Advertisement

Mixing

  • J. Paul Chen
  • Frederick B. Higgins
  • Shoou-Yuh Chang
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)

Abstract

Mixing is an important operation in many types of facilities utilized in various industries, including chemical production and environmental pollution control (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Solids may be shredded and blended to promote uniform and complete combustion in modern incinerators. In water and wastewater treatment operations, mixing may be involved in equalization, dispersion of chemicals, enhancement of reaction kinetics, and prevention of solids deposits. Prior to the selection of equipment or the design of specific facilities, it is first necessary to consider the various reasons for mixing and the underlying principles of each.

Keywords

Molecular Diffusion Impeller Speed Power Number Liquid Depth Impeller Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. V. Danckwerts, Insights into Chemical Engineering (Selected Papers of P. V. Danckwerts), Pergamon Press, New York, 1981.Google Scholar
  2. 2.
    R. S. Brodkey, Fluid motion and mixing. In: Mixing: Theory and Practice. V. W. Uhl, and J. B. Gray, eds., Academic Press, New York 1996.Google Scholar
  3. 3.
    O. Levenspiel, Chemical Reaction Engineering, 2nd ed., John Wiley & Sons, New York, 1972.Google Scholar
  4. 4.
    G. R. Marr, Jr. and E. F. Johnson, The dynamical behavior of stirred tanks. Chem. Eng. Prog. Symp. 36, 109–118 1961.Google Scholar
  5. 5.
    I. Zweitering, The degree of mixing in continuous flow systems. Chem. Engrg. Sci. 11, 1–5 1959.CrossRefGoogle Scholar
  6. 6.
    T. R. Camp, Flocculation and flocculation basins. Transactions ASCE 120, 1–16 1955Google Scholar
  7. 7.
    H. E. Hudson, and J. P. Wolfner, Design of mixing and flocculation basins, JAWWA 59, 1257–1268 (1967).Google Scholar
  8. 8.
    J. Beak, Jr. and R. S. Miller, Turbulent transport in chemical reactors. Chem. Engrg. Prog. Sym. 25, 23–28 (1959).Google Scholar
  9. 9.
    AIChE, AIChE Equipment Testing Procedure, Mixing Equipment (Impeller Type), A Guide to Performance evaluation. AIChE, New York, 1988.Google Scholar
  10. 10.
    P. L. Bates, P. L. Fondy, and J. G. Fenic, Impeller characteristics and power. In: Mixing: Theory and Practice. V. W. Uhl and J. B. Gray, eds., Academic Press, New York, 1996.Google Scholar
  11. 11.
    J. H. Rushton, E. W. Costich, and H. J. Everett, Power characteristics of mixing impellers. Chem. Engrg. Prog. 46, 395–404 (1950).Google Scholar
  12. 12.
    G. B. Tatterson, Scaleup and Design of Industrial Mixing Processes. McGraw-Hill, New York, 1994.Google Scholar
  13. 13.
    J. J. Ulbrecht and G. K. Patterson, Mixing of Liquids by Mechanical Agitation, Gordon and Breach, New York, 1985.Google Scholar
  14. 14.
    F. P. O’Connell and D. E. Mack, Simple turbines in fully baffled tanks, power characteristics. Chem. Engrg. Prog. 46, 358–362 (1950).Google Scholar
  15. 15.
    F. S. Hirsekorn and S. A. Miller, Agitation of viscous solid-liquid suspensions. Chem. Engrg. Prog. 49, 459–467 (1953).Google Scholar
  16. 16.
    S. R. Qasim, E. M. Motley, and G. Zhu, Water Works Engineering: Planning, Design and Operation, Prentice-Hall, New Jersey, 2000.Google Scholar
  17. 17.
    R. D. Letterman (ed.), Water Quality and Treatment, A Handbook of Community Water Supplies, 5th Ed., McGraw-Hill, New York, 1999.Google Scholar
  18. 18.
    Metcalf and Eddy, Inc. (ed.), Wastewater Engineering: Treatment Disposal and Reuse, 4th ed., McGraw-Hill, New York, 2002.Google Scholar
  19. 19.
    J. B. Gray, Flow patterns, fluid velocities, and mixing in agitated vessel. In: Mixing: Theory and Practice, V. W. Uhl and J. B. Gray, eds., Academic Press, New York, 1966.Google Scholar
  20. 20.
    V. A. Mhaisalkar, R. Paramasivam, and A.G. Bhole, An innovative technique for determining velocity gradient in coagulation-flocculation process. Wat. Res. 20, 1307–1314 (1986).CrossRefGoogle Scholar
  21. 21.
    J. G. van de Vusse, Mixing by agitation of miscible liquids Part I. Chem. Engrg. Sci. 4, 178–200 (1955).CrossRefGoogle Scholar
  22. 22.
    K. W. Norwood, and A. B. Metzner, Flow patterns and mixing rates in agitated vessels. AIChE 6, 432–442 (1960).CrossRefGoogle Scholar
  23. 23.
    R. D. Biggs, Mixing rates in stirred tanks. AIChE 2, 636–646 (1963).CrossRefGoogle Scholar
  24. 24.
    E. A. Fox and V. E. Gex, Single-phase blending of liquids. AIChE 2, 539–544 (1956).CrossRefGoogle Scholar
  25. 25.
    V. A. Mhaisalkar, R. Paramasivam, and A. G. Bhole, Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters. Wat. Res. 25, 43–52 (1991).CrossRefGoogle Scholar
  26. 26.
    S. A. Craik, D. W. Smith, M. Chandrakanth, and M. Belosevic, Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone. Water Res. 37, 3622–3631 (2003).CrossRefGoogle Scholar
  27. 27.
    J. T. Lee, and J. Y. Choi, In-line mixer for feed forward control and adaptive feedback control of pH processes, Chem. Engrg. Sci, 55, 1337–1345 (2000).CrossRefGoogle Scholar
  28. 28.
    Th. N. Zwietering, Suspending of solid particles in liquid by agitators. Chem. Engrg. Sci. 8, 244–253 (1958).CrossRefGoogle Scholar
  29. 29.
    D. C. Hopkins and J. J. Ducoste, Characterizing flocculation under heterogeneous turbulence, J. Colloid Interface Sci. 264, 184–194 (2003).CrossRefGoogle Scholar
  30. 30.
    C. H. Kan, C. P. Huang, and J. R. Pan, Time requirement for rapid-mixing in coagulation, Colloids Surfaces A: Physicochem. Engrg. Aspects 203, 1–9 (2002).CrossRefGoogle Scholar
  31. 31.
    G. M. Fair, and J. C. Geyer, Elements of Water Supply and Wastewater Disposal, 5th ed., John Wiley & Sons, New York, 1958.Google Scholar
  32. 32.
    V. A. Mhaisalkar, R. Paramasivam, and A. G. Bhole, Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters. Wat. Res. 25, 43–52 (1991).CrossRefGoogle Scholar
  33. 33.
    J. M. Zalc, E. S. Szalai, M. M. Alvarez, and F. J. Muzzio, Using CFD to understand chaotic mixing in laminar stirred tanks. AIChE 48, 2124–2134 (2002).CrossRefGoogle Scholar
  34. 34.
    G. Baldi, R. Conti, and E. Alaria, Complete suspension of particles in mechanically agitated vessels. Chem. Engrg. Sci. 33, 21–25 (1978).CrossRefGoogle Scholar
  35. 35.
    R. K. Geisler, C. Buurman, and A. B. Mersmann, Scale-up of the necessary power input in stirred vessels with suspendsions. Chem. Engrg. J. 51, 29–39 (1993).CrossRefGoogle Scholar
  36. 36.
    K. P. Recknagle and A. Shekarriz, Laminar impeller mixing of Newtonian and non-Newtonian fluids: experimental and computational results. 1998 ASME Fluids Engineering Division Summer Meeting, Washington, DC, 1998.Google Scholar
  37. 37.
    S. J. Khang, and O. Levenspiel, New scale-up and design method for stirrer agitated batch mixing vessels. Chem. Engrg. Sci. 31, 569–577 (1976).CrossRefGoogle Scholar
  38. 38.
    A. W. Nienow, Suspension of solid particles in turbine agitated baffled vessels. Chem. Engrg. Sci. 23, 1453–1459 (1968).CrossRefGoogle Scholar
  39. 39.
    G. Rossi, The design of bioreactors. Hydrometallurgy 59, 217–231 (2001).CrossRefGoogle Scholar
  40. 40.
    R. N. Sharma, and A. A. Shaikh, Solids suspension in stirred tanks with pitched blade turbines. Chem. Engrg. Sci. 58, 2123–2140 (2003).CrossRefGoogle Scholar
  41. 41.
    J. M. T. Vasconcelos, S. S. Alves, and J. M. Barata, Mixing in gas-liquid contactors agitated by multiple turbines. Chem. Engrg. Sci. 50, 2343–2354 (1995).CrossRefGoogle Scholar
  42. 42.
    J. J. McKetta (ed.) Unit Operations Handbook. Marcel Dekker, New York, (1993).Google Scholar
  43. 43.
    K. J. Rogers, M. G. Milobowski, and B. L. Wooldridge, Perspectives on ammonia injection and gaseous static mixing in SCR retrofit application. EPRI-DOE-EPA Combined Utility Air Pollutant Control Sympasium. Atlanta, Georgia, 1999.Google Scholar
  44. 44.
    M. Fleischli, Make it short! Sulzer Technical Review 4, 4101–4102 (2003).Google Scholar
  45. 45.
    N. Harnby, M. F. Edwards, and A. W. Nienow, eds., Mixing in the Process Industries. 2nd ed., Butterworth-Heinemann, Oxford, UK, 1992.Google Scholar
  46. 46.
    P. J. Fry, D. L. Pyle, and C. D. Rielly, eds., Chemical Engineering for the Food Industry. Blackie Academic & Professional, London, UK, 1997.Google Scholar
  47. 47.
    M. Zlokarnik, Stirring, Theory and Practice. Wiley-VCH, New York, 2001.Google Scholar
  48. 48.
    R. J. McDonough, Mixing for the Process Industries, Van Nostrand Reinhold, New York, 1992.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • J. Paul Chen
    • 1
  • Frederick B. Higgins
    • 2
  • Shoou-Yuh Chang
    • 3
  • Yung-Tse Hung
    • 4
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  2. 2.Civil and Environmental Engineering DepartmentTemple UniversityPhiladelphia
  3. 3.Department of Civil and Environmental EngineeringNorth Carolina A&T State UniversityGreensboro
  4. 4.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations