Skip to main content

Abstract

Chemical oxidation is a process involving the transfer of electrons from an oxidizing reagent to the chemical species being oxidized. In water and wastewater engineering, chemical oxidation serves the purpose of converting putrescible pollutant substances to innocuous or stabilized products. Chemical oxidation processes take place in natural waters and serve as an important mechanism in the natural self-purification of surface waters. Oxidative removal of dissolved iron and sulfide pollutants in aerated waters is a prominent example. The degradation of organic waste materials represents an even more important phenomenon associated with natural water self-purification. It is well known that the efficacy of natural water organic oxidations is due to the presence of microorganisms, which serve to catalyze a highly effective utilization of dissolved oxygen as an oxidant. In fact, such microorganism-catalyzed processes have been optimized and developed into the various forms of so-called “biological processes” in high concentration organic waste treatment applications. The subject of biochemical oxidation processes is thus covered in a different book that deals with biological treatment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Stumm and G. F. Lee, Ind. Eng. Chem. 53, 143 (1961).

    Article  CAS  Google Scholar 

  2. W. K. Oldham and E. F. Gloyna, Journal AWWA 61, 610 (1969).

    CAS  Google Scholar 

  3. A. Sadana and J. R. Katzer, Ind. Eng. Chem. 13, 127 (1974).

    Article  CAS  Google Scholar 

  4. E. T. Enisor and D. I. Metelitsa, Russ. Chem. Revs. 37, 656 (1968).

    Article  Google Scholar 

  5. V. Prather, Journal WPCF 42, 596 (1970).

    CAS  Google Scholar 

  6. T. A. Turney, Oxidation Mechanisms, Butterworth, Washington, DC, 1965.

    Google Scholar 

  7. H. R. Eisenhauer, Proc. Int. Conf. Water for Peace, p. 163.

    Google Scholar 

  8. W. H. Kibbble, C. W. Raleigh, and J. A. Shepherd, Industrial Waste, Nov./Dec., 41 (1972).

    Google Scholar 

  9. DuPont, E. I. de Nemouours & Co., Kastone Peroxygen Compound.

    Google Scholar 

  10. G. H. Teletzke, Chem. Eng. Progress, 60, 33 (1964).

    CAS  Google Scholar 

  11. L. G. Rich, Units Processes of Sanitary Engineering, John Wiley & Sons, New York, 1963.

    Google Scholar 

  12. J. E. Morgan, TAPPI Non-wood Plant Fiber Conference, 1973.

    Google Scholar 

  13. E. Hurwitz, G. H. Teletzke, and W. B. Gitchel, Water and Sewage Works, 298 (1965).

    Google Scholar 

  14. US Environmental Protection Agency, Process Design Manual for Sludge Treatment and Disposal. EPA 625/1-79-011, Municipal Environmental Research Laboratory, Cincinnati, OH, 1979.

    Google Scholar 

  15. R. B. Ely, Poll. Eng. 5, 37 (1973).

    Google Scholar 

  16. W. B. Gitchel, J. A. Meidl, and W. Burant, Jr., Chem. Eng. Progress. 71, 90 (1975).

    CAS  Google Scholar 

  17. Anon., Environ. Sci. Tech. 9, 300 (1975).

    Article  Google Scholar 

  18. R. Stewart, Oxidation Mechanisms, W. A. Benjamin, Inc., New York, 1964.

    Google Scholar 

  19. J. W. Ladbury and C. F. Gullies, Chem. Revs. 58, 403 (1958).

    Article  CAS  Google Scholar 

  20. S. B. Humphrey and M. A. Eikleberry, Water and Sewage Works (1962).

    Google Scholar 

  21. Carus Chemical Co., Inc., The Cairox Method.

    Google Scholar 

  22. H. S. Posselt and A. H. Reidies, I & EC Prod. Res. Dev. 4, 48 (1965).

    Article  CAS  Google Scholar 

  23. US Environmental Protection Agency, Micro-straining and Disinfections of Combined Sewer Overflows—Phase 1 Report. EPA-11023 EVO 06/70. US EPA, Washington, DC, 1970.

    Google Scholar 

  24. T. J. Kanzelmeyer and C. D. Adams, Water Environ. Res. 68, 222–228 (1996).

    Article  CAS  Google Scholar 

  25. Y. Ku and W. Wang, Water Environ. Res. 71, 18–22 (1999).

    Article  CAS  Google Scholar 

  26. B. E. Reed, M. R. Matsumoto, R. Viadreo, Jr., R. L. Sega, Jr., R. Vaughan, and D. Mascioia, Water Environ. Res. 71, 584–618 (1999).

    Article  CAS  Google Scholar 

  27. R. Gracia, J. Aragues, and J. Ovelleiro, Water Res. (G. B.) 32, 57 (1998).

    Article  CAS  Google Scholar 

  28. J. L. Acero and U. V. Gunten, Journal of AWWA October, 90–100 (2001).

    Google Scholar 

  29. S. Liang, R. S. Yates, D. V. Davis, S. J. Pastor, L. S. Palencia, and J. M. Jeanne-Marie Bruno, Journal of AWWA, June, 110–120 (2001).

    Google Scholar 

  30. I. Wojtenko, M. K. Stinson, and R. Field, Crit. Rev. Env. Sci. Tec. 31, 295–309 (2001).

    Article  CAS  Google Scholar 

  31. Y. C. Hsu, J. T. Chenm, H. C. Yang, J. H. Chen, and C. F. Fang, Water Environ. Res. 73, 494–503 (2001).

    Article  CAS  Google Scholar 

  32. F. J. Beltran, M. Gonzalez, F. J. Rivas, and B. Acedo, Water Environ. Res. 72, 659–697 (2000).

    Article  Google Scholar 

  33. M. A. Parmelee Journal AWWA, September, 56 (2001).

    Google Scholar 

  34. T. Viaraghaven and R. Sapach, Proc. 30th Mid-Atl. Ind Waste Conference., Technonic Publishing, Lancaster, PA, 1998, p. 775.

    Google Scholar 

  35. R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, Water Res. (G. B.) 34, 463–472 (2000).

    Article  Google Scholar 

  36. H.S. Wang, S.T. Hsieh, and C.S. Hong, Water Res. (G. B.) 34, 3882–3887 (2000).

    Article  CAS  Google Scholar 

  37. W. Glazz and D. Maddox, Water Res. (G. B.) 32, 997 (1998).

    Google Scholar 

  38. P. Bose, W. Glazz and D. Maddox, Water Res. (G. B.) 32, 1005 (1998).

    Article  CAS  Google Scholar 

  39. L. Lei, X. Hu and P. Yue, Water Res. (G. B.) 32, 2753 (1998).

    CAS  Google Scholar 

  40. L. Lecheng, G. Chen, X. Hu, and P.L. Yue, Water Environ. Res. 72, 147–151 (2000).

    Article  Google Scholar 

  41. A. Thomesen, Water Res. (G. B.) 32, 36 (1998).

    Google Scholar 

  42. A. Thomesen and H. Kilen, Water Res. (G. B.) 32, 3353 (1998).

    Article  Google Scholar 

  43. W. Julie, New and Innovative Technologies for Mixed Waste Treatment, University of Michigan, School of Natural Resources and Environment for EPA office of Solid Waste Permits and State Programs Division, 1997, U-915074-01-0.

    Google Scholar 

  44. K. Lin, P. H. Wang, and M. Li, Chemisophere (G. B.) 36, 2075 (1998).

    CAS  Google Scholar 

  45. L. Philip L. Iyengar and C. Venkobachar, J. Environ. Eng.-ASCE 124, 1165 (1998).

    Article  CAS  Google Scholar 

  46. D. Van Scherpenzeel, M. Boon, C. Ras, G. Hansford, and J. Heijnen, Biotechnology Progress 14, 425 (1998).

    Article  Google Scholar 

  47. K. Lampron, X. Chad, and P. Chiu, Proceeding, 30th Mid-Atlantic, Industrial waste Conference. Technomic Publishing, Lancaster, PA. 1998, p. 448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shammas, N.K., Yang, J.Y., Yuan, PC., Hung, YT. (2005). Chemical Oxidation. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 3. Humana Press. https://doi.org/10.1385/1-59259-820-x:229

Download citation

Publish with us

Policies and ethics