Advertisement

Electrolysis

  • J. Paul Chen
  • Shoou-Yuh Chang
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)

Abstract

The word “lysis” means to dissolve or break apart, so the word “electrolysis” literally means to break substances apart by using electricity. Michael Faraday first formulated the principle of electrolysis in 1820. The process occurs in an electrolyte, a watery solution or a salt melting that gives the ions a possibility to transfer between two electrodes. The electrolyte is the connection between the two electrodes, which are also connected to a direct current. If you apply an electrical current, the positive ions migrate to the cathode while the negative ions will migrate to the anode. At the electrodes, the cations will be reduced and the anions will be oxidized.

Keywords

Denitrification Rate Landfill Leachate Phosphate Removal Lead Dioxide Aromatic Nitro Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Lingane, Electroanalytical Chemistry, 2nd ed., Wiley-Interscience, New York, 1996.Google Scholar
  2. 2.
    I. I. W. Marson, The Engineer, pp. 591–592, April, 1965.Google Scholar
  3. 3.
    R. Eales, Chemical Engineering, 172–174, June (1968).Google Scholar
  4. 4.
    S. A. Michalek and F. B. Leitz, J.W.P.C.F., 4, 1697–1712, (1972).Google Scholar
  5. 5.
    S. E. Sadek, An Electrochemical Method for Removal of Phosphates from Wastewaters, Water Pollution Control Research Series No. 17010-01/70, US Department of the Interior, Federal Water Quality Administration, 1970.Google Scholar
  6. 6.
    C. P. C. Poon, Electrochemical Process of Sewage Treatment, Purdue Univ. Engineering Bulletin, Proc. 28th Industrial Waste Conference, Part I, Engineering Extension Series, pp. 281–292, May, 1973.Google Scholar
  7. 7.
    C. P. C. Poon and T. G. Brueckner, J.W.P.C.F., 47, 66–78, (1975).Google Scholar
  8. 8.
    R. McNabey and J. Wynne Water and Wastes Engineering, 46–48, (1971).Google Scholar
  9. 9.
    C. Nebel, P. C. Unangst, and R. D. Gottschling, Ozone Disinfection of Combined Industrial and Municipal Secondary Effluents, Part I—Laboratory Studies, Purdue Univ. Engineering Bulletin, Proc. 27th Industrial Waste Conference, Part II, Engineering Extension Series No. 141, pp. 1039–1055, May, 1972.Google Scholar
  10. 10.
    C. Nebel, R. D. Gottschling, and H. J. O’Neill, Ozone treatment of sewage plant odors. First International Symposium on Ozone for Water and Wastewater Treatment. R. G. Rice and M. E. Browning (Eds). Vol. 1–2: 445–449.Google Scholar
  11. 11.
    R. Stephenson and B. Tennant, Environmental Science & Engineering, http://www.esemag.com, January, 2003.
  12. 12.
    G. H. Chen, X. M. Chen, and P. L. Yue, J. Environ. Eng. ASCE 126, 858 (2000).CrossRefGoogle Scholar
  13. 13.
    L. L. Lim, Removal and Recovery of Heavy Metal Ions. B. Eng Thesis, National University of Singapore (2002).Google Scholar
  14. 14.
    Metcalf & Eddy Inc., Wastewater Engineering: Treatment Disposal Reuse, 4 edition, McGraw-Hill, New York, 2002.Google Scholar
  15. 15.
    L. Hemphill and R. Rogers, Electrochemical Degradation of Domestic Wastewater, Purdue Univ. Engineering Bulletin, Proc. 28th Industrial Waste Conference, Part I, Engineering Extension Series No. 137, pp. 214–223, May, 1973.Google Scholar
  16. 16.
    A. G. Vlyssides, D. Papaioannou, M. Loizidoy, P. K. Karlis, and A. A. Zorpas, Waste Management, 20, 569–574 (2000).CrossRefGoogle Scholar
  17. 17.
    C. Borras, T. Laredo, and B. R. Scharifker, Electrochimica Acta, 48, 2775–2780 (2003).CrossRefGoogle Scholar
  18. 18.
    Y. J. Li, F. Wang, G. D. Zhon, and Y. M. Ni, Chemosphere, 53, 1229–1234 (2003).CrossRefGoogle Scholar
  19. 19.
    M. De Francesco and P. Costamagna, J Cleaner Production, 12, 159–163 (2004).CrossRefGoogle Scholar
  20. 20.
    R. S. Bejankiwar, Water Research, 36, 4386–4390 (2002).CrossRefGoogle Scholar
  21. 21.
    R. Bellagamba, P. A. Michaud, C. Comninellis, and N. Vatistas, Electrochem Communi, 4, 171–176 (2002).CrossRefGoogle Scholar
  22. 22.
    E. Brillas, J. C. Calpe, and J. Casado, Water Rese, 34, 2253–2262 (2000).CrossRefGoogle Scholar
  23. 23.
    S. H. Lin and C. S. Lin, Desalination 120, 185–195 (1998).CrossRefGoogle Scholar
  24. 24.
    O. Simond, V. Schaller, and C. Comninellis, Electrochimica Acta, 42, 2009–2012 (1997).CrossRefGoogle Scholar
  25. 25.
    X.M. Chen, G. H. Chen and P. L. Yue Separation and Purification Technology, 19, 65–76 (2000).CrossRefGoogle Scholar
  26. 26.
    X. M. Chen, G.H. Chen, and P.L. Yue, Chemical Engineering Science, 57, 2449–2455 (2002).CrossRefGoogle Scholar
  27. 27.
    H. Inan, A. Dimoglo, H. Simsek, and M. Karpuzcu, Separation and Purification Technology 36, 23–31 (2004).CrossRefGoogle Scholar
  28. 28.
    M. Kobya, O. T. Can, and M. Bayramoglu, J Hazard Mat, 100, 163–178 (2003).CrossRefGoogle Scholar
  29. 29.
    R. D. Letterman and A. Amirthafajah, In Water quality and treatment, A handbook of community water supplies, 5 edition, R.D. Letterman (ed) McGraw-Hill, New York, 1999.Google Scholar
  30. 30.
    X. Y. Li, F. Ding, P. S. Y. Lo, and S. H. P. Sin, J Environ Eng-ASCE, 128, 697–704, (2002).CrossRefGoogle Scholar
  31. 31.
    G. Patermarakis and E. Fountoukidis, Water Research, 24, 1491–1496, (1990).CrossRefGoogle Scholar
  32. 32.
    K. P. Drees, M. Abbaszadegan, and P. M. Maier, Water Research, 37, 2291–2300, (2003).CrossRefGoogle Scholar
  33. 33.
    M. Saran, I. Beck-Speier, B. Fellerhoff, and G. Bauer, Free Radical Biology and Medicine 26, 482–490, (1999).CrossRefGoogle Scholar
  34. 34.
    O. Grøterud and L. Smoczynski, Water Research, 20, 667–669, (1986).CrossRefGoogle Scholar
  35. 35.
    H. J. Campbell, Jr., F. E. Woodward, and D. O. Herer, Purdue Univ. Engineering Bulletin, Proc. 25th Industrial Waste Conference, Part I, Engineering Extension Series No. 137, pp. 203–213, May, 1970.Google Scholar
  36. 36.
    W. J. Viessman and M. J. Hammer, Water Supply and Pollution Control 6th edition, Addison-Wesley, Sydney, 1998.Google Scholar
  37. 37.
    A. Vlyssides, P. Karlis, M. Loizidou, A. Zorpas, and D. Arapoglou, Environmental Technology, 22, 1467–1476, (2001).CrossRefGoogle Scholar
  38. 38.
    L. C. Chiang, J. E. Chang, and T. C. Wen, Water Research, 29, 671–678, (1995).CrossRefGoogle Scholar
  39. 39.
    W. W. Eckenfelder, Industrial Water Pollution Control, McGraw-Hill, New York, 1966, pp. 130–133.Google Scholar
  40. 40.
    S. C. Cheng, M. Gattrell, T. Guena and B. MacDougall, Electrochimica Acta, 47, 3245–3256, (2002).CrossRefGoogle Scholar
  41. 41.
    L. Szpyrkowicz, Z. G. Francesco, S. N. Kaul, and A. M. Polcaro, Industrial and Engineering Chemistry Research, 39, 2132–2139, (2000).CrossRefGoogle Scholar
  42. 42.
    J. P. Chen and H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering, A35, 817–835 (2000).Google Scholar
  43. 43.
    J. P. Chen and M. S. Lin, Separation Science and Technology, 35, 2063–2081 (2000).CrossRefGoogle Scholar
  44. 44.
    J. P. Chen, L. Hong, S. N. Wu, and L. Wang, Langmuir, 18, 9413–9421 (2002).CrossRefGoogle Scholar
  45. 45.
    J. P. Chen and L. L. Lim, Chemosphere, 49, 363–370 (2002).CrossRefGoogle Scholar
  46. 46.
    N. Kongsricharoern and C. Polprasert, Water Science and Technology, 34, 109–116 (1996).CrossRefGoogle Scholar
  47. 47.
    K. Kusakabe, H. Nishida, S. Morooka, and Y. Kato, J Appl Electrochem, 16, 121–126 (1986).CrossRefGoogle Scholar
  48. 48.
    US Environmental Protection Agency. CURE Electrocoagulation Technology, Innovative Technology Evaluation Report, Cincinnati, Ohio 45268EPA/540/R-96/502, September, 1998.Google Scholar
  49. 49.
    J. D. Rodgersa and N. J. Bunce, Water Research, 35, 2101–2111, (2001).CrossRefGoogle Scholar
  50. 50.
    J. L. Hintze and P. J. Wagner, TNT Wastewater Feasibility Study: Phase 1 Laboratory Study. Gencorp Aerojet Propulsion Division, US Army Missile Command/Production Base Modernization Activity, Contract Number DAAH01-91-C-0738, 1972, pp. 1–730.Google Scholar
  51. 51.
    J. D. Rodgers, W. Jedral, and N. J. Bunce, AWMA 92nd Annual Meeting, Proceedings (CD-ROM), St. Louis, MO, Session, Abs. No. 875, 1999.Google Scholar
  52. 52.
    R. Doppalapudi, D. Palaniswamy, G. Sorial, and S. Maloney, Water Science and Technology 47, 173–178 (2003).Google Scholar
  53. 53.
    R. B. Doppalapudi, G. A. Sorial, and S. W. Maloney, J Environ Engin-ASCE, 129, 192–201, (2003).CrossRefGoogle Scholar
  54. 54.
    R. B. Doppalapudi, G. A. Sorial, S. W. Maloney, Environmental Engineering Science, 19, 115–130, (2002).CrossRefGoogle Scholar
  55. 55.
    J. L. Jolas, S. O. Pehkonen, and S. W. Maloney, Water Environmental Research, 72, 179–188 (2000).CrossRefGoogle Scholar
  56. 56.
    L. Cast Kerri and J. V. R. Flora, Water Research, 32, 63–70, (1998).CrossRefGoogle Scholar
  57. 57.
    S. Islam and M. T. Suidan, Water Research, 32, 528–536, (1998).CrossRefGoogle Scholar
  58. 58.
    V. Beschkov, S. Velizarov, S. N. Agathos, and V. Lukova, Biochemical Engineering Journal, 17, 141–145 (2004).CrossRefGoogle Scholar
  59. 59.
    Y. Sakakibara and T. Nakayama, Water Research, 35, 768–778, (2001).CrossRefGoogle Scholar
  60. 60.
    M. Prosnansky, Y. Sakakibara and M. Kuroda, Water Research, 36, 4801–4810, (2002).CrossRefGoogle Scholar
  61. 61.
    J. A. Franz, R. J. Williams, J. V. R. Flora, M. E. Meadows, and W. G. Irwin, Water Research, 36, 2243–2254, (2002).CrossRefGoogle Scholar
  62. 62.
    T. Tanaka and M. Kuroda, ASCE J Environ Eng 126, 541–548 (2000).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • J. Paul Chen
    • 1
  • Shoou-Yuh Chang
    • 2
  • Yung-Tse Hung
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  2. 2.Department of Civil and Environmental EngineeringNorth Carolina A&T State UniversityGreensboro
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations