Advertisement

Left Ventricular Assist Devices

  • Paul L. DiGiorgi
  • Yoshifumi Naka
  • Mehmet C. Oz
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Left ventricular assist devices (LVADs) have become the standard of care for potential heart transplant patients with life-threatening heart failure refractory to medical therapy. Significant advances in both the technology and the clinical experience have taken place. In addition, indications for placement of ventricular assist devices (VADs) have broadened to include patients previously thought unsuitable for device insertion. There is a wide array of devices available and in development. These range from univentricular percutaneous driveline-powered devices to fully implantable total artificial hearts (TAHs). Both patient and device selection have a great impact on outcome. In addition, the improving long-term success with device support has led to the possibility of permanent support. This review describes indications for VAD placement, reviews current devices, and discusses postoperative management.

Keywords

Centrifugal Pump Mechanical Circulatory Support Heart Lung Transplant Intraaortic Balloon Total Artificial Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid C, Deng M, Hammel D, Weyand M, Loick HM, Scheld HH. Emergency vs elective/urgent left ventricular assist device implantation. J Heart Lung Transplant 1998;17:1024–1028.PubMedGoogle Scholar
  2. 2.
    Deng MC, Weyand M, Hammel D, et al. Selection and outcome of ventricular assist device patients: the Muenster experience. J Heart Lung Transplant 1998;17:817–825.PubMedGoogle Scholar
  3. 3.
    Chen JM, Spanier TB, Gonzalez JJ, et al. Improved survival in patients with acute myocarditis using external pulsatile mechanical ventricular assistance. J Heart Lung Transplant 1999;18:351–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Marelli D, Laks H, Amsel B, et al. Temporary mechanical support with the BVS 5000 assist device during treatment of acute myocarditis. J Card Surg 1997;12:55–59.PubMedCrossRefGoogle Scholar
  5. 5.
    Minami K, El Banayosy A, Posival H, et al. Improvement of survival rate in patients with cardiogenic shock by using nonpulsatile and pulsatile ventricular assist device. Int J Artif Organs 1992;15:715–721.PubMedGoogle Scholar
  6. 6.
    Copeland JG, Smith RG, Arabia FA, Nolan PE, Banchy ME. The CardioWest total artificial heart as a bridge to transplantation. Semin Thorac Cardiovasc Surg 2000;12:238–242.PubMedGoogle Scholar
  7. 7.
    Hendry PJ, Masters RG, Mussivand TV, et al. Circulatory support for cardio-genic shock due to acute myocardial infarction: a Canadian experience. Can J Cardiol 1999;15:1090–1094.PubMedGoogle Scholar
  8. 8.
    Helman DN, Morales DL, Edwards NM, et al. Left ventricular assist device bridge-to-transplant network improves survival after failed cardiotomy. Ann Thorac Surg 1999;68:1187–1194.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldberg RJ, Gore JM, Thompson CA, Gurwitz JH. Recent magnitude of and temporal trends (1994–1997) in the incidence and hospital death rates of cardio-genic shock complicating acute myocardial infarction: The second National Registry of Myocardial Infarction. Am Heart J 2001;141:65–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldberg RJ, Gore JM, Alpert JS, et al. Cardiogenic shock after acute myocardial infarction. Incidence and mortality from a community-wide perspective, 1975 to 1988. N Engl J Med 1991;325:1117–1122.PubMedCrossRefGoogle Scholar
  11. 11.
    Hochman JS, Sleeper LA, White HD, et al. One-year survival following early revascularization for cardiogenic shock. JAMA 2001;285:190–192.PubMedCrossRefGoogle Scholar
  12. 12.
    Mueller HS. Role of intra-aortic counterpulsation in cardiogenic shock and acute myocardial infarction. Cardiology 1994;84:168–174.PubMedGoogle Scholar
  13. 13.
    Champsaur G, Ninet J, Vigneron M, Cochet P, Neidecker J, Boissonnat P. Use of the Abiomed BVS System 5000 as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg 1990;100:122–128.PubMedGoogle Scholar
  14. 14.
    Sun BC, Catanese KA, Spanier TB, et al. One hundred long-term implantable left ventricular assist devices: the Columbia Presbyterian interim experience. Ann Thorac Surg 1999;68:688–694.PubMedCrossRefGoogle Scholar
  15. 15.
    Houel R, Vermes E, Tixier DB, Le Besnerais P, Benhaiem-Sigaux N, Loisance DY. Myocardial recovery after mechanical support for acute myocarditis: is sustained recovery predictable? Ann Thorac Surg 1999;68:2177–2180.PubMedCrossRefGoogle Scholar
  16. 16.
    Farrar DJ, Hill JD, Gray LA, Galbraith TA, Chow E, Hershon JJ. Successful biven-tricular circulatory support as a bridge to cardiac transplantation during prolonged ventricular fibrillation and asystole. Circulation 1989;80(5 part 2):III147–III151.PubMedGoogle Scholar
  17. 17.
    Holman WL, Roye GD, Bourge RC, McGiffin DC, Iyer SS, Kirklin JK. Circulatory support for myocardial infarction with ventricular arrhythmias. Ann Thorac Surg 1995;59:1230–1231.PubMedCrossRefGoogle Scholar
  18. 18.
    Swartz MT, Lowdermilk GA, McBride LR. Refractory ventricular tachycardia as an indication for ventricular assist device support. J Thorac Cardiovasc Surg 1999;118:1119–1120.PubMedCrossRefGoogle Scholar
  19. 19.
    Oz MC, Rose EA, Levin HR. Selection criteria for placement of left ventricular assist devices. Am Heart J 1995;129:173–177.PubMedCrossRefGoogle Scholar
  20. 20.
    Swartz MT, Votapka TV, McBride LR, Lohmann DP, Moroney DA, Pennington DG. Risk stratification in patients bridged to cardiac transplantation. Ann Thorac Surg 1994;58:1142–1145.PubMedCrossRefGoogle Scholar
  21. 20a.
    Williams MR, Oz MC. Indications and patient selection for mechanical ventricular assistance. Ann Thorac Surg 2001;71:S86–S91.PubMedCrossRefGoogle Scholar
  22. 21.
    Nakatani S, Thomas JD, Savage RM, Vargo RL, Smedira NG, McCarthy PM. Prediction of right ventricular dysfunction after left ventricular assist device implantation. Circulation 1996;94(9 suppl):II216–II221.Google Scholar
  23. 22.
    Gracin N, Johnson MR, Spokas D, et al. The use of APACHE II scores to select candidates for left ventricular assist device placement. Acute Physiology and Chronic Health Evaluation. J Heart Lung Transplant 1998;17:1017–1023.PubMedGoogle Scholar
  24. 23.
    Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg 1999;68:2181–2184.PubMedCrossRefGoogle Scholar
  25. 24.
    Springer WE, Wasler A, Radovancevic B, et al. Retrospective analysis of infection in patients undergoing support with left ventricular assist systems. ASAIO J 1996;42:M763–M765.PubMedCrossRefGoogle Scholar
  26. 25.
    Cloy MJ, Myers TJ, Stutts LA, Macris MP, Frazier OH. Hospital charges for conventional therapy vs left ventricular assist system therapy in heart transplant patients. ASAIO J 1995;41:M535–M539.PubMedGoogle Scholar
  27. 26.
    Macris MP, Myers TJ, Jarvik R, et al. In vivo evaluation of an intraventricular electric axial flow pump for left ventricular assistance. ASAIO J 1994;40:M719–M722.PubMedGoogle Scholar
  28. 27.
    Tedoriya T, Kawasuji M, Sakakibara N, Takemura H, Watanabe Y, Hetzer R. Coronary bypass flow during use of intraaortic balloon pumping and left ventricular assist device. Ann Thorac Surg 1998;66:477–481.PubMedCrossRefGoogle Scholar
  29. 28.
    Sinha P, Chen JM, Flannery M, Scully BE, Oz MC, Edwards NM. Infections during left ventricular assist device support do not affect posttransplant outcomes. Circulation 2000;102(19 suppl 3):III194–III199.PubMedGoogle Scholar
  30. 29.
    Holman WL, Skinner JL, Waites KB, Benza RL, McGiffin DC, Kirklin JK. Infection during circulatory support with ventricular assist devices. Ann Thorac Surg 1999;68:711–716.PubMedCrossRefGoogle Scholar
  31. 30.
    Argenziano M, Catanese KA, Moazami N, et al. The influence of infection on survival and successful transplantation in patients with left ventricular assist devices. J Heart Lung Transplant 1997;16:822–831.PubMedGoogle Scholar
  32. 31.
    Herrmann M, Weyand M, Greshake B, et al. Left ventricular assist device infection is associated with increased mortality but is not a contraindication to transplantation. Circulation 1997;95:814–817.PubMedGoogle Scholar
  33. 32.
    Ankersmit HJ, Tugulea S, Spanier T, et al. Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet 1999;354:550–555.PubMedCrossRefGoogle Scholar
  34. 33.
    Oz MC, Goldstein DJ, Pepino P, et al. Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation 1995;92(9 suppl):II169–II173.PubMedGoogle Scholar
  35. 34.
    Pennington DG, McBride LR, Peigh PS, Miller LW, Swartz MT. Eight years′ experience with bridging to cardiac transplantation. J Thorac Cardiovasc Surg 1994;107:472–480.PubMedGoogle Scholar
  36. 35.
    Farrar DJ. Preoperative predictors of survival in patients with Thoratec ventricular assist devices as a bridge to heart transplantation. Thoratec ventricular assist device principal investigators. J Heart Lung Transplant 1994;13(1 part 1):93–100.PubMedGoogle Scholar
  37. 36.
    Friedel N, Viazis P, Schiessler A, et al. Recovery of end-organ failure during mechanical circulatory support. Eur J Cardiothorac Surg 1992;6:519–522.PubMedCrossRefGoogle Scholar
  38. 37.
    Frazier OH, Macris MP, Myers TJ, et al. Improved survival after extended bridge to cardiac transplantation. Ann Thorac Surg 1994;57:1416–1422.PubMedCrossRefGoogle Scholar
  39. 38.
    Reinhartz O, Farrar DJ, Hershon JH, Avery GJ Jr, Haeusslein EA, Hill JD. Importance of preoperative liver function as a predictor of survival in patients supported with Thoratec ventricular assist devices as a bridge to transplantation. J Thorac Cardiovasc Surg 1998;116:633–640.PubMedCrossRefGoogle Scholar
  40. 39.
    Pae WE Jr, Miller CA, Matthews Y, Pierce WS. Ventricular assist devices for postcardiotomy cardiogenic shock. A combined registry experience. J Thorac Cardiovasc Surg 1992;104:541–552.PubMedGoogle Scholar
  41. 40.
    Pennington DG, Merjavy JP, Swartz MT, Willman VL. Clinical experience with a centrifugal pump ventricular assist device. Trans Am Soc Artif Intern Organs 1982;28:93–99.PubMedGoogle Scholar
  42. 41.
    Bianchi JJ, Swartz MT, Raithel SC, et al. Initial clinical experience with centrifugal pumps coated with the Carmeda process. ASAIO J 1992;38:M143–M146.PubMedCrossRefGoogle Scholar
  43. 42.
    Coselli JS, LeMaire SA, Ledesma DF, Ohtsubo S, Tayama E, Nose Y. Initial experience with the Nikkiso centrifugal pump during thoracoabdominal aortic aneurysm repair. J Vase Surg 1998;27:378–383.CrossRefGoogle Scholar
  44. 43.
    Curtis JJ, Walls JT, Wagner-Mann CC, et al. Centrifugal pumps: description of devices and surgical techniques. Ann Thorac Surg 1999;68:666–671.PubMedCrossRefGoogle Scholar
  45. 44.
    Mann FA, Wagner-Mann CC, Curtis JJ, Demmy TL, Turk JR. A calf model for left ventricular centrifugal mechanical assist. Artif Organs 1996;20:670–677.PubMedGoogle Scholar
  46. 45.
    Wagner-Mann C, Curtis J, Mann FA, Turk J, Demmy T, Turpin T. Subchronic centrifugal mechanical assist in an unheparinized calf model. Artif Organs 1996;20:666–669.PubMedGoogle Scholar
  47. 46.
    Curtis J, Wagner-Mann C, Mann F, Demmy T, Walls J, Turk J. Subchronic use of the St. Jude centrifugal pump as a mechanical assist device in calves. Artif Organs 1996;20:662–665.PubMedGoogle Scholar
  48. 47.
    Magovern GJ Jr, Christlieb IY, Kao RL, et al. Recovery of the failing canine heart with biventricular support in a previously fatal experimental model. J Thorac Cardiovasc Surg 1987;94:656–663.PubMedGoogle Scholar
  49. 48.
    Naganuma S, Yambe T, Sonobe T, Kobayashi S, Nitta S. Development of a novel centrifugal pump: magnetic rotary pump. Artif Organs 1997;21:746–750.PubMedGoogle Scholar
  50. 49.
    Ohtsubo S, Naito K, Matsuura M, et al. Initial clinical experience with the Baylor-Nikkiso centrifugal pump. Artif Organs 1995;!9:769–773.Google Scholar
  51. 50.
    Taguchi S, Yozu R, Mori A, Aizawa T, Kawada S. A miniaturized centrifugal pump for assist circulation. Artif Organs 1994;18:664–668.PubMedCrossRefGoogle Scholar
  52. 51.
    Takami Y, Ohara Y, Otsuka G, Nakazawa T, Nose Y. Preclinical evaluation of the Kyocera Gyro centrifugal blood pump for cardiopulmonary bypass. Perfusion 1997;12:335–341.PubMedGoogle Scholar
  53. 52.
    Nakazawa T, Ohara Y, Benkowski R, et al. A pivot bearing-supported centrifugal pump for a long-term assist heart. Int J Artif Organs 1997;20:222–228.PubMedGoogle Scholar
  54. 53.
    Curtis JJ, Walls JT, Schmaltz RA, et al. Improving clinical outcome with centrifugal mechanical assist for postcardiotomy ventricular failure. Artif Organs 1995;19:761–765.PubMedGoogle Scholar
  55. 54.
    Curtis JJ. Centrifugal mechanical assist for postcardiotomy ventricular failure. Semin Thorac Cardiovasc Surg 1994;6:140–146.PubMedGoogle Scholar
  56. 55.
    Nishinaka T, Nishida H, Endo M, Miyagishima M, Ohtsuka G, Koyanagi H. Less blood damage in the impeller centrifugal pump: a comparative study with the roller pump in open heart surgery. Artif Organs 1996;20:707–710.PubMedGoogle Scholar
  57. 56.
    Yoshikai M, Hamada M, Takarabe K, Okazaki Y, Ito T. Clinical use of centrifugal pumps and the roller pump in open heart surgery: a comparative evaluation. Artif Organs 1996;20:704–706.PubMedGoogle Scholar
  58. 57.
    Morgan IS, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: prospective randomised trial. Eur J Cardiothorac Surg 1998;13:526–532.PubMedCrossRefGoogle Scholar
  59. 58.
    Noon GP, Ball JW Jr, Papaconstantinou HT. Clinical experience with BioMedicus centrifugal ventricular support in 172 patients. Artif Organs 1995;19:756–760.PubMedGoogle Scholar
  60. 59.
    Noon GP, Ball JW Jr, Short HD. Bio-Medicus centrifugal ventricular support for postcardiotomy cardiac failure: a review of 129 cases. Ann Thorac Surg 1996;61:291–295.PubMedCrossRefGoogle Scholar
  61. 60.
    Noon GP, Lafuente JA, Irwin S. Acute and temporary ventricular support with BioMedicus centrifugal pump. Ann Thorac Surg 1999;68:650–654.PubMedCrossRefGoogle Scholar
  62. 61.
    Hoy FB, Mueller DK, Geiss DM, et al. Bridge to recovery for postcardiotomy failure:is there still a role for centrifugal pumps? Ann Thorac Surg 2000;70:1259–1263.PubMedCrossRefGoogle Scholar
  63. 62.
    Joyce LD, Kiser JC, Eales F, King RM, Overton JW Jr, Toninato CJ. Experience with generally accepted centrifugal pumps: personal and collective experience. Ann Thorac Surg 1996;61:287–290.PubMedCrossRefGoogle Scholar
  64. 63.
    Magovern GJ Jr. The biopump and postoperative circulatory support. Ann Thorac Surg 1993;55:245–249.PubMedCrossRefGoogle Scholar
  65. 64.
    Couper GS, Dekkers RJ, Adams DH. The logistics and cost-effectiveness of circulatory support: advantages of the Abiomed BVS 5000. Ann Thorac Surg 1999;68:646–649.PubMedCrossRefGoogle Scholar
  66. 65.
    Curtis JJ, Boley TM, Walls JT, Demmy TL, Schmaltz RA. Frequency of seal disruption with the Sams centrifugal pump in postcardiotomy circulatory assist. Artif Organs 1994;18:235–237.PubMedGoogle Scholar
  67. 66.
    Hart RM, Filipenco VG, Kung RT. A magnetically suspended and hydrostatically stabilized centrifugal blood pump. Artif Organs 1996;20:591–596.PubMedCrossRefGoogle Scholar
  68. 67.
    Nojiri C, Kijima T, Maekawa J, et al. Recent progress in the development of Terumo implantable left ventricular assist system. ASAIO J 1999;45:199–203.PubMedCrossRefGoogle Scholar
  69. 68.
    Ohtsuka G, Nakata K, Yoshikawa M, et al. Long-term in vivo left ventricular assist device study for 284 days with Gyro PI pump. Artif Organs 1999;23:504–507.PubMedCrossRefGoogle Scholar
  70. 69.
    Schima H, Schmallegger H, Huber L, et al. An implantable seal-less centrifugal pump with integrated double-disk motor. Artif Organs 1995;19:639–643.PubMedGoogle Scholar
  71. 70.
    Wakisaka Y, Taenaka Y, Chikanari K, Okuzono Y, Endo S, Takano H. Development of an implantable centrifugal blood pump for circulatory assist. ASAIO J 1997;43:M608–M614.PubMedGoogle Scholar
  72. 71.
    Waters T, Allaire P, Tao G, et al. Motor feedback physiological control for a continuous flow ventricular assist device. Artif Organs 1999;23:480–486.PubMedCrossRefGoogle Scholar
  73. 72.
    Yamazaki K, Litwak P, Tagusari O, et al. An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system). Artif Organs 1998;22:466–474.PubMedCrossRefGoogle Scholar
  74. 73.
    Guyton RA, Schonberger JP, Everts PA, et al. Postcardiotomy shock: clinical evaluation of the BVS 5000 biventricular support system. Ann Thorac Surg 1993;56:346–356.PubMedCrossRefGoogle Scholar
  75. 74.
    Jett GK. Abiomed BVS 5000: experience and potential advantages. Ann Thorac Surg 1996;61:301–304.PubMedCrossRefGoogle Scholar
  76. 75.
    Wassenberg PA. The Abiomed BVS 5000 biventricular support system. Perfusion 2000;15:369–371.PubMedGoogle Scholar
  77. 76.
    McBride LR, Lowdermilk GA, Fiore AC, Moroney DA, Brannan JA, Swartz MT. Transfer of patients receiving advanced mechanical circulatory support. J Thorac Cardiovasc Surg 2000;119:1015–1020.PubMedCrossRefGoogle Scholar
  78. 77.
    Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS. Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: experience with the Abiomed BVS system. J Card Surg 1999;14:288–293.PubMedCrossRefGoogle Scholar
  79. 78.
    Pennington DG, Bernhard WF, Golding LR, Berger RL, Khuri SF, Watson JT. Long-term follow-up of postcardiotomy patients with profound cardiogenic shock treated with ventricular assist devices. Circulation 1985;72(3 part 2):11216–11226.Google Scholar
  80. 79.
    Hill JD, Farrar DJ, Hershon JJ, et al. Use of a prosthetic ventricle as a bridge to cardiac transplantation for postinfarction cardiogenic shock. N Engl J Med 1986;314:626–628.PubMedCrossRefGoogle Scholar
  81. 80.
    Farrar DJ, Hill JD. Univentricular and biventricular Thoratec VAD support as a bridge to transplantation. Ann Thorac Surg 1993;55:276–282.PubMedCrossRefGoogle Scholar
  82. 81.
    Farrar DJ, Hill JD, Pennington DG, et al. Preoperative and postoperative comparison of patients with univentricular and biventricular support with the Thoratec ventricular assist device as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg 1997;113:202–209.PubMedCrossRefGoogle Scholar
  83. 82.
    Korfer R, El Banayosy A, Arusoglu L, et al. Temporary pulsatile ventricular assist devices and biventricular assist devices. Ann Thorac Surg 1999;68:678–683.PubMedCrossRefGoogle Scholar
  84. 83.
    Farrar DJ. The Thoratec ventricular assist device: a paracorporeal pump for treating acute and chronic heart failure. Semin Thorac Cardiovasc Surg 2000;12:243–250.PubMedGoogle Scholar
  85. 84.
    Farrar DJ, Buck KE, Coulter JH, Kupa EJ. Portable pneumatic biventricular driver for the Thoratec ventricular assist device. ASAIO J 1997;43:M631–M634.PubMedGoogle Scholar
  86. 85.
    Pennock JL, Pierce WS, Wisman CB, Bull AP, Waldhausen JA. Survival and complications following ventricular assist pumping for cardiogenic shock. Ann Surg 1983;198:469–478.PubMedCrossRefGoogle Scholar
  87. 86.
    Stolar CJ, Delosh T, Bartlett RH. Extracorporeal Life Support Organization 1993. ASAIO J 1993;39:976–979.PubMedCrossRefGoogle Scholar
  88. 87.
    Hetzer R, Loebe M, Potapov EV, et al. Circulatory support with pneumatic paracorporeal ventricular assist device in infants and children. Ann Thorac Surg 1998;66:1498–1506.PubMedCrossRefGoogle Scholar
  89. 88.
    Ishino K, Alexi-Meskishvili V, Hetzer R. Myocardial recovery through ECMO after repair of total anomalous pulmonary venous connection: the importance of left heart unloading. Eur J Cardiothorac Surg 1997;11:585–587.PubMedCrossRefGoogle Scholar
  90. 89.
    Loebe M, Hennig E, Muller J, Spiegelsberger S, Weng Y, Hetzer R. Long-term mechanical circulatory support as a bridge to transplantation, for recovery from cardiomyopathy, and for permanent replacement. Eur J Cardiothorac Surg 1997;11(suppl):S18–S24.PubMedCrossRefGoogle Scholar
  91. 90.
    Kantrowitz A, Tjonneland S, Freed PS, Phillips SJ, Butner AN, Sherman JL. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA 1968;203:113–118.PubMedCrossRefGoogle Scholar
  92. 91.
    Powell WJ, Daggett WM, Magro AE, et al. Effects of intra-aortic balloon counter-pulsation on cardiac performance, oxygen consumption, and coronary blood flow in dogs. Circ Res 1970;26:753–764.PubMedGoogle Scholar
  93. 92.
    Bregman D, Nichols AB, Weiss MB, Powers ER, Martin EC, Casarella WJ. Percutaneous intraaortic balloon insertion. Am J Cardiol 1980;46:261–264.PubMedCrossRefGoogle Scholar
  94. 93.
    Subramanian VA, Goldstein JE, Sos TA, McCabe JC, Hoover EA, Gay WA. Preliminary clinical experience with percutaneous intraaortic balloon pumping. Circulation 1980;62(2 part 2):Il23–Il29.Google Scholar
  95. 94.
    Dietl CA, Berkheimer MD, Woods EL, Gilbert CL, Pharr WF, Benoit CH. Efficacy and cost-effectiveness of preoperative IABP in patients with ejection fraction of 0.25 or less. Ann Thorac Surg 1996;62:401–408.PubMedCrossRefGoogle Scholar
  96. 95.
    Schmid C, Wilhelm M, Reimann A, et al. Use of an intraaortic balloon pump in patients with impaired left ventricular function. Scand Cardiovasc J 1999;33:194–198.PubMedCrossRefGoogle Scholar
  97. 96.
    Torchiana DF, Hirsch G, Buckley MJ, et al. Intraaortic balloon pumping for cardiac support: trends in practice and outcome, 1968 to 1995. J Thorac Cardiovasc Surg 1997;113:758–764.PubMedCrossRefGoogle Scholar
  98. 97.
    Busch T, Sirbu H, Zenker D, Dalichau H. Vascular complications related to intraaortic balloon counterpulsation: an analysis of 10 years experience. Thorac Cardiovasc Surg 1997;45:55–59.PubMedGoogle Scholar
  99. 98.
    Sirbu H, Busch T, Aleksic I, Friedrich M, Dalichau H. Ischaemic complications with intra-aortic balloon counter-pulsation: incidence and management. Cardiovasc Surg 2000;8:66–71.PubMedCrossRefGoogle Scholar
  100. 99.
    Rose EA, Levin HR, Oz MC, et al. Artificial circulatory support with textured interior surfaces. A counterintuitive approach to minimizing thromboembolism. Circulation 1994;90(5 part 2):II87–II91.PubMedGoogle Scholar
  101. 100.
    Dasse KA, Frazier OH, Lesniak JM, Myers T, Burnett CM, Poirier VL. Clinical responses to ventricular assistance vs transplantation in a series of bridge to transplant patients. ASAIO J 1992;38:M622–M626.PubMedCrossRefGoogle Scholar
  102. 101.
    Slater JP, Rose EA, Levin HR, et al. Low thromboembolic risk without antico-agulation using advanced-design left ventricular assist devices. Ann Thorac Surg 1996;62:1321–1327.PubMedCrossRefGoogle Scholar
  103. 102.
    McCarthy PM, Smedira NO, Vargo RL, et al. One hundred patients with the HeartMate left ventricular assist device: evolving concepts and technology. J Thorac Cardiovasc Surg 1998;115:904–912.PubMedCrossRefGoogle Scholar
  104. 103.
    Goldstein DJ. Thermo Cardiosystems ventricular assist devices. In: Goldstein DJ, Oz MC, eds. Cardiac Assist Devices. Futura, Armonk, NY: 2000, pp. 307–321.Google Scholar
  105. 104.
    Salamonsen RF, Kaye D, Esmore DS. Inhalation of nitric oxide provides selective pulmonary vasodilatation, aiding mechanical cardiac assist with Thoratec left ventricular assist device. Anaesth Intensive Care 1994;22:209–210.PubMedGoogle Scholar
  106. 105.
    Goldstein DJ, Seldomridge JA, Chen JM, et al. Use of aprotinin in LVAD recipients reduces blood loss, blood use, and perioperative mortality. Ann Thorac Surg 1995;59:1063–1067.PubMedCrossRefGoogle Scholar
  107. 106.
    Chang JC, Sawa Y, Ohtake S, et al. Hemodynamic effect of inhaled nitric oxide in dilated cardiomyopathy patients on LVAD support. ASAIO J 1997;43:M418–M421.PubMedCrossRefGoogle Scholar
  108. 107.
    Wagner F, Dandel M, Gunther G, et al. Nitric oxide inhalation in the treatment of right ventricular dysfunction following left ventricular assist device implantation. Circulation 1997;96(9 suppl):II–6.PubMedGoogle Scholar
  109. 108.
    Argenziano M, Choudhri AF, Moazami N, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg 1998;65:340–345.PubMedCrossRefGoogle Scholar
  110. 109.
    Rose EA, Moskowitz AJ, Packer M, et al. The REMATCH trial: rationale, design, and end points. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure. Ann Thorac Surg 1999;67:723–730.PubMedCrossRefGoogle Scholar
  111. 110.
    Portner PM, Oyer PE, Jassawalla JS, et al. An implantable permanent left ventricular assist system for man. Trans Am Soc Artif Intern Organs 1978;24:99–103.PubMedGoogle Scholar
  112. 111.
    Portner PM, Oyer PE, Pennington DG, et al. Implantable electrical left ventricular assist system: bridge to transplantation and the future. Ann Thorac Surg 1989;47:142–150.PubMedCrossRefGoogle Scholar
  113. 112.
    Lee J, Miller PJ, Chen H, et al. Reliability model from the in vitro durability tests of a left ventricular assist system. ASAIO J 1999;45:595–601.PubMedCrossRefGoogle Scholar
  114. 113.
    Ramasamy N, Vargo RL, Kormos RL, Portner PM. The Novacor left ventricular assist system. In: Goldstein DJ, Oz MC, eds. Cardiac Assist Devices. Futura, Armonk, NY: 2000, pp. 323–340.Google Scholar
  115. 114.
    Kormos RL, Murali S, Dew MA, et al. Chronic mechanical circulatory support: rehabilitation, low morbidity, and superior survival. Ann Thorac Surg 1994;57:51–57.PubMedCrossRefGoogle Scholar
  116. 115.
    Anderson FL, DeVries WC, Anderson JL, Joyce LD. Evaluation of total artificial heart performance in man. Am J Cardiol 1984;54:394–398.PubMedCrossRefGoogle Scholar
  117. 116.
    DeVries WC, Anderson JL, Joyce LD, et al. Clinical use of the total artificial heart. N Engl J Med 1984;310:273–278.PubMedCrossRefGoogle Scholar
  118. 117.
    Copeland JG, Arabia FA, Banchy ME, et al. The CardioWest total artificial heart bridge to transplantation: 1993 to 1996 national trial. Ann Thorac Surg 1998;66:1662–1669.PubMedCrossRefGoogle Scholar
  119. 118.
    Arabia FA, Copeland JG, Smith RG, et al. International experience with the CardioWest total artificial heart as a bridge to heart transplantation. Eur J Cardiothorac Surg 1997;11(suppl):S5–S10.PubMedCrossRefGoogle Scholar
  120. 119.
    Copeland JG, Pavie A, Duveau D, et al. Bridge to transplantation with the CardioWest total artificial heart: the international experience 1993 to 1995. J Heart Lung Transplant 1996;15(1 part l):94–99.PubMedGoogle Scholar
  121. 120.
    Copeland JG, Arabia FA, Smith R, Nolan P. The CardioWest total artificial heart. In: Goldstein DJ, Oz MC, eds. Cardiac Assist Devices. Futura, Armonk, NY: 2000, pp. 341–355.Google Scholar
  122. 121.
    SoRelle R. Cardiovascular news. Totally contained AbioCor artificial heart implanted July 3, 2001. Circulation 2001;104:E9005–E9006.PubMedGoogle Scholar
  123. 122.
    Angell James JE, Daly M. Effects of graded pulsatile pressure on the reflex vaso-motor responses elicited by changes of mean pressure in the perfused carotid sinus-aortic arch regions of the dog. J Physiol 1971;214:51–64.PubMedGoogle Scholar
  124. 123.
    Gaer JA, Shaw AD, Wild R, et al. Effect of cardiopulmonary bypass on gastrointestinal perfusion and function. Ann Thorac Surg 1994;57:371–375.PubMedCrossRefGoogle Scholar
  125. 124.
    Hickey PR, Buckley MJ, Philbin DM. Pulsatile and nonpulsatile cardio-pumonary bypass: review of a counterproductive controversy. Ann Thorac Surg 1983;36:720–737.PubMedCrossRefGoogle Scholar
  126. 125.
    Hornick P, Taylor K. Pulsatile and nonpulsatile perfusion: the continuing controversy. J Cardiothorac Vase Anesth 1997;11:310–315.CrossRefGoogle Scholar
  127. 126.
    Levine FH, Philbin DM, Kono K, et al. Plasma vasopressin levels and urinary sodium excretion during cardiopulmonary bypass with and without pulsatile flow. Ann Thorac Surg 1981;32:63–67.PubMedCrossRefGoogle Scholar
  128. 127.
    Moores WY, Gago O, Morris JD, Peck CC. Serum and urinary amylase levels following pulsatile and continuous cardiopulmonary bypass. J Thorac Cardiovasc Surg 1977;74:73–76.PubMedGoogle Scholar
  129. 128.
    Noris M, Morigi M, Donadelli R, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 1995;76:536–543.PubMedGoogle Scholar
  130. 129.
    Taylor KM, Wright GS, Bain WH, Caves PK, Beastall GS. Comparative studies of pulsatile and nonpulsatile flow during cardiopulmonary bypass. III. Response of anterior pituitary gland to thyrotropin-releasing hormone. J Thorac Cardiovasc Surg 1978;75:579–584.PubMedGoogle Scholar
  131. 130.
    Taylor KM, Wright GS, Reid JM, et al. Comparative studies of pulsatile and nonpulsatile flow during cardiopulmonary bypass. II. The effects on adrenal secretion of cortisol. J Thorac Cardiovasc Surg 1978;75:574–578.PubMedGoogle Scholar
  132. 131.
    Watkins WD, Peterson MB, Kong DL, et al. Thromboxane and prostacyclin changes during cardiopulmonary bypass with and without pulsatile flow. J Thorac Cardiovasc Surg 1982;84:250–256.PubMedGoogle Scholar
  133. 132.
    Sezai A, Shiono M, Orime Y, et al. Major organ function under mechanical support: comparative studies of pulsatile and nonpulsatile circulation. Artif Organs 1999;23:280–285.PubMedCrossRefGoogle Scholar
  134. 133.
    Sezai A, Shiono M, Orime Y, et al. Comparison studies of major organ micro-circulations under pulsatile-and nonpulsatile-assisted circulations. Artif Organs 1996;20:139–142.PubMedCrossRefGoogle Scholar
  135. 134.
    Sezai A, Shiono M, Orime Y, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation: comparison study of pulsatile and nonpulsatile assists. Artif Organs 1997;21:830–835.PubMedGoogle Scholar
  136. 135.
    Wakisaka Y, Taenaka Y, Chikanari K, et al. Long-term evaluation of a nonpulsatile mechanical circulatory support system. Artif Organs 1997;21:639–644.PubMedGoogle Scholar
  137. 136.
    Taenaka Y, Tatsumi E, Sakaki M, et al. Peripheral circulation during nonpulsatile systemic perfusion in chronic awake animals. ASAIO Trans 1991;37:M365–M366.PubMedGoogle Scholar
  138. 137.
    Sakaki M, Taenaka Y, Tatsumi E, Nakatani T, Takano H. Influences of nonpulsatile pulmonary flow on pulmonary function. Evaluation in a chronic animal model. J Thorac Cardiovasc Surg 1994;108:495–502.PubMedGoogle Scholar
  139. 138.
    Reddy RC, Goldstein AH, Pacella JJ, Cattivera GR, Clark RE, Magovern GJ. End organ function with prolonged nonpulsatile circulatory support. ASAIO J 1995;41:M547–M551.PubMedCrossRefGoogle Scholar
  140. 139.
    Macha M, Litwak P, Yamazaki K, et al. Survival for up to 6 months in calves supported with an implantable axial flow ventricular assist device. ASAIO J 1997;43:311–315.PubMedCrossRefGoogle Scholar
  141. 140.
    Kawahito K, Damm G, Benkowski R, et al. Ex vivo phase 1 evaluation of the DeBakey/NASA axial flow ventricular assist device. Artif Organs 1996;20:47–52.PubMedGoogle Scholar
  142. 141.
    Hindman BJ, Dexter F, Smith T, Cutkomp J. Pulsatile vs nonpulsatile flow. No difference in cerebral blood flow or metabolism during normothermic cardio-pulmonary bypass in rabbits. Anesthesiology 1995;82:241–250.PubMedCrossRefGoogle Scholar
  143. 142.
    Hindman BJ, Dexter F, Ryu KH, Smith T, Cutkomp J. Pulsatile vs nonpulsatile cardiopulmonary bypass. No difference in brain blood flow or metabolism at 27°C. Anesthesiology 1994;80:l137–1147.CrossRefGoogle Scholar
  144. 143.
    Dapper F, Neppl H, Wozniak G, et al. Effects of pulsatile and nonpulsatile perfusion mode during extracorporeal circulation-a comparative clinical study. Thorac Cardiovasc Surg 1992;40:345–351.PubMedGoogle Scholar
  145. 144.
    Wieselthaler GM, Schima H, Hiesmayr M, et al. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation 2000;101:356–359.PubMedGoogle Scholar
  146. 145.
    Potapov EV, Loebe M, Nasseri BA, et al. Pulsatile flow in patients with a novel nonpulsatile implantable ventricular assist device. Circulation 2000;102(19 suppl 3):III183–III187.PubMedGoogle Scholar
  147. 146.
    Westaby S, Banning AP, Jarvik R, et al. First permanent implant of the Jarvik 2000 heart. Lancet 2000;356:900–903.PubMedCrossRefGoogle Scholar
  148. 147.
    Anstadt GL, Blakemore WS, Baue AE. A new instrument for prolonged mechanical massage [abstract]. Circulation 1965;31(suppl II):43.Google Scholar
  149. 148.
    Anstadt MP, Bartlett RL, Malone JP, et al. Direct mechanical ventricular actuation for cardiac arrest in humans. A clinical feasibility trial. Chest 1991;100:86–92.PubMedCrossRefGoogle Scholar
  150. 149.
    Artrip JH, Yi GH, Levin HR, Burkhoff D, Wang J. Physiological and hemo-dynamic evaluation of nonuniform direct cardiac compression. Circulation 1999;100(19 suppl):II236–II243.PubMedGoogle Scholar
  151. 150.
    Artrip JH, Yi GH, Shimizo J, et al. Maximizing hemodynamic effectiveness of biventricular assistance by direct cardiac compression studied in ex vivo and in vivo canine models of acute heart failure. J Thorac Cardiovasc Surg 2000;120:379–386.PubMedCrossRefGoogle Scholar
  152. 151.
    Perez-Tamayo RA, Anstadt MP, Cothran RL, et al. Prolonged total circulatory support using direct mechanical ventricular actuation. ASAIO J 1995;41:M512–M517.PubMedGoogle Scholar
  153. 152.
    Anstadt MP, Perez-Tamayo RA, Banit DM, et al. Myocardial tolerance to mechanical actuation is affected by biomaterial characteristics. ASAIO J 1994;40:M329–M334.PubMedCrossRefGoogle Scholar
  154. 153.
    El Banayosy A, Arusoglu L, Kizner L, et al. Novacor left ventricular assist system vs HeartMate vented electric left ventricular assist system as a long-term mechanical circulatory support device in bridging patients: a prospective study. J Thorac Cardiovasc Surg 2000;119:581–587.PubMedCrossRefGoogle Scholar
  155. 154.
    DeRose JJ, Umana JP, Argenziano M, et al. Implantable left ventricular assist devices provide an excellent outpatient bridge to transplantation and recovery. J Am Coll Cardiol 1997;30:1773–1777.PubMedCrossRefGoogle Scholar
  156. 155.
    Ashton RC, Goldstein DJ, Rose EA, Weinberg AD, Levin HR, Oz MC. Duration of left ventricular assist device support affects transplant survival. J Heart Lung Transplant 1996;15:1151–1157.PubMedGoogle Scholar
  157. 156.
    Argenziano M, Choudhri AF, Oz MC, Rose EA, Smith CR, Landry DW. A prospective randomized trial of arginine vasopressin in the treatment of vasodila-tory shock after left ventricular assist device placement. Circulation 1997;96(9 suppl):II–90.PubMedGoogle Scholar
  158. 157.
    Ankersmit H-J, Itescu S. Immunobiology of left ventricular assist devices. In: Goldstein DJ, Oz MC, eds. Cardiac Assist Devices. Futura, Armonk, NY: 2000, pp. 193–211.Google Scholar
  159. 158.
    Morales DL, Catanese KA, Helman DN, et al. Six-year experience of caring for forty-four patients with a left ventricular assist device at home: safe, economical, necessary. J Thorac Cardiovasc Surg 2000;119:251–259.PubMedCrossRefGoogle Scholar
  160. 159.
    Catanese KA, Goldstein DJ, Williams DL, et al. Outpatient left ventricular assist device support: a destination rather than a bridge. Ann Thorac Surg 1996;62:646–652.PubMedCrossRefGoogle Scholar
  161. 160.
    Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 1995;91:2717–2720.PubMedGoogle Scholar
  162. 161.
    Frazier OH, Benedict CR, Radovancevic B, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg 1996;62:675–681.PubMedCrossRefGoogle Scholar
  163. 162.
    Foray A, Williams D, Reemtsma K, Oz M, Mancini D. Assessment of submaxi-mal exercise capacity in patients with left ventricular assist devices. Circulation 1996;94(9 suppl):II222–II226.PubMedGoogle Scholar
  164. 163.
    Mueller J, Wallukat G, Weng Y, et al. Predictive factors for weaning from a cardiac assist device. An analysis of clinical, gene expression, and protein data. J Heart Lung Transplant 2001;20:202.PubMedCrossRefGoogle Scholar
  165. 164.
    Mancini DM, Beniaminovitz A, Levin H, et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 1998;98:2383–2389.PubMedGoogle Scholar
  166. 165.
    Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001;345:1435–1443.PubMedCrossRefGoogle Scholar
  167. 166.
    Oz MC, Argenziano M, Catanese KA, et al. Bridge experience with long-term implantable left ventricular assist devices. Are they an alternative to transplantation? Circulation 1997;95:1844–1852.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Paul L. DiGiorgi
    • 1
  • Yoshifumi Naka
    • 1
  • Mehmet C. Oz
    • 1
  1. 1.Division of Cardiothoracic Surgery, Department of SurgeryColumbia University College of Physicians and SurgeonsNew York

Personalised recommendations