill BJ, Chereau C, Calmus Y, Houssin D. The hyperacute rejection of guinea pig to rat heart xenografts is mediated by preformed IgM. Transplant Proc 1990;22:1058.Google Scholar
  56. 56.
    Johnston PS, Wang MW, Lim SML, Wright LJ, White DJG. Discordant xenograft rejection in an antibody-free model. Transplantation 1992;54:573–577.PubMedCrossRefGoogle Scholar
  57. 57.
    Sablinski T, Latinne D, Bailin M, et al. Xenotransplantation of pig kidneys to nonhuman primates: I. Development of the model. Xenotransplantation 1995;2:264–270.Google Scholar
  58. 58.
    Dalmasso AP, Vercelolotti GM, Fischel RJ, Bolman RM, Bach FH, Platt JL. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 1992;140:1157–1166.PubMedGoogle Scholar
  59. 59.
    Milller-Eberhard HJ. Complement: chemistry and pathways. In: Gallin JI, Goldstein IM, Snyderman R, eds. Inflammation. Basic Principles and Clinical Correlates. Raven Press, New York: 1992, pp. 33–61.Google Scholar
  60. 60.
    Frank MM. Complement system. In: Frank MM, Austen KF, Claman HN, Unanue ER, eds. Samter’s Immunological Diseases. Little, Brown and Company, Boston: 1995, pp. 331–352.Google Scholar
  61. 61.
    Abbas AK, Lichtman AH, Pober JS. The complement system. In: Abbas AK, Lichtman AH, Pober JS, eds. Cellular and Molecular Immunology, 2nd ed. WB Saunders, Philadelphia, PA: 1994, pp. 225–315.Google Scholar
  62. 62.
    Auchincloss H, Sachs DH. Xenogeneic transplantation. Annu Rev Immunol 1998; 16:433–470.PubMedCrossRefGoogle Scholar
  63. 63.
    Sachs DH, Sykes M, Robson SC, Cooper DKC. Xenotransplantation. In: Dixon FJ, ed. Advances in Immunology. Academic Press, San Diego, CA: 2001, pp. 129–233.Google Scholar
  64. 64.
    Dalmasso AP, Vercelolotti GM, Platt JL, Bach FH. Inhibition of complement-mediated endothelial cell cytotoxicity by decay-accelerating factor: potential for prevention of xenograft hyperacute rejection. Transplantation 1991;52:530–533.PubMedCrossRefGoogle Scholar
  65. 65.
    Bach FH. Xenotransplantation: problems and prospects. Annu Rev Med 1998;49:301–310.PubMedCrossRefGoogle Scholar
  66. 66.
    Saadi S, Platt JL. Transient perturbation of endothelial integrity induced by natural antibodies and complement. J Exp Med 1995;181:21–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Platt JL, Vercelolotti GM, Lindman BJ, Oegema TR Jr, Bach FH, Dalmasso AP. Release of heparan sulphate from endothelial cells: Implications for pathogenesis of hyperacute rejection. J Exp Med 1990;171:1363–1368.PubMedCrossRefGoogle Scholar
  68. 68.
    Parker W, Saadi S, Lin SS, Holzknecht ZE, Bustos M, Platt JL. Transplantation of discordant xenografts: a challenge revisited. Immunol Today 1996;17:373–378.PubMedCrossRefGoogle Scholar
  69. 69.
    Alexandre GPJ, Latinne D, Carlier M, et al. Plasmapheresis and splenectomy in experimental renal xenotransplantation. In: Hardy MA, ed. Xenograft 25, 1st ed. Excerpta Medica, New York: 1989, p. 259.Google Scholar
  70. 70.
    Rydberg L, Hallberg E, Samuelsson B, et al. Studies on the removal of anti-pig xenoantibodies in the human by plasmapheresis/immunoadsorption. Xenotransplantation 1995;2:253–263.Google Scholar
  71. 71.
    Gannedahl G, Tufveson G, Sundberg B, Groth CG. The effect of plasmapheresis and deoxyspergualin or cyclophosphamide treatment on an anti-porcine Gal-α(1–3)-Gal antibody levels in humans. Xenotransplantation 1996;3:166–170.Google Scholar
  72. 72.
    Cooper DKC, Human PA, Lexer G, et al. Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J Heart Transplant 1988;7:238–246.PubMedGoogle Scholar
  73. 73.
    Taniguchi S, Neethling FA, Korchagina EY, et al. In vivo immunoadsorption of anti-pig antibodies in baboons using a specific Galα1–3Gal column. Transplantation 1996;62:1379–1384.PubMedCrossRefGoogle Scholar
  74. 74.
    Ye Y, Neethling FA, Niekrasz M, et al. Evidence that intravenously administered alpha-galactosyl carbohydrates reduce baboon serum cytotoxicity to pig kidney cells (PK15) and transplanted pig hearts. Transplantation 1994;58:330–337.PubMedGoogle Scholar
  75. 75.
    Sablinski T, Cooper DKC, Sachs DH. Xenotransplantation. In: Austen KF, Burakoff SJ, Rosen FS, Strom TB, eds. Therapeutic Immunology, 2nd ed. Black-well Science, Maiden, MA: 2001, pp. 535–549.Google Scholar
  76. 76.
    Platt JL. Therapeutic strategies for hyperacute xenograft rejection. In: Platt JL, ed. Hyperacute Xenograft Rejection. RJ Landes, Austin, TX: 1995, pp. 161–187.Google Scholar
  77. 77.
    Cooper DKC, Cairns TDH, Taube DH. Extracorporeal immunoadsorption of anti-pig antibody in baboons using oiGal oligosaccharide immunoaffinity columns. Xeno 1996;4:27–29.Google Scholar
  78. 78.
    Simon PM, Neethling FA, Taniguchi S, et al. Intravenous infusion of Galα1–3Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation 1998;65:346–353.PubMedCrossRefGoogle Scholar
  79. 79.
    Koren E, Milotic F, Neethling FA, et al. Monoclonal antiidiotypic antibodies neutralize cytotoxic effects of anti-alphaGal antibodies. Transplantation 1996;62:837–843.PubMedCrossRefGoogle Scholar
  80. 80.
    Koren E, Milotic F, Neethling FA, et al. Murine monoclonal anti-idiotypic antibodies directed against human anti-alpha Gal antibodies prevent rejection of pig cells in culture: implications for pig-to-human organ xenotransplantation. Transplant Proc 1996;28:559.PubMedGoogle Scholar
  81. 81.
    Teranishi K, Gollackner B, Buhler L, et al. Depletion of anti-Gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to Gal oligosaccharides. Transplantation 2002;73:129–139.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang YG, deGoma E, Ohdan H, et al. Tolerization of anti-Galalphal-3Gal natural antibody-forming B cells by induction of mixed chimerism. J Exp Med 1998; 187:1335–1342.PubMedCrossRefGoogle Scholar
  83. 83.
    Bracy JL, Sachs DH, Iacomini J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 1998;281:1845–1847.PubMedCrossRefGoogle Scholar
  84. 84.
    Ohdan H, Yang YG, Shimizu A, Swenson KG, Sykes M. Mixed chimerism induced without lethal conditioning prevents T cell-and anti-Gal alpha 1,3Gal-mediated graft rejection. J Clin Invest 1999;104:281–290.PubMedGoogle Scholar
  85. 85.
    Leventhal JR, Dalmasso AP, Cromwell JW, et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 1993;55:857–865.PubMedCrossRefGoogle Scholar
  86. 86.
    Candinas D, Lesnikoski BA, Robson SC, et al. Effect of repetitive high-dose treatment with soluble complement receptor type 1 and cobra venom factor on discordant xenograft survival. Transplantation 1996;62:336–342.PubMedCrossRefGoogle Scholar
  87. 87.
    Kobayashi T, Taniguchi S, Ye Y, et al. Delayed xenograft rejection in C3-depleted discordant (pig-to-baboon) cardiac xenografts treated with cobra venom factor. Transplant Proc 1996;28:560.PubMedGoogle Scholar
  88. 88.
    Pruitt SK, Baldwin WD, Marsh HC Jr, Linn SS, Yeh CG, Bollinger RR. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 1991;52:868–873.PubMedCrossRefGoogle Scholar
  89. 89.
    Pruitt SK, Kirk AD, Bollinger RR, et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 1994;57:363–370.PubMedCrossRefGoogle Scholar
  90. 90.
    Weisman HF, Bartow T, Leppo MK, et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 1990;249:146–151.PubMedCrossRefGoogle Scholar
  91. 91.
    Cozzi E, White DJG. The generation of transgenic pigs as potential organs donors for humans. Nat Med 1995;l:964–966.CrossRefGoogle Scholar
  92. 92.
    McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995;1:423–427.PubMedCrossRefGoogle Scholar
  93. 93.
    Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984;160:1558–1578.PubMedCrossRefGoogle Scholar
  94. 94.
    Rosengard AM, Cary NRB, Langford GA, Tucker AW, Wallwork J, White DJG. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs. Transplantation 1995;59:1325–1333.PubMedGoogle Scholar
  95. 95.
    Cozzi E, Tucker AW, Langford GA, et al. Characterization of pigs transgenic for human decay-accelerating factor. Transplantation 1997;64:1383–1392.PubMedCrossRefGoogle Scholar
  96. 96.
    Schmoeckel M, Nollert G, Shahmohammadi M, et al. Prevention of hyperacute rejection by human decay accelerating factor in xenogeneic perfused working hearts. Transplantation 1996;62:729–734.PubMedCrossRefGoogle Scholar
  97. 97.
    Cozzi E, Yannoutsos N, Langford GA, Pinto-Chavez G, Wallwork J, White DJG. Effect of transgenic expression of human decay-accelerating factor on the inhibition of hyperacute rejection of pig organs. In: Cooper DKC, Kemp E, Platt JL, White DJG, eds. Xenotransplantation. Springer-Verlag, Heidelberg, Germany: 1997, pp. 665–682.Google Scholar
  98. 98.
    Bhatti FN, Schmoeckel M, Zaidi A, et al. Three-month survival of HDAFF transgenic pig hearts transplanted into primates. Transplant Proc 1999;31:958.PubMedCrossRefGoogle Scholar
  99. 99.
    Kuwaki K, Knosalla C, Dor FJMF, et al. Gal-conjugate anti-CD 154 monoclonal antibody, and anticoagulation improve graft survival in pig-to-baboon heart transplantation. Xenotransplantation 2003; 10:489.Google Scholar
  100. 100.
    Schmoeckel M, Bhatti FNK, Zaidi A, et al. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation 1998;65:1570–1577.PubMedCrossRefGoogle Scholar
  101. 101.
    Diamond LE, McCurry KR, Martin MJ, et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation 1996;61:1241–1249.PubMedCrossRefGoogle Scholar
  102. 102.
    Squinto SP. Genetically modified animal organs for human transplantation. World J Surg 1997;21:939–942.PubMedCrossRefGoogle Scholar
  103. 103.
    Byrne GW, McCurry KR, Martin MJ, McClellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 1997;63:149–155.PubMedCrossRefGoogle Scholar
  104. 104.
    Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH. Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 1999;6:194–200.PubMedCrossRefGoogle Scholar
  105. 105.
    Sandrin MS, Fodor WL, Mouhtouris E, et al. Enzymatic remodeling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1995;1:1261–1267.PubMedCrossRefGoogle Scholar
  106. 106.
    Sandrin MS, Fodor WL, Cohney S, et al. Reduction of the major porcine xenoantigen Galα(1,3)Gal by expression of α(l,2) fucosyltransferase. Xenotransplantation 1996;3;134–140.Google Scholar
  107. 107.
    Chen C, Fisicaro N, Shinkel TA, et al. Reduction in Gal-α1,3-Gal epitope expression in transgenic mice expressing human H-transferase. Xenotransplantation 1996;3:69–75.CrossRefGoogle Scholar
  108. 108.
    Koike C, Kannagi R, Takuma Y, et al. Introduction of α(l,2)-fucosyltransferase and its effect on α-Gal epitopes in transgenic pig. Xenotransplantation 1996;3:81–86.Google Scholar
  109. 109.
    Cooper DKC, Koren E, Oriol R. Genetically-engineered pigs. Lancet 1993, 342:682–683.PubMedCrossRefGoogle Scholar
  110. 110.
    Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha 1,3-galactosyl-transferase gene in cloned pigs. Nat Biotechnol 2002;20:251–255.PubMedCrossRefGoogle Scholar
  111. 111.
    Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyl-transferase knockout pigs by nuclear transfer cloning. Science 2002;295:1089–1092.PubMedCrossRefGoogle Scholar
  112. 112.
    Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003;299:411–414.PubMedCrossRefGoogle Scholar
  113. 113.
    Yamada K, Yazawa K, Kamono C, et al. An initial report of alpha-Gal deficient pig-to-baboon renal xenotransplantation: evidence for the benefit of co-transplanting vascularized donor thymic tissue. Xenotransplantation 2003;10:480.Google Scholar
  114. 114.
    Bracy JL, Cretin N, Cooper DK, Iacomini J. Xenoreactive natural antibodies. Cell Mol Life Sci 1999;56:1001–1007.PubMedCrossRefGoogle Scholar
  115. 115.
    Tearle RG, Tange MJ, Zanettino ZL, et al. The α1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation. Transplantation 1996;61:13–19.PubMedCrossRefGoogle Scholar
  116. 116.
    Bracy JL, Iacomini J. Induction of B-cell tolerance by retroviral gene therapy. Blood 2000;96:3008–3015.PubMedGoogle Scholar
  117. 117.
    Lin SS, Weidner BC, Byrne GW, et al. The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants. J Clin Invest 1998;101:1745–1756.PubMedGoogle Scholar
  118. 118.
    Lin SS, Hanaway MJ, Gonzalez-Stawinski GV, et al. The role of anti-Galalphal-3Gal antibodies in acute vascular rejection and accommodation of xenografts. Transplantation 2000;70:1667–1674.PubMedCrossRefGoogle Scholar
  119. 119.
    Goodman DJ, Millan M, Ferran C, Bach FH. Mechanism of delayed xenograft rejection. In: Cooper DKC, Kemp E, Platt JL, White DJG, eds. Xenotransplantation: The Transplantation of Organs and Tissues Between Species. Springer, Heidelberg, Germany: 1997, pp. 77–94.Google Scholar
  120. 120.
    Blakely ML, Van der Werf WJ, Bemdt MC, Dalmasso AP, Bach FH, Hancock WW. Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. Transplantation 1994;58:1059–1066.PubMedCrossRefGoogle Scholar
  121. 121.
    Robson SC, Siegel JB, Lesnikoski BA, et al. Aggregation of human platelets induced by porcine endothelial cells is dependent upon both activation of complement and thrombin generation. Xenotransplantation 1996;3:24–34.Google Scholar
  122. 122.
    Robson SC, Kaczmarek E, Siegel JB, et al. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 1997; 185:153–163.PubMedCrossRefGoogle Scholar
  123. 123.
    Bach FH. Genetic engineering as an approach to xenotransplantation. World J Surg 1997;21:913–916.PubMedCrossRefGoogle Scholar
  124. 124.
    Esmon CT. Cell mediated events that control blood coagulation and vascular injury. Annu Rev Cell Biol 1993;9:l–26.CrossRefGoogle Scholar
  125. 125.
    Balla G, Jacob HS, Balla J, et al. Ferritin: a cytoprotective antioxidant stratagem of endothelium. J Biol Chem 1992;267:18,148–18,153.PubMedGoogle Scholar
  126. 126.
    Dong VM, Womer KL, Sayegh MH. Transplantation tolerance: the concept and its applicability. Pediatr Transplant 1999;3:181–192.PubMedCrossRefGoogle Scholar
  127. 127.
    Platt JL, Dalmasso AP, Lindman BJ, Ihrcke NS, Bach FH. The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 1991;21:2287–2890.CrossRefGoogle Scholar
  128. 128.
    Whelan J, Ghersa P, van Huijsduijnen RH, et al. An NFKB-like factor is essential but not sufficient for cytokine induction of endothelial leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Nucleic Acids Res 1991;19:2645–2653.PubMedCrossRefGoogle Scholar
  129. 129.
    deMartin R, Vanhove B, Cheng Q, et al. Cytokine-inducible expression in endothelial cells of an IκBα-like gene is regulated by NFκB. EMBO J 1993;12:2773–2779.Google Scholar
  130. 130.
    Cogswell JP, Godlevski MM, Wisely GB, et al. NF-κB regulates IL-1B transcription through a consensus NF-κB binding site and a nonconsensus CRE-like site. J Immunol 1994;153:712–723.PubMedGoogle Scholar
  131. 131.
    Millan MT, Geczy C, Stuhlmeier KM, Goodman DJ, Ferran C, Bach FH. Human monocytes activate porcine endothelial cells, resulting in increased E-selectin, interleukin-8, monocyte chemotactic protein-1, and plasminogen activator inhibitor-type-1 expression. Transplantation 1997;63:421–429.PubMedCrossRefGoogle Scholar
  132. 132.
    Buhler L, Awwad M, Basker M, et al. High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 2000;69:2296–2304.PubMedCrossRefGoogle Scholar
  133. 133.
    Voraberger G, Schafer R, Stratowa C. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5′-regulatory region. J Immunol 1991;147:2777–2786.PubMedGoogle Scholar
  134. 134.
    Pescovitz MD, Sakopoulos AG, Gaddy JA, Husmann RJ, Zuckermann FA. Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. Vet Immunol Immu-nopathol 1994;43:53–62.CrossRefGoogle Scholar
  135. 135.
    Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kB. Annu Rev Cell Biol 1994;10:405–455.PubMedCrossRefGoogle Scholar
  136. 136.
    Finco TS, Baldwin AS Jr. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity 1995;3:263–272.PubMedCrossRefGoogle Scholar
  137. 137.
    DiDonato J, Mercurio F, Rosette C, et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996;16:1295–1304.PubMedGoogle Scholar
  138. 138.
    Beg AA, Finco TS, Nantermet PV, Baldwin AS Jr. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκB-α: a mechanism for NF-κB activation. Mol Cell Biol 1993;13:3301–3310.PubMedGoogle Scholar
  139. 139.
    Henkle T, Machieldt T, Alkalay I, Krönke M, Ben-Nerial Y, Baeuerie PA. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 1993;365:182–185.CrossRefGoogle Scholar
  140. 140.
    Cooper JT, Stroka DM, Brostjian C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996;271:18,068–18,073.PubMedCrossRefGoogle Scholar
  141. 141.
    Bach FH, Ferran C, Hechenleitner P, et al. Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 1997;3:196–204.PubMedCrossRefGoogle Scholar
  142. 142.
    Soares MP, Lin Y, Anrather J, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 1998;4:1073–1077.PubMedCrossRefGoogle Scholar
  143. 143.
    Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185–4194.PubMedGoogle Scholar
  144. 144.
    Goodman DJ, von Albertini MA, McShea A, Wrighton CJ, Bach FH. Adenoviral-mediated overexpression of IκBα in endothelial cells inhibits natural killer cell-mediated endothelial cell activation. Transplantation 1996;62:967–972.PubMedCrossRefGoogle Scholar
  145. 145.
    Dorling A, Lechler RI. T cell-mediated xenograft rejection: specific tolerance is probably required for long term xenograft survival. Xenotransplantation 1998;5:234–245.PubMedCrossRefGoogle Scholar
  146. 146.
    Chitilian HV, Laufer TM, Stenger K, Shea S, Auchincloss H Jr. The strength of cell-mediated xenograft rejection in the mouse is due to the CD4+ indirect response. Xenotransplantation 1998;5:93–98.PubMedCrossRefGoogle Scholar
  147. 147.
    Rollins SA, Kennedy SP, Chodera AJ, Elliott EA, Zavoico GB, Matis LA. Evidence that activation of human T cells by porcine endothelium involves direct recognition of porcine SLA and costimulation by porcine ligands for LFA-1 and CD2. Transplantation 1994;57:1709–1716.PubMedGoogle Scholar
  148. 148.
    Dorling A, Lombardi G, Binns R, Lechler RI. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol 1996;26:1378–1387.PubMedCrossRefGoogle Scholar
  149. 149.
    Murray AG, Khodadoust MM, Pober JS, Bothwell ALM. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity 1994;l:57–63.CrossRefGoogle Scholar
  150. 150.
    Zaidi A, Schmoeckel M, Bhatti F, et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 1998;65:1584–1590.PubMedCrossRefGoogle Scholar
  151. 151.
    Ildstad ST, Bluestone JA, Barbieri SA, Sachs DH. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med 1985; 162:231.PubMedCrossRefGoogle Scholar
  152. 152.
    Charlton B, Auchincloss H Jr, Fathman CG. Mechanisms of transplantation tolerance. Annu Rev Immunol 1994;12:707–734.PubMedCrossRefGoogle Scholar
  153. 153.
    Zinkernagel RM, Althage A, Callahan G, Welsh RM Jr. On the immunocompetence of H-2 incompatible irradiation bone marrow chimeras. J Immunol 1980;124:2356–2365.PubMedGoogle Scholar
  154. 154.
    Wekerle T, Sykes M. Mixed chimerism as an approach for the induction of transplantation tolerance. Transplantation 1999;68:459–467.PubMedCrossRefGoogle Scholar
  155. 155.
    Ardavin C, Wu L, Li C-L, Shortman K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993;362:761–763.PubMedCrossRefGoogle Scholar
  156. 156.
    Nikolic B, Sykes M. Clonal deletion as a mechanism of transplantation tolerance. J Heart Lung Transplant 1996;15:1171–1178.PubMedGoogle Scholar
  157. 157.
    Sykes M. Mixed chimerism and transplant tolerance. Immunity 2001;14:417–424.PubMedCrossRefGoogle Scholar
  158. 158.
    Alexandre GPJ, Squifflet JP, deBruyere M, et al. Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 1987;19:4538.PubMedGoogle Scholar
  159. 159.
    Sachs DH, Sablinski T. Tolerance across discordant xenogeneic barriers. Xeno 1995;2:234–239.Google Scholar
  160. 160.
    Latinne D, Smith CV, Nickeleit V, et al. Xenotransplantation from pig to cyno-molgus monkey: approach toward tolerance induction. Transplant Proc 1993; 25:336.PubMedGoogle Scholar
  161. 161.
    Tanaka M, Latinne D, Sablinski T, et al. Xenotransplantation from pig to cynomolgus monkey: the potential for overcoming xenograft rejection through induction of chimerism. Transplant Proc 1994;26:1326.PubMedGoogle Scholar
  162. 162.
    Sachs DH, Sykes M, Greenstein J, Cosimi AB. Tolerance and xenograft survival. NatMed 1995;1:969.Google Scholar
  163. 163.
    Xu Y, Lorf T, Sablinski T, et al. Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Galα1–3Galβl–4βG1c-X immunoaffinity column. Transplantation 1998;65:172–179.PubMedCrossRefGoogle Scholar
  164. 164.
    Kozlowski T, Fuchimoto Y, Monroy R, et al. Apheresis and column absorption for specific removal of Gal-alpha-1,3 Gal natural antibodies in a pig-to-baboon model. Transplant Proc 1997;29:961.PubMedCrossRefGoogle Scholar
  165. 165.
    Buhler L, Awwad M, Treter S, et al. Induction of mixed hematopoietic chimerism in the pig-to-baboon model. Transplant Proc 2000;32:1101.PubMedCrossRefGoogle Scholar
  166. 166.
    Buhler L, Basker M, Alwayn IP, et al. Coagulation and thrombotic disorders associated with pig organ and hematopoietic cell transplantation in nonhuman primates. Transplantation 2000;70:1323–1331.PubMedCrossRefGoogle Scholar
  167. 167.
    Tseng YL, Dor FJMF, Kuwaki K, et al. Preliminary results of Gal-knockout porcine bone marrow xenotransplantation in nonhuman primates. Xenotransplantation 2003;10:486.Google Scholar
  168. 168.
    Sachs DH, Smith CV, Emery DW, et al. Induction of specific tolerance to MHC-disparate allografts through genetic engineering. Exp Nephrol 1993;1:128–133.PubMedGoogle Scholar
  169. 169.
    Sykes M, Sachs DH, Nienhuis AW, Pearson DA, Moulton AD, Bodine DM. Specific prolongation of skin graft survival following retroviral transduction of bone marrow with an allogeneic major histocompatibility complex gene. Transplantation 1993;55:197–202.PubMedCrossRefGoogle Scholar
  170. 170.
    Bagley J, Wu Y, Sachs DH, Iacomini J. Defining the requirements for peptide recognition in gene therapy-induced T cell tolerance. J Immunol 2000;165:4842–4847.PubMedGoogle Scholar
  171. 171.
    Ierino FL, Gojo S, Banerjee PT, et al. Transfer of swine major histocompatibility complex class II genes into autologous bone marrow cells of baboons for the induction of tolerance across xenogeneic barriers. Transplantation 1999;67:1119–1128.PubMedCrossRefGoogle Scholar
  172. 172.
    Lee AL, Gritsch HA, Sergio JJ, et al. Specific tolerance across a discordant xenogeneic transplantation barrier. Proc Natl Acad Sci U S A 1994;91:10,864–10,867.PubMedCrossRefGoogle Scholar
  173. 173.
    Zhao Y, Fishman JA, Sergio JJ, et al. Immune restoration by fetal pig thymus grafts in T cell-depleted, thymectomized mice. J Immunol 1997;158:1641–1649.PubMedGoogle Scholar
  174. 174.
    Zhao Y, Swenson K, Sergio JJ, Arn JS, Sachs DH, Sykes M. Skin graft tolerance across a discordant xenogeneic barrier. Nat Med 1996;2:1211–1216.PubMedCrossRefGoogle Scholar
  175. 175.
    Madsen JC, Yamada K, Allan JS, et al. Transplantation tolerance prevents cardiac allograft vasculopathy in major histocompatibility complex class I-disparate miniature swine. Transplantation 1998;65:304–313.PubMedCrossRefGoogle Scholar
  176. 176.
    Cooper DK, Keogh AM, Brink J, et al. Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. J Heart Lung Transplant 2000;19:1125–1165.PubMedCrossRefGoogle Scholar
  177. 177.
    Cooper DK. Xenotransplantation: How far have we come? Graft 2001;4:6–86.CrossRefGoogle Scholar
  178. 178.
    Bach FH, Fineberg HV. Call for moratorium on xenotransplants. Nature 1998;391:326.PubMedCrossRefGoogle Scholar
  179. 179.
    Stoye JP, Coffin JM. The dangers of xenotransplantation. Nat Med 1995;1:1100.PubMedCrossRefGoogle Scholar
  180. 180.
    Patience C, Takeuchi Y, Weiss RA. Zoonosis in xenotransplantation. Curr Opin Immunol 1998;10:539–542.PubMedCrossRefGoogle Scholar
  181. 181.
    Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3:282–286.PubMedCrossRefGoogle Scholar
  182. 182.
    Paradis K, Langford G, Long Z, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999;285:1236–1241.PubMedCrossRefGoogle Scholar
  183. 183.
    Onions D, Cooper DK, Alexander TJ, et al. An approach to the control of disease transmission in pig-to-human xenotransplantation. Xenotransplantation 2000;7:143–155.PubMedCrossRefGoogle Scholar
  184. 184.
    Fishman JA. Xenosis and xenotransplantation: addressing the infectious risks posed by an emerging technology. Kidney Int Suppl 1997;58:S41–S45.PubMedGoogle Scholar
  185. 185.
    Logan JS. Prospects for xenotransplantation. Curr Opin Immunol 2000;12:563.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Joren C. Madsen
    • 1
  • Ruediger Hoerbelt
    • 1
  1. 1.Division of Cardiac Surgery and Transplantation Biology Research Center, Department of SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations