Chemical Oxidation

  • Nazih K. Shammas
  • John Y. Yang
  • Pao-Chiang Yuan
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)


Chemical oxidation is a process involving the transfer of electrons from an oxidizing reagent to the chemical species being oxidized. In water and wastewater engineering, chemical oxidation serves the purpose of converting putrescible pollutant substances to innocuous or stabilized products. Chemical oxidation processes take place in natural waters and serve as an important mechanism in the natural self-purification of surface waters. Oxidative removal of dissolved iron and sulfide pollutants in aerated waters is a prominent example. The degradation of organic waste materials represents an even more important phenomenon associated with natural water self-purification. It is well known that the efficacy of natural water organic oxidations is due to the presence of microorganisms, which serve to catalyze a highly effective utilization of dissolved oxygen as an oxidant. In fact, such microorganism-catalyzed processes have been optimized and developed into the various forms of so-called “biological processes” in high concentration organic waste treatment applications. The subject of biochemical oxidation processes is thus covered in a different book that deals with biological treatment processes.


Chemical Oxygen Demand Chemical Oxidation Chromic Acid Methyl Tertiary Butyl Ether Permanganate Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Stumm and G. F. Lee, Ind. Eng. Chem. 53, 143 (1961).CrossRefGoogle Scholar
  2. 2.
    W. K. Oldham and E. F. Gloyna, Journal AWWA 61, 610 (1969).Google Scholar
  3. 3.
    A. Sadana and J. R. Katzer, Ind. Eng. Chem. 13, 127 (1974).CrossRefGoogle Scholar
  4. 4.
    E. T. Enisor and D. I. Metelitsa, Russ. Chem. Revs. 37, 656 (1968).CrossRefGoogle Scholar
  5. 5.
    V. Prather, Journal WPCF 42, 596 (1970).Google Scholar
  6. 6.
    T. A. Turney, Oxidation Mechanisms, Butterworth, Washington, DC, 1965.Google Scholar
  7. 7.
    H. R. Eisenhauer, Proc. Int. Conf. Water for Peace, p. 163.Google Scholar
  8. 8.
    W. H. Kibbble, C. W. Raleigh, and J. A. Shepherd, Industrial Waste, Nov./Dec., 41 (1972).Google Scholar
  9. 9.
    DuPont, E. I. de Nemouours & Co., Kastone Peroxygen Compound.Google Scholar
  10. 10.
    G. H. Teletzke, Chem. Eng. Progress, 60, 33 (1964).Google Scholar
  11. 11.
    L. G. Rich, Units Processes of Sanitary Engineering, John Wiley & Sons, New York, 1963.Google Scholar
  12. 12.
    J. E. Morgan, TAPPI Non-wood Plant Fiber Conference, 1973.Google Scholar
  13. 13.
    E. Hurwitz, G. H. Teletzke, and W. B. Gitchel, Water and Sewage Works, 298 (1965).Google Scholar
  14. 14.
    US Environmental Protection Agency, Process Design Manual for Sludge Treatment and Disposal. EPA 625/1-79-011, Municipal Environmental Research Laboratory, Cincinnati, OH, 1979.Google Scholar
  15. 15.
    R. B. Ely, Poll. Eng. 5, 37 (1973).Google Scholar
  16. 16.
    W. B. Gitchel, J. A. Meidl, and W. Burant, Jr., Chem. Eng. Progress. 71, 90 (1975).Google Scholar
  17. 17.
    Anon., Environ. Sci. Tech. 9, 300 (1975).CrossRefGoogle Scholar
  18. 18.
    R. Stewart, Oxidation Mechanisms, W. A. Benjamin, Inc., New York, 1964.Google Scholar
  19. 19.
    J. W. Ladbury and C. F. Gullies, Chem. Revs. 58, 403 (1958).CrossRefGoogle Scholar
  20. 20.
    S. B. Humphrey and M. A. Eikleberry, Water and Sewage Works (1962).Google Scholar
  21. 21.
    Carus Chemical Co., Inc., The Cairox Method.Google Scholar
  22. 22.
    H. S. Posselt and A. H. Reidies, I & EC Prod. Res. Dev. 4, 48 (1965).CrossRefGoogle Scholar
  23. 23.
    US Environmental Protection Agency, Micro-straining and Disinfections of Combined Sewer Overflows—Phase 1 Report. EPA-11023 EVO 06/70. US EPA, Washington, DC, 1970.Google Scholar
  24. 24.
    T. J. Kanzelmeyer and C. D. Adams, Water Environ. Res. 68, 222–228 (1996).CrossRefGoogle Scholar
  25. 25.
    Y. Ku and W. Wang, Water Environ. Res. 71, 18–22 (1999).CrossRefGoogle Scholar
  26. 26.
    B. E. Reed, M. R. Matsumoto, R. Viadreo, Jr., R. L. Sega, Jr., R. Vaughan, and D. Mascioia, Water Environ. Res. 71, 584–618 (1999).CrossRefGoogle Scholar
  27. 27.
    R. Gracia, J. Aragues, and J. Ovelleiro, Water Res. (G. B.) 32, 57 (1998).CrossRefGoogle Scholar
  28. 28.
    J. L. Acero and U. V. Gunten, Journal of AWWA October, 90–100 (2001).Google Scholar
  29. 29.
    S. Liang, R. S. Yates, D. V. Davis, S. J. Pastor, L. S. Palencia, and J. M. Jeanne-Marie Bruno, Journal of AWWA, June, 110–120 (2001).Google Scholar
  30. 30.
    I. Wojtenko, M. K. Stinson, and R. Field, Crit. Rev. Env. Sci. Tec. 31, 295–309 (2001).CrossRefGoogle Scholar
  31. 31.
    Y. C. Hsu, J. T. Chenm, H. C. Yang, J. H. Chen, and C. F. Fang, Water Environ. Res. 73, 494–503 (2001).CrossRefGoogle Scholar
  32. 32.
    F. J. Beltran, M. Gonzalez, F. J. Rivas, and B. Acedo, Water Environ. Res. 72, 659–697 (2000).CrossRefGoogle Scholar
  33. 33.
    M. A. Parmelee Journal AWWA, September, 56 (2001).Google Scholar
  34. 34.
    T. Viaraghaven and R. Sapach, Proc. 30th Mid-Atl. Ind Waste Conference., Technonic Publishing, Lancaster, PA, 1998, p. 775.Google Scholar
  35. 35.
    R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, Water Res. (G. B.) 34, 463–472 (2000).CrossRefGoogle Scholar
  36. 36.
    H.S. Wang, S.T. Hsieh, and C.S. Hong, Water Res. (G. B.) 34, 3882–3887 (2000).CrossRefGoogle Scholar
  37. 37.
    W. Glazz and D. Maddox, Water Res. (G. B.) 32, 997 (1998).Google Scholar
  38. 38.
    P. Bose, W. Glazz and D. Maddox, Water Res. (G. B.) 32, 1005 (1998).CrossRefGoogle Scholar
  39. 39.
    L. Lei, X. Hu and P. Yue, Water Res. (G. B.) 32, 2753 (1998).Google Scholar
  40. 40.
    L. Lecheng, G. Chen, X. Hu, and P.L. Yue, Water Environ. Res. 72, 147–151 (2000).CrossRefGoogle Scholar
  41. 41.
    A. Thomesen, Water Res. (G. B.) 32, 36 (1998).Google Scholar
  42. 42.
    A. Thomesen and H. Kilen, Water Res. (G. B.) 32, 3353 (1998).CrossRefGoogle Scholar
  43. 43.
    W. Julie, New and Innovative Technologies for Mixed Waste Treatment, University of Michigan, School of Natural Resources and Environment for EPA office of Solid Waste Permits and State Programs Division, 1997, U-915074-01-0.Google Scholar
  44. 44.
    K. Lin, P. H. Wang, and M. Li, Chemisophere (G. B.) 36, 2075 (1998).Google Scholar
  45. 45.
    L. Philip L. Iyengar and C. Venkobachar, J. Environ. Eng.-ASCE 124, 1165 (1998).CrossRefGoogle Scholar
  46. 46.
    D. Van Scherpenzeel, M. Boon, C. Ras, G. Hansford, and J. Heijnen, Biotechnology Progress 14, 425 (1998).CrossRefGoogle Scholar
  47. 47.
    K. Lampron, X. Chad, and P. Chiu, Proceeding, 30th Mid-Atlantic, Industrial waste Conference. Technomic Publishing, Lancaster, PA. 1998, p. 448.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Nazih K. Shammas
    • 1
  • John Y. Yang
    • 2
  • Pao-Chiang Yuan
    • 3
  • Yung-Tse Hung
    • 4
  1. 1.Graduate Environmental Engineering ProgramLenox Institute of Water TechnologyLenox
  2. 2.Niagara Technology Inc.Williamsville
  3. 3.Technology DepartmentJackson State UniversityJackson
  4. 4.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations