Advertisement

Granular Activated Carbon Adsorption

  • Yung-Tse Hung
  • Howard H. Lo
  • Lawrence K. Wang
  • Jerry R. Taricska
  • Kathleen Hung Li
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)

Abstract

Adsorption is the process of binding and removing certain substances from a solution through the use of an adsorbent. Activated carbon is the most commonly used adsorbent in the treatment of water, municipal wastewater, and organic industrial wastewaters, because of its ability to adsorb a wide variety of organic compounds, as well as the economic feasibility of use. In water treatment, activated carbon is used to remove organic compounds that cause objectionable taste, odor, and color. In advanced wastewater treatment, carbon is used to adsorb organic compounds, and in industrial wastewater treatment, it is used to adsorb toxic organic compounds. It is usually used in the granular form in the carbon adsorption column application in water and wastewater purification, but it is also used in the powdered form in the powder-activated, carbon-activated sludge process for wastewater treatment.

Keywords

Activate Carbon Sequencing Batch Reactor Granular Activate Carbon Powdered Activate Carbon Biological Activate Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Cheremisinoff and A. C. Morresi, Poll Eng 6, pp. 66–69 (1974).Google Scholar
  2. 2.
    B. H. Kornegay, Seminar on Control of Organic Chemical Contaminants in Drinking Water, Los Angeles, CA, US Environmental Protection Agency, Office of Drinking Water, Washington, DC, November, 1978.Google Scholar
  3. 3.
    US EPA, Process Design Manual for Carbon Adsorption, Technology Transfer, US Environmental Protection Agency, Washington, DC, October, 1973.Google Scholar
  4. 4.
    J. J. McElhaney, et al., Proceedings AWWA 6th Water Quality Technology Conference, 1978.Google Scholar
  5. 5.
    A. S. Michaels, Industrial and Engineering Chemistry 44, 1922 (1952).CrossRefGoogle Scholar
  6. 6.
    R. A. Hutchins, Chemical Engineering, 80, 133 (1973).Google Scholar
  7. 7.
    G. S. Bohart and E. Q. Adams, J. Am Chem Soc 42, 523 (1920).CrossRefGoogle Scholar
  8. 8.
    H. J. Fornwalt and R. A. Hutchins, Chemical Engineering 73, 179 (1966).Google Scholar
  9. 9.
    R. A. Conway and R. D. Ross, Handbook of Industrial Waste Disposal, Van Nostrand Reinhold Company, New York, 1980.Google Scholar
  10. 10.
    H. Sontheimer, J Am Water Works Assoc 71, 618–627 (1979).Google Scholar
  11. 11.
    P. N. Cheremisinoff and A. C. Morresi, Carbon Adsorption Handbook, P.N. Cheremisinoff and F. Ellerbusch (eds.) Ann Arbor Science Publisher, Ann Arbor MI, 1978, pp. 1–53.Google Scholar
  12. 12.
    W. W. Eckenfe1der, Jr., Principles of Water Quality Management, CBI Publishing Company, 1980.Google Scholar
  13. 13.
    D. G. Hager, Industrial wastewater treatment by granular activated carbon, Industrial Water Engineering, pp. 14–28, January/February (1974).Google Scholar
  14. 14.
    J. C. Cooper and D. G. Hager, Chemica1 Engineering Progress 62, 85–90 (1966).Google Scholar
  15. 15.
    L. K. Wang, J. Appl Chem and Biotechn 25, 491–503 (1975).CrossRefGoogle Scholar
  16. 16.
    L. K. Wang, Water and Sewage Works 123, 42–47 (1976).Google Scholar
  17. 17.
    L. K. Wang, Water and Sewage Works 124, 32–36 (1977).Google Scholar
  18. 18.
    L. K. Wang, Removal of Arsenic from Water by Continuous Granular Carbon Adsorption Process, US Department of Commerce, National Technical Information Service, Springfield, VA, PB86-197597/AS, 1985.Google Scholar
  19. 19.
    L. K. Wang, Treatment of Scallop Processing Wastewater by Flotation, Adsorption and Ion Exchange, Lenox Institute of Water Technology, Lenox, MA, Technical Report #LIR/05-85/139, 1985.Google Scholar
  20. 20.
    L. K. Wang, M. H. S. Wang, and J. Wang, Design, Operation and Maintenance of the Nation’s Largest Physicochemical Waste Treatment Plant, Volume 1, Lenox Institute of Water Technology, Lenox, MA, Report #LIR/03-87-248, March, 1989.Google Scholar
  21. 21.
    L. K. Wang, M. H. S. Wang, and J. Wang, Design Operation and Maintenance of the Nation’s Largest Physicochemical Waste Treatment Plant, Volume 2 Lenox Institute of Water Technology, Lenox, MA, Report #LIR/03-87/249, March, 1987.Google Scholar
  22. 22.
    L. K. Wang, M. H. S. Wang, and J. Wang, Design Operation and Maintenance of the Nation’s Largest Physicochemical Waste Treatment Plant, Volume 3 Lenox Institute of Water Technology, Lenox, MA, Report #LIR/03-87/250, March, 1987.Google Scholar
  23. 23.
    L. K. Wang, Removal of Arsenic and Other Contaminants from Storm Run-off Water by Flotation, Filtration, Adsorption and Ion Exchange, US Department of Commerce, National Technical Information Service, Springfield, VA, PB88-200613/AS, 1988.Google Scholar
  24. 24.
    L. K. Wang, Treatment of Potable Water from Seoul, Korea by Flotation, Filtration and Adsorption, US Department of Commerce, National Technical Information Service, Springfield, VA, PB88-200530/AS, 1988.Google Scholar
  25. 25.
    L. K. Wang, Procedures for Evaluation of the Scott Fetzer Adsorption Filter in Removing Lead and Other Contaminants from Drinking Water Zorex Corporation., Pittsfield, MA, Tech. Report #P917-4-89-3, 1989.Google Scholar
  26. 26.
    L. K. Wang, Advanced Precoat Filtration and Competitive Processes for Water Purification, Harvard University, The Harvard Club, Boston, MA, Jan, 1989.Google Scholar
  27. 27.
    L. K. Wang, Using Air Flotation and Filtration in Removal of Color, Trihalomethane Precursors and Giardia Cysts, the NY State Department of Health Workshop on Water Treatment Chemicals and Filtration & the 1989 American Slow Sand Association Annual Meeting, 1989 (No. P904-8-89-23).Google Scholar
  28. 28.
    L. K. Wang, Manufacturers and Distributors of Activated Carbons and Adsorption Filters, Zorex Corporation, Pittsfield, MA, Technical Report #P917-5-89-7, 1989.Google Scholar
  29. 29.
    L. K. Wang, Reduction of Chlorine, Fluoride, Lead and Organics by Adsorption Filters, Zorex Corporation, Pittsfield, MA, Technical Report No. P.917-6-89-14, June, 1989.Google Scholar
  30. 30.
    L. K. Wang, New Dawn in Development of Adsorption Technologies, the 20th Annual Meeting of the Fine Particle Society Symposium on Activated Carbon Technology, Boston, MA, Aug, 1989.Google Scholar
  31. 31.
    L. K. Wang, Removal of Heavy Metals, Chlorine and Synthetic Organic Chemicals by Adsorption, Zorex Corporation, Pittsfield, MA, Tech. Report #P917-5-89-8, 1989.Google Scholar
  32. 32.
    L. K. Wang, Reduction of Color, Odor, Humic Acid and Toxic Substances by Adsorption, Flotation and Filtration, Annual Meeting of American Institute of Chemical Engineers, Symposium on Design of Adsorption Systems for Pollution Control, Philadelphia, PA, 1989.Google Scholar
  33. 33.
    L. K. Wang, Dechlorination with Innovative Metal Filter Medium and Silver Impregnated Granular Activated Carbon, Zorex Corporation, Pittsfield, MA, Tech. Report #P931-10-89-30, 1989.Google Scholar
  34. 34.
    L. K. Wang, Critical Review of Brass KDF Medium and Silver Impregnated Granular Activated Carbon, Zorex Corporation, Pittsfield, MA, Tech. Report #P931-10-89-31, 1989.Google Scholar
  35. 35.
    L. K. Wang, L. Kurylko, and M. H. S. Wang, Improved Method and Apparatus for Liquid Treatment, US Patent and Trademark Office, Washington, D.C., Patent No. 5256299, Oct 26, 1993.Google Scholar
  36. 36.
    S. S. Cheng, Water Science and Technology, 30, 131–142 (1994).Google Scholar
  37. 37.
    L. K. Wang, The State-of-the-art Technologies for Water Treatment and Management, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, UNIDO Training Manual No. 8-8-95, 1995.Google Scholar
  38. 38.
    L. K. Wang, Management of Hazardous Substances at Industrial Sites, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, UNIDO Technical Manual No. 4-4-95, 1995.Google Scholar
  39. 39.
    L. K. Wang, Case Studies of Cleaner Production and Site Remediation, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, UNIDO Training Manual No. 5-4-95, 1995.Google Scholar
  40. 40.
    L. K. Wang, Identification, Transfer, Acquisition and Implementation of Environmental Technologies Suitable for Small and Medium Size Enterprises, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, UNIDO Technical Paper No. 9-9-95, 1995.Google Scholar
  41. 41.
    L. K. Wang, L. Kurylko, and O. Hyrcyk, Site Remediation Technology, US Patent and Trademark Office, Washington, DC, Patent No. 5552051, 1996.Google Scholar
  42. 42.
    H. Peterson, Critical Reviews in Environmental Control, 2 (http://www.quantumlynx.com/water’back/vol5no2/story3.html), 1996.
  43. 43.
    N. Davis, L. Erickson, and R. Hayter, Centerpoint, Georgia Institute of Technology, GA, 4(2) (1998).Google Scholar
  44. 44.
    O. Griffini, M. Bao, D. Burrini, D. Santianni, C. Barbieri, and F. Pantani, Journal Water SRT-Aqua 48, 177–185 (1999).Google Scholar
  45. 45.
    L. K. Wang, Site remediation and groundwater decontamination in the US. The Encyclopedia of Life Support Systems, Eolss Publishers, Co., Ltd., UK. UNESCO, World Summit, Johannesburg, 2002.Google Scholar
  46. 46.
    L. K. Wang, Hazardous waste management. The Encyclopedia of Life Support Systems, Eolss Publishers, Co., Ltd., UK. UNESCO, World Summit, Johannesburg, 2002.Google Scholar
  47. 47.
    G. J. Wilson, Water Science and Technology 38, 9–17, (2002).CrossRefGoogle Scholar
  48. 48.
    L. K. Wang, Industrial ecology. The Encyclopedia of Life Support Systems, Eolss Publishers, Co., Ltd., U.K., UNESCO, World Summit, Johannesburg, 2002.Google Scholar
  49. 49.
    P. Y. Chung, Ngau Tam Mei Water Works, Hong Kong, Camp Dresser & McKee Inc., NY, 2003.Google Scholar
  50. 50.
    L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, (eds.), Handbook of Industrial and Hazardous Wastes Treatment, Marcel Dekker, New York, 2004.Google Scholar
  51. 51.
    L. K. Wang, N. Pereira, and Y. T. Hung, (eds.), Biological Treatment Processes, Humana Press, Inc., Totowa, NJ, 2005.Google Scholar
  52. 52.
    L. K. Wang, N. Pereira, and Y. T. Hung, (eds.), Air Pollution Control Engineering, Humana Press, Inc., Totowa, NJ, 2004.Google Scholar
  53. 53.
    US Filter, Implementation of GAC Fluidized-Bed for Treatment of Petroleum Hydrocarbons in Groundwater at Two BP Oil Distribution Terminals, Pilot and Full-Scale. US Filter (http://www.usfilter.com), 2000.
  54. 54.
    L. K. Wang and L. Kurylko, Contamination Removal System Employing Filtration, Plural Ultraviolet & Chemical Treatment Steps & Treatment Controller, US Patent No. 5,190,659; Method and Apparatus for Filtration with Plural Ultraviolet Treatment Stages, US Patent No. 5,236,595. US Patent and Trademark Office, Washington, DC, 1993.Google Scholar
  55. 55.
    L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment, US Patent and Trademark Office, Washington, D.C., U. S. Patent No. 5,354,458, 1994.Google Scholar
  56. 56.
    T. C. Voice, X. Zhao, J. Shi, and R. F. Hickey, Biological Unit Processes for Hazardous Waste Treatment—1995 Third International In Situ and On-Site Bioremediation Symposium, Battelle Press, Columbus, OH, 1995.Google Scholar
  57. 57.
    V. F. Medina, J. S. Devinny, and M. Ramaratnam, Biological Unit Processes for Hazardous Waste Treatment—1995 Third International In Situ and On-Site Bioremediation Symposium. Battelle Press, Columbus, OH, 1995.Google Scholar
  58. 58.
    Hydroxyl System, Fluidized Biological Reactor. Hydroxyl System Inc., 9800 McDonald Park Road, Sidney, BC V8L 5W5 Canada (http://www.hydroxyl.com/products/biological/hydroxyl-fbb.html.info@hydroxyl.com), 2003.
  59. 59.
    I. Lisk, Water Engineering & Management, p. 6, Feb. (1995).Google Scholar
  60. 60.
    L. K. Wang, 1974 Earth Environment and Resources Conference Digest of Technical Papers 1, 56–57 (1974).Google Scholar
  61. 61.
    US EPA, Estimating Water Treatment Costs, Volume 2. Cost Curves Applicable to 1 to 200 mgd Treatment Plants, Research and Development, EPA-600/2-79-162b, U.S. Environmental Protection Agency, Washington, DC, 1979.Google Scholar
  62. 62.
    J. L. Tuchman (ed.), Engineering News-Record, November 3, (ENR.com) p. 39. (2003).Google Scholar
  63. 63.
    M. H. S. Wang (formerly M. H. Sung). Adsorption of Nitrogen and Phosphorus Using a Continuous Mixing Tank with Activated Carbon. Master thesis. Univ. of Rhode Island, Kingston, RI, 1968.Google Scholar
  64. 64.
    L. K. Wang, Y. T. Hung, H. H. Lo, J. R. Taricska and K. Hung Li. J. OCEESA, Dec. (2004).Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Yung-Tse Hung
    • 1
  • Howard H. Lo
    • 2
  • Lawrence K. Wang
    • 3
    • 4
    • 5
  • Jerry R. Taricska
    • 6
  • Kathleen Hung Li
    • 7
  1. 1.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland
  2. 2.Department of Biological, Geological and Environmental SciencesCleveland State UniversityCleveland
  3. 3.Zorex CorporationNewtonville
  4. 4.Lenox Institute of Water TechnologyLenox
  5. 5.Krofta Engineering CorporationLenox
  6. 6.Hole Montes Inc.Naples
  7. 7.NEC Business Network SolutionsIrving

Personalised recommendations