Skip to main content

Physiology of Ventilation During Cardiac Arrest

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Ventilation—the movement of fresh air or other gas from the outside into the lungs and alveoli in close proximity to blood for the efficient exchange of gases—enriches blood with oxygen (O2) and rids the body of carbon dioxide (CO2) by movement of alveolar gas from the lungs to the outside (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hlastala MP. Ventilation. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations, New York, NY: Raven Press, 1991, pp. 1209–1214.

    Google Scholar 

  2. Cobb LA, Eliastam M, Kerber RE, et al. Report of the American Heart Association task force on the future of cardiopulmonary resuscitation. Circulation 1992; 85:2346–2355.

    PubMed  CAS  Google Scholar 

  3. Berg RA, Kern KB, Sanders AB, Otto CW, Hilwig RW, Ewy GA. Bystander cardiopulmonary resuscitation: Is ventilation necessary? Circulation 1993; 88:1907–1915.

    PubMed  CAS  Google Scholar 

  4. Chandra NC, Gruben KG, Tsitlik JE, Guerci AD, Permutt S, Weisfeldt ML. Observations of ventilation during resuscitation in a canine model. Circulation 1994; 90:3070–3075..

    PubMed  CAS  Google Scholar 

  5. Weil MH, Sun S, Bisera J, Tang W, Gazmuri RJ. Challenge to the ABC’s of cardiopulmonary resuscitation. Chest 1992; 102:127S.

    Google Scholar 

  6. Wenzel V, Idris AH, Banner MJ, Fuerst RS, Tucker KJ. The composition of gas given by mouth-tomouth ventilation during CPR. Chest 1994; 106:1806–1810.

    Article  PubMed  CAS  Google Scholar 

  7. The Bible, II Kings 4:32–35.

    Google Scholar 

  8. DeBard ML. The history of cardiopulmonary resuscitation. Ann Emerg Med 1980; 9:273–275.

    Article  PubMed  CAS  Google Scholar 

  9. Hermreck AS. The history of CPR. Am J Surg 1988; 156:430–436.

    Article  PubMed  CAS  Google Scholar 

  10. Elam JO, Brown ES, Elder JD, Jr. Artificial respiration by mouth-to-mask method: a study of the respiratory gas exchange of paralyzed patients ventilated by operator’s expired air. New Engl J Med 1954; 250:749–754.

    Article  PubMed  CAS  Google Scholar 

  11. Safar P. History of cardiopulmonary-cerebral resuscitation. In: Kaye W, Bircher N, eds. Cardiopulmonary resuscitation. New York, NY: Churchill Livingston, 1989, pp. 1–53.

    Google Scholar 

  12. Boehm R. Ueber wiederbelebung nach vergiftungen and asphyxie. Arch Exp Pathol Pharmakol 1878; 8:68–101.

    Google Scholar 

  13. Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 1991; 19:1432–1438.

    PubMed  CAS  Google Scholar 

  14. Safar P. Failure of manual respiration. J Appl Physiol 1959; 14:84–88.

    PubMed  CAS  Google Scholar 

  15. Safar P, Brown TC, Holtey WJ, Wilder RJ. Ventilation and circulation with closed-chest cardiac massage in man. JAMA 1961; 176:574–576.

    PubMed  CAS  Google Scholar 

  16. Safar P, Escarraga LA, Elam JO. A comparison of the mouth-to-mouth and mouth-to-airway methods of artificial respiration with the chest-pressure arm-lift methods. New Engl J Med 1958; 258: 671–677.

    Article  PubMed  CAS  Google Scholar 

  17. Don HF, Robson JG. The mechanics of the respiratory system during anesthesia: the effects of atropine and carbon dioxide. Anesth 1965; 26:168–178.

    CAS  Google Scholar 

  18. Severinghaus JW, Swenson EW, Finley TN, Lategola MT, Williams J. Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J Appl Physiol 1961; 16:53–60.

    PubMed  CAS  Google Scholar 

  19. Nadel JA, Widdicombe JG. Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to airflow. J Physiol (Lond) 1962; 163:13–33.

    CAS  Google Scholar 

  20. Severinghaus JW, Stupfel M. Respiratory dead space increase following atropine in man, and atropine, vagal or ganglionic blockade and hypothermia in dogs. J Appl Physiol 1955; 8:81–87.

    PubMed  CAS  Google Scholar 

  21. Daly M de Burgh, Lambertsen CJ, Schweitzer A. The effects upon the bronchial musculature of altering the O2 and CO2 tension in the blood perfusing the brain. J Physiol (Lond) 1953; 119:292–314.

    Google Scholar 

  22. Parker JC, Peters RM, Barnett TB. Carbon dioxide and the work of breathing. J Clin Invest 1963; 42: 1362–1372.

    PubMed  CAS  Google Scholar 

  23. Scanlon TS, Benumof JL, Wahrenbrock EA, Nelson WL. Hypoxic pulmonary vasoconstriction and the ratio of hypoxic lung to perfused normoxic lung. Anesth 1978; 49:177–181.

    Google Scholar 

  24. Rodman DM, Voelkel NF. Regulation of vascular tone. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. New York, NY: Raven Press, 1991, pp. 1105–1119.

    Google Scholar 

  25. Marshall BE, Marshall C. Pulmonary hypertension. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. New York, NY: Raven Press, 1991, pp. 1177–1187.

    Google Scholar 

  26. Benumof JL, Wahrenbrock EA. Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol 1975; 38:846–850.

    PubMed  CAS  Google Scholar 

  27. West JB. Respiratory Physiology. The Essentials. Baltimore, MD: Williams and Wilkins, 1974, pp. 57–60.

    Google Scholar 

  28. Idris AH, Staples E, O’Brian DJ, et al. The effect of ventilation on acid-base balance and oxygenation in low blood-flow states. Crit Care Med 1994; 22:1827–34.

    Article  PubMed  CAS  Google Scholar 

  29. Abdelmoneim T, Kissoon N, Johnson L, et al. Acid-base status of blood from intraosseous and mixed venous sites during prolonged cardiopulmonary resuscitation and drug infusions. Crit Care Med 1999; 27:1923–1928.

    Article  PubMed  CAS  Google Scholar 

  30. Perutz MF. Hemoglobin structure and respiratory transport. Scientific American. 1978; 92-125.

    Google Scholar 

  31. Christiansen J, Douglas CG, Haldane JS. The absorption of carbon dioxide by human blood. J Physiol 1914; 48:244–277.

    PubMed  CAS  Google Scholar 

  32. Klocke RA. Mechanisms and kinetics of the Haldane effect in human erythrocytes. J Appl Physiol 1973; 35:673–681.

    PubMed  CAS  Google Scholar 

  33. Perella M, Kilmartin JV, Fogg J, Rossi-Bernardi L. Identification of the high and low affinity CO2-binding sites of human hemoglobin. Nature 1975; 256:759–761.

    Article  Google Scholar 

  34. Arnone A. X-ray studies of the interaction of CO2 with human deoxyhaemoglobin. Nature 1974; 247: 143–145.

    Article  PubMed  CAS  Google Scholar 

  35. Kilmartin JV, Rossi-Bernardi L. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol Rev 1973; 53:836–890.

    PubMed  CAS  Google Scholar 

  36. Klocke RA. Carbon Dioxide, In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. New York, NY: Raven Press, 1991, pp. 1233–1239.

    Google Scholar 

  37. Bersin RM, Arieff AI. Improved hemodynamic function during hypoxia with carbicarb, a new agent for the management of acidosis. Circulation 1988; 77:227–233.

    PubMed  CAS  Google Scholar 

  38. Ducey JP, Lamiell JM, Gueller GE. Arterial-venous carbon dioxide tension difference during severe hemorrhage and resuscitation. Crit Care Med 1992; 20:518–522.

    Article  PubMed  CAS  Google Scholar 

  39. Dunham CM, Siegal JH, Weireter L, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med 1991; 19: 231–243.

    Article  PubMed  CAS  Google Scholar 

  40. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 1984; 227:754–756.

    Article  Google Scholar 

  41. Graf H, Leach W, Arieff AI. Effects of dichloroacetate in the treatment of hypoxic lactic acidosis in dogs. J Clin Invest. 1985; 76:919–923.

    Article  PubMed  CAS  Google Scholar 

  42. Romeh SA, Tannen RL. Therapeutic benefit of dichloroacetate in experimentally induced hypoxic lactic acidosis. J Lab Clin Med 1986; 107:378–383.

    CAS  Google Scholar 

  43. Niemann JT, Criley JM, Rosborough JP, Niskanen RA, Alferness C. Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med 1985; 14: 521–528.

    Article  PubMed  CAS  Google Scholar 

  44. Rivers EP, Martin GB, Smithline H, et al. The clinical implications of continuous central venous oxygen saturation during human CPR. Ann Emerg Med 1992; 21:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  45. Steinhart CR, Permutt S, Gurtner GH, Traystman RJ. B-Adrenergic activity and cardiovascular response to severe respiratory acidosis. Am J Physiol 1983; 244(Heart Circ Physiol 13):H46–H54.

    PubMed  CAS  Google Scholar 

  46. von Planta I, Weil MH, von Planta M, Gazmuri RJ, Duggal C. Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med 1991; 19:1177–1182.

    Article  Google Scholar 

  47. Weil MH, Ruiz CE, Michaels S, Rackow EC. Acid-base determinants of survival after cardiopulmonary resuscitation. Crit Care Med 1985; 13:888–892.

    PubMed  CAS  Google Scholar 

  48. Yakaitis RW, Thomas JD, Mahaffey JE. Influence of pH and hypoxia on the success of defibrillation. Crit Care Med 1975; 3:139–142.

    Article  PubMed  CAS  Google Scholar 

  49. Cingolani HF, Faulkner SL, Mattiazzi AR, Bender HW, Graham TP, Jr. Depression of human myocardial contractility with “respiratory” and “metabolic” acidosis. Surgery 1975; 77: 427–432.

    PubMed  CAS  Google Scholar 

  50. Downing SE, Talner NS, Gardner TH. Cardiovascular responses to metabolic acidosis. Am J Physiol 1965; 208:237–242.

    PubMed  CAS  Google Scholar 

  51. Poole-Wilson PA. Is early decline of cardiac function in ischaemia due to carbon dioxide retention? Lancet 1975; ii:1285–1287.

    Article  Google Scholar 

  52. Tang W, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 1991; 19:218–224.

    Article  PubMed  CAS  Google Scholar 

  53. Weisfeldt ML, Bishop RL, Greene HL. Effects of pH and pCO2 on performance of ischemic myocardium. In: Roy PE, Rona G, eds. The Metabolism of Contraction. Recent Advances in Studies on Cardiac Structure and Metabolism, vol 10. Baltimore, MD: University Park Press, 1975, 355–364.

    Google Scholar 

  54. Kerber RE, Sarnat W. Factors influencing the success of ventricular defibrillation in man. Circulation 1979; 60:226–230.

    PubMed  CAS  Google Scholar 

  55. Tang W, Weil MH, Maldonado FA, Gazmuri RJ, Bisera J. Hypercarbia decreases the effectiveness of electrical defibrillation during CPR. Crit Care Med 1992; 20(Suppl):S24.

    Article  Google Scholar 

  56. Angelos MG, DeBehnke DJ, Leasure JE. Arterial pH and carbon dioxide tension as indicators of tissue perfusion during cardiac arrest in a canine model. Crit Care Med 1992; 20:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  57. Benjamin E, Paluch TA, Berger SR, Premus G, Wu C, Iberti TJ. Venous hypercarbia in canine hemorrhagic shock. Crit Care Med 1987; 15:516–518.

    PubMed  CAS  Google Scholar 

  58. Beyar R, Kishon Y, Kimmel E, Sideman S, Dinnar U. Blood gas and acid-base balance during cardiopulmonary resuscitation by intrathoracic and abdominal pressure variations. Basic Res Cardiol 1986; 81: 326–333.

    Article  PubMed  CAS  Google Scholar 

  59. Bishop RL, Weisfeldt ML. Sodium bicarbonate administration during cardiac arrest. JAMA 1976; 235: 506–509.

    Article  PubMed  CAS  Google Scholar 

  60. Fillmore SJ, Shapiro M, Killip T. Serial blood gas studies during cardiopulmonary resuscitation. Ann Intern Med 1970; 72:465–469.

    PubMed  CAS  Google Scholar 

  61. Greenwood PV, Rossall RE, Kappagoda CT. Acid-base changes aftercardiorespiratory arrest in the dog. Clin Sci 1980; 58:127–133.

    PubMed  CAS  Google Scholar 

  62. Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 1986; 74:1071–1074.

    PubMed  CAS  Google Scholar 

  63. Martin GB, Carden DL, Nowak RM, Tomlanovich MC. Comparison of central venous and arterial pH and PCO2 during open-chest CPR in the canine model. Ann Emerg Med 1985; 14:529–533.

    Article  PubMed  CAS  Google Scholar 

  64. Nowak RM, Martin GB, Carden DL, Tomlanovich MC. Selective venous hypercarbia during CPR. Implications regarding blood flow. Ann Emerg Med 1987; 16:527–530.

    Article  PubMed  CAS  Google Scholar 

  65. Ornato JP, Gonzalez ER, Coyne MR, Beck CL, Collins CL. Arterial pH in out-of-hospital cardiac arrest. Response time as a determinant of acidosis. Am J Emerg Med 1985; 3:498–501.

    Article  PubMed  CAS  Google Scholar 

  66. Ralston SH, Voorhees WD, Showen L, Schmitz P, Kougias C, Tacker WA. Venous and arterial blood gases during and after cardiopulmonary resuscitation in dogs. Am J Emerg Med 1985; 3:132–136.

    Article  PubMed  CAS  Google Scholar 

  67. Sanders AB, Ewy GA, Taft TV. Resuscitation and arterial blood gas abnormalities during prolonged cardiopulmonary resuscitation. Ann Emerg Med 1984; 13(Part 1):676–679.

    Article  PubMed  CAS  Google Scholar 

  68. Sanders AB, Otto CW, Kern KB, Rogers JN, Perrault P, Ewy GA. Acid-base balance in a canine model of cardiac arrest. Ann Emerg Med 1988; 17:667–671.

    Article  PubMed  CAS  Google Scholar 

  69. Weil MH, Grundler W, Yamaguchi M, Michaels S, Rackow EC. Arterial blood gases fail to reflect acidbase status during cardiopulmonary resuscitation. A Preliminary report. Crit Care Med 1985; 13:884,885.

    PubMed  CAS  Google Scholar 

  70. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986; 315:153–156.

    Article  PubMed  CAS  Google Scholar 

  71. Weil MH, von Planta M, Gazmuri RJ, Rackow EC. Incomplete global ischemia during cardiac arrest and resuscitation. Crit Care Med 1988; 16:997–1001.

    PubMed  CAS  Google Scholar 

  72. Langhelle A, Sunde K, Wik L, et al. Arterial blood gases with 500-versus 1000-mL tidal volumes during out-of-hospital CPR. Resus 2000; 45:27–33.

    Article  CAS  Google Scholar 

  73. Johnson BA, Maldonado F, Weil MH, Tang W. Venoarterial carbon dioxide gradients during shock obey a modified Fick relationship. Crit Care Med 1992; 20(Suppl):S91.

    Article  Google Scholar 

  74. von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989; 80:684–692.

    Google Scholar 

  75. Weil MH, Grundler W, Rackow EC, Bisera J, Miller JM, Michaels S. Blood gas measurements in human patients during CPR. Chest 1984; 86:282.

    Google Scholar 

  76. Szekeres L, Papp GY. Effect of arterial hypoxia on the susceptibility to arrhythmia of the heart. Acta Physiol Academ Scientiarum Hungaricae 1967; 32:143–161.

    CAS  Google Scholar 

  77. Ayres SM, Grace WJ. Inappropriate ventilation and hypoxemia as causes of cardiac arrhythmias. Am J Med 1969; 46:495–505.

    Article  PubMed  CAS  Google Scholar 

  78. Burn JH, Hukovic S. Anoxia and ventricular fibrillation; with a summary of evidence on the cause of fibrillation. Brit J Pharmacol 1960; 15:67–70.

    PubMed  CAS  Google Scholar 

  79. Dong, Jr. E, Stinson EB, Shumway NE. The ventricular fibrillation threshold in respiratory acidosis and alkalosis. Surgery 1967; 61:602–607.

    PubMed  Google Scholar 

  80. Turnbull AD, MacLean LD, Dobell ARC, Demers R. The influence of hyperbaric oxygen and of hypoxia on the ventricular fibrillation threshold. J Thoracic Cardiovasc Surg 1965; 6:842–848.

    Google Scholar 

  81. Kerber RE, Pandian NG, Hoyt R, et al. Effect of ischemia, hypertrophy, hypoxia, acidosis, and alkalosis on canine defibrillation. Am J Physiol 1983; 244(Heart Circ Physiol 13):H825–H831.

    PubMed  CAS  Google Scholar 

  82. Guerci AD, Chandra N, Johnson E, et al. Failure of sodium bicarbonate to improve resuscitation from ventricular fibrillation in dogs. Circulation 1986; 74(Suppl IV):75–79.

    Google Scholar 

  83. Gerst PH, Fleming WH, Malm JR. Increased susceptibility of the heart to ventricular fibrillation during metabolic acidosis. Circulation Research 1966; 19:63–70.

    CAS  Google Scholar 

  84. von Planta M, Gudipati C, Weil MH, Kraus LJ, Rackow EC. Effects of tromethamine and sodium bicarbonate buffers during cardiac resuscitation. J Clin Pharmacol 1988; 28:594–599.

    Google Scholar 

  85. Gazmuri RJ, von Planta M, Weil MH, Rackow EC. Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiac resuscitation. J Am Coll Cardiol 1990; 15:482–490.

    PubMed  CAS  Google Scholar 

  86. Kette F, Weil MH, von Planta M, Gazmuri RJ, Rackow EC. Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation 1990; 81:1660–1666.

    PubMed  CAS  Google Scholar 

  87. Federiuk CS, Sanders AB, Kern KB, Nelson J, Ewy GA. The effect of bicarbonate on resuscitation from cardiac arrest. Ann Emerg Med 1991; 20:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  88. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion pressure. JAMA 1991; 266:2121–2126.

    Article  PubMed  CAS  Google Scholar 

  89. Goldstein B, Shannon DC, Todres ID. Supercarbia in children: clinical course and outcome. Crit Care Med 1990; 18:166–168.

    Article  PubMed  CAS  Google Scholar 

  90. Holmdahl MH. Pulmonary uptake of oxygen, acid-base metabolism, and circulation during prolonged apnea. Acta Chir Scand 1956; 212(Suppl):108.

    Google Scholar 

  91. Graham GR, Hill DW, Nunn SF. Supercarbia in the anesthetized dog. Nature 1959; 184:1071–1072.

    Article  PubMed  Google Scholar 

  92. Clowes GHA, Hopkins AL, Simeone FA. A comparison of the physiological effects of hypercapnia and hypoxia in the production of cardiac arrest. Ann Surg 1955; 142-466.

    Google Scholar 

  93. Litt LO, Gonzalez-Mendez R, Severinghaus JW, et al. Cerebral intracellular changes during supercarbia: an in vivo 31P nuclear magnetic resonance study in rats. J Cereb Blood Flow Metab 1985; 5:537–544.

    PubMed  CAS  Google Scholar 

  94. Winkle RA, Mead RH, Ruder MA, Smith NA, Buch WS, Gaudiani VA. Effect of duration of ventricular fibrillation on defibrillation efficacy in humans. Circulation 1990; 81:1477–1481.

    PubMed  CAS  Google Scholar 

  95. Eisenberg M, Hallstrom A, Bergner L. The ACLS score. JAMA 1981; 246:50–52.

    Article  PubMed  CAS  Google Scholar 

  96. Weaver WD, Cobb LA, Hallstrom AP, Fahrenbruch C, Copass MK, Ray R. Factors influencing survival after out-of-hospital cardiac arrest. J Am Coll Cardiol 1986; 7:752–757.

    PubMed  CAS  Google Scholar 

  97. Sanders AB, Kern KB, Atlas M, Bragg S, Ewy GA. Importance of the duration of inadequate coronary perfusion pressure on resuscitation from cardiac arrest. J Am Coll Cardiol 1985; 6:113–118.

    PubMed  CAS  Google Scholar 

  98. Yakaitis RW, Ewy GA, Otto CW, Taren DL, Moon TE. Influence of time and therapy on ventricular defibrillation in dogs. Crit Care Med 1980; 8:157–163.

    Article  PubMed  CAS  Google Scholar 

  99. Brown CG, Dzwonczyk R, Werman HA, Hamlin RL. Estimating the duration of ventricular fibrillation. Ann Emerg Med 1989; 18:1181–1185.

    Article  PubMed  CAS  Google Scholar 

  100. Kern KB, Garewal HS, Sanders AB, et al. Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resus 1990; 20:221–229.

    Article  CAS  Google Scholar 

  101. von Planta M, Weil MH, Gazmuri RJ, Rackow EC. Myocardial potassium uptake during experimental cardiopulmonary resuscitation. Crit Care Med 1989; 17:895–899.

    Article  Google Scholar 

  102. Babbs CF, Whistler SJ, Yim GKW, Tacker WA, Geddes LA. Dependence of defibrillation threshold upon extracellular/intracellular K+ concentrations. J Electrocardiology 1980; 13:73–78.

    Article  CAS  Google Scholar 

  103. Gremels H, Starling EH. On the influence of hydrogen ion concentration and of anoxaemia upon the heart volume. J Physiol London 1926; 61:297–304.

    PubMed  CAS  Google Scholar 

  104. Jacobus WE, Pores IH, Lucas SK, Weisfeldt ML, Flaherty JT. Intracellular acidosis and contractility in the normal and ischemic heart as examined by 31PNMR. J Mol Cell Cardiol 1982; 14(Supp 3):13–20.

    Article  PubMed  CAS  Google Scholar 

  105. Monroe RG, French G, Whittenberger JL. Effects of hypocapnia and hypercapnia on myocardial contractility. Am J Physiol 1960; 199:1121–1124.

    PubMed  CAS  Google Scholar 

  106. Tyberg JV, Yeatman LA, Parmley WW, Urschel CW, Sonnenblick EH. Effects of hypoxia on mechanics of cardiac contraction. Amer J Physiol 1970; 218:1780–1788.

    PubMed  CAS  Google Scholar 

  107. Becker LB, Idris AH, Shao Z, Schorer S, Art J, Zak R. Inhibition of cardiomyocyte contractions by carbon dioxide. Circulation 1993; 88(Suppl 1):I–225.

    Google Scholar 

  108. Orchard CH, Kentish KC. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 1990;258(Cell Physiol 27);C967–C981.

    PubMed  CAS  Google Scholar 

  109. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 1993; 21:901–906.

    Article  PubMed  CAS  Google Scholar 

  110. Grum CM. Tissue oxygenation in low flow states and during hypoxemia. Crit Care Med 1993; 21(2 Suppl):S44–49.

    PubMed  CAS  Google Scholar 

  111. Paradis NA, Rose MI, Gawryl MS. Selective aortic arch perfusion and oxygenation: an effective adjunct to external chest compression-based cardiopulmonary resuscitation. J Am Coll Cardiol 1994; 23:497–504.

    PubMed  CAS  Google Scholar 

  112. Paradis N, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990; 263:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  113. Weil MH, Houle DB, Brown, EB, Jr, Campbell GS, Heath C. Influence of acidosis on the effectiveness of vasopressor agents. Circulation 1957; 16:949.

    Google Scholar 

  114. Houle DB, Weil MH, Brown, EB, Jr, Campbell GS. Influence of respiratory acidosis on ECG and pressor responses to epinephrine, norepinephrine and metaraminol. Proc Soc Exp Biol Med 1957; 94: 561–564.

    PubMed  CAS  Google Scholar 

  115. Campbell GS, Houle DB, Crisp, NW, Jr, Weil MH, Brown, EB, Jr. Depressed response to intravenous sympathicomimetic agents in human acidosis. Dis Chest 1958; 33:18–22.

    PubMed  CAS  Google Scholar 

  116. Köhler E, Noack E, Strobach H, Wirth K. Effect of acidosis on heart and circulation in cats, pigs, dogs and rabbits. Res Exp Med 1972; 158:308–320.

    Article  Google Scholar 

  117. Bendixen HH, Laver MB, Flacke WE. Influence of respiratory acidosis on circulatory effect of epinephrine in dogs. Circulation Res 1963; 13:64–70.

    PubMed  CAS  Google Scholar 

  118. Sechzer PH, Egbert LD, Linde HW, Cooper DY, Dripps RD, Price HL. Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol 1960; 15:454–458.

    PubMed  CAS  Google Scholar 

  119. Anderson MN, Mouritzen C. Effect of respiratory and metabolic acidosis on cardiac output and peripheral vascular resistance. Ann Surg 1966; 163:161–168.

    Google Scholar 

  120. Kern KB, Elchisak MA, Sanders AB, Badylak SF, Tacker WA, Ewy GA. Plasma catecholamines and resuscitation from prolonged cardiac arrest. Crit Care Med 1989; 17:786–791.

    Article  PubMed  CAS  Google Scholar 

  121. Idris A, Fuerst R, Wenzel V, Becker L, Orban D, Banner M. Does hypoxia or hypercarbic acidosis independently affect survival from cardiac arrest? Circulation 1993; 88(Suppl):I–225.

    Google Scholar 

  122. Lockinger A., Kleinsasser A, Wenzeo V, et al. Pulmonary gas exchange of the cardiopulmonary resuscitation with either vasopressin or epinephrine. Crit Care Med 2002; 30:2059–2062.

    Article  Google Scholar 

  123. Cournand A, Motley HL, Werko L, Richards DW. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output. Am J Physiol 1948; 152:162–74.

    PubMed  CAS  Google Scholar 

  124. Sykes MK, Adams AP, Finley WE, McCormick PW, Economides A. The effects of variations in end expiratory inflation pressure on cardiorespiratory function in normo, hypo, and hypervolemic dogs. Br J Anaesth 1970; 42:669–677.

    Article  PubMed  CAS  Google Scholar 

  125. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB. Hemodynamic responses to mechanical ventilation with PEEP: The effect of hypovolemia. Anesth 1975; 42:45–55.

    CAS  Google Scholar 

  126. Otto CW, Quan SF, Conahan TJ, Calkins JM, Waterson CK, Hameroff SR. Hemodynamic effects of high-frequency jet ventilation. Anesth Analg 1983; 62:298–304.

    Article  PubMed  CAS  Google Scholar 

  127. Cohen JM, Chandra N, Alderson PO, Van Aswegen A, Tsitlik JE, Weisfeldt ML. Timing of pulmonary and systemic blood flow during intermittent high intrathoracic pressure cardiopulmonary resuscitation in the dog. Am J Cardiol 1982; 49:1883–1889.

    Article  PubMed  CAS  Google Scholar 

  128. Chandra N, Weisfeldt ML, Tsitlik J, et al. Augmentation of carotid flow during cardiopulmonary resuscitation by ventilation at high airway pressure simultaneous with chest compression. Am J Cardiol 1981; 48:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  129. Chandra N, Rudikoff M, Weisfeldt ML. Simultaneous chest compression and ventilation at high airway pressure during cardiopulmonary resuscitation. Lancet 1980; 26;1(8161):175–178.

    Article  Google Scholar 

  130. Koehler RC, Chandra N, Guerci AD, et al. Augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs. Circulation 1983; 67:266–275.

    PubMed  CAS  Google Scholar 

  131. Babbs CF, Voorhees WD, Fitzgerald KR, Holmes HR, Geddes LA. Influence of interposed ventilation pressure upon artificial cardiac output during cardiopulmonary resuscitation in dogs. Crit Care Med 1980; 8:127–130.

    PubMed  CAS  Google Scholar 

  132. Hodgkin BC, Lambrew CT, Lawrence FH, Angelakos ET. Effects of PEEP and of increased frequency of ventilation during CPR. Crit Care Med 1980; 8:123–126.

    PubMed  CAS  Google Scholar 

  133. Woda RP, Dzwonczyk R, Bernacki BL, et al. The ventilatory effects of auto-positive end-expiratory pressure development during cardiopulmonary resuscitation. Crit Care Med 1999; 27:2212–2217.

    Article  PubMed  CAS  Google Scholar 

  134. Sigurdsson G, Yannopoulos D, McKnite SH, Lurie KG. Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow. Curr Opin Crit Care. 2003; 9:183–188. Review.

    Article  PubMed  Google Scholar 

  135. Samniah N, Voelckel WG, Zielinski TM, et al. Feasibility and effects of transcutaneous phrenic nerve stimulation combined with an inspiratory impedance threshold in a pig model of hemorrhagic shock. Crit Care Med. 2003; 31:1197–202.

    Article  PubMed  Google Scholar 

  136. Lurie KG, Zielinski T, Voelckel W, McKnite S, Plaisance P. Augmentation of ventricular preload during treatment of cardiovascular collapse and cardiac arrest. Crit Care Med. 2002; 30(4 Suppl):S162–S165. Review.

    Article  PubMed  Google Scholar 

  137. Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation. 2002; 105:124–129.

    Article  PubMed  Google Scholar 

  138. Pepe PE, Raedler C, Lurie KG, Wigginton JG. Emergency ventilatory management in hemorrhagic states: elemental or detrimental? J Trauma. 2003; 54:1048–55; discussion 1055–1057.

    PubMed  Google Scholar 

  139. Hevesi CG, Thrush DN, Downs JB, et al. Cardiopulmonary resuscitation effect of CPAP on gas exchange during chest compressions. Anesth 1999; 90:1078–1083.

    Article  CAS  Google Scholar 

  140. Markstaller K, Karmrodt J, Doebrich M, et al. Dynamic computed tomography: A novel technique to study lung aeration and atelectasis formation during experimental CPR. Resuscitation 2002; 53:307–313.

    Article  PubMed  Google Scholar 

  141. Meursing BTJ, Zimmerman ANE, van Heyst ANP. Experimental evidence in favor of a reversed sequence in cardiopulmonary resuscitation. J Am Coll Cardiol 1983; 1:610 (Abstract).

    Google Scholar 

  142. Tucker KJ, Idris AH, Wenzel V, Orban DJ. Changes in arterial and mixed venous blood gases during untreated ventricular fibrillation and cardiopulmonary resuscitation. Resuscitation 1994; 28:137–141.

    Article  PubMed  CAS  Google Scholar 

  143. Tang W, Weil MH, Sun S, et al. Myocardial function after CPR by precordial compression without mechanical ventilation. Chest 1991; 100(Suppl):132S.

    Google Scholar 

  144. Pearson JW, Redding JS. Influence of peripheral vascular tone on cardiac resuscitation. Anesth Analg 1965; 44:746–752.

    Article  PubMed  CAS  Google Scholar 

  145. Yang L, Weil MH, Noc M, Tang W, Turner T, Gazmuri RJ. Spontaneous gasping increases the ability to resuscitate during experimental cardiopulmonary resuscitation. Crit Care Med 1994; 22:879–883.

    Article  PubMed  CAS  Google Scholar 

  146. Idris AH, Becker LB, Fuerst RS, et al. The effect of ventilation on resuscitation in an animal model of cardiac arrest. Circulation 1994; 90:3063–3069.

    PubMed  CAS  Google Scholar 

  147. Noc M, Weil MH, Tang W, et al. Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation. Chest 1995; 108:821–827.

    PubMed  CAS  Google Scholar 

  148. Berg RA, Kern KB, Hilwig RW, et al. Assisted ventilation during ‘bystanders’ CPR in a swine acute myocardial infarction model does not improve outcome. Circulation 1997; 96:4364–4371.

    PubMed  CAS  Google Scholar 

  149. Kern KB, Hilwig RW, Berg RA, et al. Efficacy of chest compression-only BLS CPR in the presence of an occluded airway. Resuscitation 1998; 39:179–188.

    Article  PubMed  CAS  Google Scholar 

  150. Kern KB. Cardiopulmonary resuscitation without ventilation. Crit Care Med 2000; 28(11 Suppl): N186–N189.

    Article  PubMed  CAS  Google Scholar 

  151. Clark JJ, Larsen MP, Culley LL, Graves JR, Eisenberg MS. Incidence of agonal respirations in sudden cardiac arrest. Ann Emerg Med 1992; 21:1464–1467.

    Article  PubMed  CAS  Google Scholar 

  152. Kazarian KK, Del Guercio LRM. The use of mixed venous blood gas determinations in traumatic shock. Ann Emerg Med 1980; 9:179–180.

    Article  PubMed  CAS  Google Scholar 

  153. Simoons ML, Kimman GP, Ivens EMA, Hartman JAM, Hart HN. Follow up after out of hospital resuscitation. European Heart J 1990; 11(Abstract Suppl):92.

    Google Scholar 

  154. Thompson RG, Hallstrom AP, Cobb LA. Bystander-initiated cardiopulmonary resuscitation in the management of ventricular fibrillation. Ann Emerg Med 1979; 9:737–740.

    Google Scholar 

  155. Van Hoeyweghen RJ, Bossaert L, Mullie A, et al. Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group. Resuscitation 1993; 26:47–52.

    Article  PubMed  Google Scholar 

  156. Hallstrom A, Cobb L, Johnson E, et al. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 2000; 342:1546–1553.

    Article  PubMed  CAS  Google Scholar 

  157. Assar D, Chamberlain D, Colquhoun M, et al. A rational stage of teaching basic life support. Resuscitation 1998; 39:137–143.

    Article  PubMed  CAS  Google Scholar 

  158. Van Hoeyweghen RJ, Bossaert L, Mullie A, et al. Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group. Resuscitation 1993; 26:47–52.

    Article  PubMed  Google Scholar 

  159. Hallstrom A, Cobb L, Johnson E, et al. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 2000; 342:1546–1553.

    Article  PubMed  CAS  Google Scholar 

  160. Becker LB, Berg RA, Pepe PE, et al. A reappraisal of mouth-to-mouth ventilation during bystanderinitiated cardiopulmonary resuscitation: A statement for the Healthcare Professionals from the Ventilation Working Group of Basic Life Support and Pediatric Life Support Subcommittees, American Heart Association. Ann Emerg Med 1997; 30: 654–666.

    Article  PubMed  CAS  Google Scholar 

  161. Holmberg M, Holmberg S, Herlitz J. Factors modifying the effect of bystander cardiopulmonary resuscitation on survival in out-of-hospital cardiac arrest patients in Sweden. Eur Heart J 2001; 22: 511–519.

    Article  PubMed  CAS  Google Scholar 

  162. Shao D, Weil MH, Tang W, et al. Pupil diameter and light reaction during cardiac arrest and resuscitation. Crit Care Med 2001; 29(4):825–828.

    Article  Google Scholar 

  163. Waters RM, Bennett JH. Artificial respiration: comparison of manual maneuvers. Anesth Analg 1936; 15:151–154.

    Article  Google Scholar 

  164. Gordon AS, Fainer DC, Ivy AC. Artificial respiration: A new method and a comparative study of different methods in adults. JAMA 1950; 144:1455–1464.

    CAS  Google Scholar 

  165. Gordon AS, Sadove MS, Raymon F, Ivy AC. Critical survey of manual artificial respiration. JAMA 1951; 147:1444–1453.

    CAS  Google Scholar 

  166. Gordon AS, Affeldt JE, Sadove M, Raymon F, Whittenberger JL, Ivy AC. Air-flow patterns and pulmonary ventilation during manual artificial respiration on apneic normal adults II. J Appl Physiol 1951; 4: 408–420.

    PubMed  CAS  Google Scholar 

  167. Gordon AS, Frye CW, Gittelson L, Sadove MS, Beattie EJ. Mouth-to-mouth versus manual artificial respiration for children and adults. JAMA 1958; 167:320–328.

    CAS  Google Scholar 

  168. Nims RG, Conner EH, Botelho SY, Comroe, Jr. JH. Comparison of methods for performing manual artificial respiration on apneic patients. J Appl Physiol 1951; 4:486–495.

    PubMed  CAS  Google Scholar 

  169. Elam JO, Greene DG, Brown ES, Clements JA. Oxygen and carbon dioxide exchange and energy cost of expired air resuscitation. JAMA 1958; 167:328–341.

    CAS  Google Scholar 

  170. Idris AH, Gabrielli A, Caruso LJ, et al. Tidal volume for bag-valve mask (BVM) ventilations: Less is more. Circulation 1999; 100(Suppl):1664 (Abstract).

    Google Scholar 

  171. Kofler J, Sterz F, Hofbauer R, et al. Epinephrine application via an endotracheal airway and via the Combitube in esophageal position. Crit Care Med 2000; 28:1445–1449.

    Article  PubMed  CAS  Google Scholar 

  172. Saviteer SM, White GC, Cohen MS, et al. HTLV-III exposure during cardiopulmonary resuscitation. N Engl J Med 1985; 313:1606–1607.

    PubMed  CAS  Google Scholar 

  173. Kline SE, Hedemark LL, Davies SF. Outbreak of tuberculosis among regular patrons of a neighborhood bar. N Engl J Med 1995; 333:222–227.

    Article  PubMed  CAS  Google Scholar 

  174. Lufkin KC, Ruiz E. Mouth-to-mouth ventilation of cardiac arrested humans using a barrier mask. Prehosp Disaster Med 1993; 8:333–335.

    PubMed  CAS  Google Scholar 

  175. Hew P, Brenner B, Kauffman J. Reluctance of paramedics and emergency technicians to perform mouth-to-mouth resuscitation. J Emerg Med 1997; 15:279–284.

    Article  PubMed  CAS  Google Scholar 

  176. Ornato JP, Hallagan LF, McMahan SB, et al. Attitudes of BCLS instructors about mouth-to-mouth resuscitation during the AIDS epidemic. Ann Emerg Med 1990; 19:151–156.

    Article  PubMed  CAS  Google Scholar 

  177. Shibata K, Taniguchi T, Yoshida M, et al. Obstacles to bystander cardiopulmonary resuscitation in Japan. Resuscitation 2000; 44:187–193.

    Article  PubMed  CAS  Google Scholar 

  178. Tajima K, Soda K. Epidemiology of AIDS/HIV in Japan. J Epidemiol 1996; 6(3 Suppl):S67–S74.

    PubMed  CAS  Google Scholar 

  179. Capone PL, Lane JC, Kerr CS, et al. Life supporting first aid (LSFA) teaching to Brazilians by television spots. Resuscitation 2000; 47:259–265.

    Article  PubMed  CAS  Google Scholar 

  180. Pepe PE, Gay M, Cobb LA, et al. Action sequence for layperson cardiopulmonary resuscitation. Ann Emerg Med 2001; 37(4 Suppl):S17–S25.

    Article  PubMed  CAS  Google Scholar 

  181. Kouwenhoven WB, Jude JR, Knickerbocker GG. Landmark article July 9, 1960: Closed-chest massage. JAMA 1984; 251:3133–3136.

    Article  PubMed  CAS  Google Scholar 

  182. Michenfelder JD, Theye RA. The effect of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesth 1970; 33:430–439.

    CAS  Google Scholar 

  183. Meursing BTJ, Zimmerman ANE, Van Huyst ANP. Experimental evidence in favor of reverted sequence in cardiopulmonary resuscitations. J Am Cardiol 1983; 1:610 (Abstract).

    Google Scholar 

  184. Berg RA, Hilwig RW, Kern KB, et al. “Bystander” chest compression and assisted ventilation independently improved outcome from piglet asphyxia pulseless “cardiac arrest”. Circulation 2000; 101: 1743–1748.

    PubMed  CAS  Google Scholar 

  185. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Circulation 2000; 102:I-1–I-384.

    Google Scholar 

  186. Ruben H, MacNaughton FI. The treatment of food choking. Practitioner 1978; 221:725–729.

    PubMed  CAS  Google Scholar 

  187. Langhelle A, Sunde K, Wik L, et al. Airway pressure with chest compression vs Heimlich maneuver in recently dead adults with complete airway obstruction. Resuscitation 2000; 44:105–108.

    Article  PubMed  CAS  Google Scholar 

  188. Handley AJ, Monsieurs KG, Bossaert LL. European resuscitation council guidelines 2000 for adult basic life support. A statement from the Basic Life Support and Automated External Defibrillation Working Group (1) and approved by the Executive Committee of the European Resuscitation Council. Resuscitation 2001; 48:199–205.

    Article  PubMed  CAS  Google Scholar 

  189. Mogayzel C, Quan L, Graves JR, et al. Out-of-hospital ventricular fibrillation in children and adolescents: Causes and outcomes. Ann Emerg Med 1995; 25:484–491.

    Article  PubMed  CAS  Google Scholar 

  190. Niermeyer S, Kattwinkel J, Van Reempts P, et al. International guidelines for neonatal resuscitations: An excerpt from the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: international Consensus on Science. Contributors and Reviewers for the Neonatal Resuscitation Guidelines. Pediatrics 2000; 106:1–16.

    Article  Google Scholar 

  191. Phillips B, Zideman D, Garcia-Castrillo L, et al. European Resuscitation Council Guidelines 2000 for Advanced Paediatric Life Support. A statement from Paediatric Life Support Working Group and approved by the Executive Committee of the European Resuscitation Council. Resuscitation 2001; 48:235–239.

    Article  PubMed  CAS  Google Scholar 

  192. Pepe PE, Gay M, Cobb LA, et al. Action sequence for layperson cardiopulmonary resuscitation. Ann Emerg Med 2001; 37(4 Suppl):S17–S25.

    Article  PubMed  CAS  Google Scholar 

  193. Safar P, Escarraga LA, Chang F. Upper airway obstruction in the unconscious patient. J Appl Physiol 1959; 14:760–764.

    PubMed  CAS  Google Scholar 

  194. Morikawa S, Safar P, DeCarlo J. Influence of the head-jaw position upon upper airway patency. Anesth 1961; 22:265–270.

    CAS  Google Scholar 

  195. Safar P. Ventilatory efficacy of mouth-to-mouth artificial respiration: Airway obstruction during manual and mouth-to-mouth artificial respiration. JAMA 1958; 167:335–341.

    CAS  Google Scholar 

  196. Melker RJ, Banner MJ. Ventilation during CPR. Two-rescuer standards reappraised. Ann Emerg Med 1985; 14:397–402.

    Article  PubMed  CAS  Google Scholar 

  197. Fuerst R, Idris A, Banner M, Wenzel V, Orban D. Changes in respiratory system compliance during cardiopulmonary arrest with and without closed chest compressions. Ann Emerg Med 1993; 22:931.

    Google Scholar 

  198. Bowman FP, Duckett T, Check B, Menegazzi J. Lower esophageal sphincter pressure during prolonged cardiac arrest and resuscitation. Acad Emerg Med 1994; 1:A18.

    Google Scholar 

  199. Ruben H, Knudsen EJ, Carugati G. Gastric inflation in relation to airway pressure. Acta Anaesth Scand 1961; 5:107–114.

    PubMed  CAS  Google Scholar 

  200. Ruben A, Ruben H. Artificial respiration: Flow of water from the lung and the stomach. Lancet April 14, 1962; 780-781.

    Google Scholar 

  201. Ruben H. The immediate treatment of respiratory failure. Br J Anaesth 1964; 36:542–549.

    Article  PubMed  CAS  Google Scholar 

  202. Lawes EG, Baskett PJF. Pulmonary aspiration during unsuccessful cardiopulmonary resuscitation. Intensive Care Med 1987; 13:379–382.

    Article  PubMed  CAS  Google Scholar 

  203. Petito SP, Russell WJ. The prevention of gastric insufflation-A neglected benefit of cricoid pressure. Anaesth Intens Care 1988; 16:139–143.

    CAS  Google Scholar 

  204. Idris AH, Banner MJ, Fuerst R, Becker LB, Wenzel V, Melker RJ. Ventilation caused by external chest compression is unable to sustain effective gas exchange during CPR: a comparison with mechanical ventilation. Resuscitation 1994; 28:143–150.

    Article  PubMed  CAS  Google Scholar 

  205. Idris AH, Wenzel V, Tucker KJ, Orban DJ. Chest compression ventilation: A comparison of standard CPR and active-compression/decompression CPR. Acad Emerg Med 1994; 1:A17.

    Google Scholar 

  206. Idris AH, Wenzel V, Banner MJ, et al. Smaller tidal volumes minimize gastric inflation during CPR with an unprotected airway. Circulation 1995; 92:I–759 (Abstract).

    Google Scholar 

  207. Wenzel V, Idris AH, Banner MJ, et al. The influence of tidal volume on the distribution of gas between the lungs and stomach in the unintubated patient receiving positive pressure ventilation. Crit Care Med 1998; 26:364–368.

    Article  PubMed  CAS  Google Scholar 

  208. Guidelines for the basic management of the airway and ventilation during resuscitation. A statement by the Airway and Ventilation Management Working Group of the European Resuscitation Council. Resuscitation 1996; 31: 187–200.

    Google Scholar 

  209. Wolcke B, Schneider T, Mauer D, et al. Ventilation volumes with different self-inflating bags with reference to ERC guidelines for airway management: comparison of two compression techniques. Resuscitation 2000; 47:175–178.

    Article  PubMed  CAS  Google Scholar 

  210. Wenzel V, Dorges V, Lindner KH, et al. Mouth-to-mouth ventilation during cardiopulmonary resuscitation: word of mouth in the street versus science. Anesth Analg 2001; 93:4–6.

    Article  PubMed  CAS  Google Scholar 

  211. Oschatz E, Wunderbaldinger P, Sterz F, et al. Cardiopulmonary resuscitation performed by by-standers does not increase adverse effects as assessed by chest radiography. Anesth Analg 2001; 93:128–133.

    Article  PubMed  CAS  Google Scholar 

  212. Wenzel V, Keller C, Idris AH, Doerges V, Lindner KH, Brimacombe JR. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: Good ventilation, Less risk? Resuscitation 1999; 43:25–29.

    Article  PubMed  CAS  Google Scholar 

  213. Dorges V, Ocker H, Hagelberg S, et al. Smaller tidal volumes with room air are not sufficient to ensure adequate oxygenation during bag-valve-mask ventilation Resuscitation 2000; 44:37–41.

    Article  PubMed  CAS  Google Scholar 

  214. Cummins RO, Hazinski MF. The most important changes in the international ECC and CPR guidelines 2000. Resuscitation 2000; 46:431–437.

    Article  PubMed  CAS  Google Scholar 

  215. Gausche M, Lewis RJ, Stratton SJ, et al. Effect of out of hospital pediatric endotracheal intubations on survival and psychological outcome: A controlled clinical trial. JAMA 2000; 283:783–790.

    Article  PubMed  CAS  Google Scholar 

  216. Froese AB, Bryan AC. High frequency ventilation. Am Rev Respir Dis 1987; 135:1363–1374.

    PubMed  CAS  Google Scholar 

  217. Slutsky AS. Nonconventional methods of ventilation. Am Rev Respir Dis 1988; 138:175–183.

    PubMed  CAS  Google Scholar 

  218. Zidulka A, Gross D, Minami H, Vartian V, Chang HK. Ventilation by high-frequency chest wall compression in dogs with normal lungs. Am Rev Respir Dis 1983; 127:709–713.

    PubMed  CAS  Google Scholar 

  219. Fuyuki T, Suzuki S, Sakurai M, Sasaki H, Butler JP, Takashima T. Ventilatory effectiveness of highfrequency oscillation applied to the body surface. J Appl Physiol 1987; 62:2410–2415.

    PubMed  CAS  Google Scholar 

  220. Harf A, Bertrand C, Chang HK. Ventilation by high-frequency oscillation of thorax or at trachea in rats. J Appl Physiol 1984; 56:155–60.

    PubMed  CAS  Google Scholar 

  221. Gross D, Vartian V, Minami H, Chang HK, Zidulka A. High frequency chest wall compression and carbon dioxide elimination in obstructed dogs. Bull Eur Physiopathol Respir 1984; 20:507–511.

    PubMed  CAS  Google Scholar 

  222. George RJD, Winter RJD, Flockton SJ, Geddes DM. Ventilatory saving by external chest wall compression or oral high-frequency oscillation in normal subjects and those with chronic airflow obstruction. Clin Sci 1985; 69:349–359.

    PubMed  CAS  Google Scholar 

  223. Piquet J, Isabey D, Chang HK, Harf A. High frequency transthoracic ventilation improves gas exchange during experimental bronchoconstriction in rabbits. Am Rev Respir Dis 1986; 133:605–608.

    PubMed  CAS  Google Scholar 

  224. Ward HE, Power JHT, Nicholas TE. High-frequency oscillations via the pleural surface: an alternative mode of ventilation? J Appl Physiol: Respirat Environ Exercise Physiol 1983; 54:427–433.

    CAS  Google Scholar 

  225. Kleinsasser A, Lindner KH, Schaefer A, et al. Decompression-triggered positive-pressure ventilation during cardiopulmonary resuscitation improves pulmonary gas exchange and oxygen uptake. Circulation 2002; 106:373–378.

    Article  PubMed  Google Scholar 

  226. Guidelines for cardiopulmonary resuscitation and emergency cardiac care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. JAMA 1992; 268:2171–2302.

    Google Scholar 

  227. Cobb LA, Hallstrom AP. Community based cardiopulmonary resuscitation: What have we learned? Ann NY Acad Sci 1982; 382:330–342.

    Article  PubMed  CAS  Google Scholar 

  228. Finucane TB, Santora AH. Basic airway management and cardiopulmonary resuscitation (CPR). In: Principles of Airway Management. Philadelphia, PA: FA Davis, 1988, p. 16.

    Google Scholar 

  229. Guildner CW. Resuscitation-opening the airway. A comparative study of techniques for opening an airway obstructed by the tongue. JACEP 1976; 5:588–590.

    PubMed  CAS  Google Scholar 

  230. Lawrence PJ, Sivaneswaran N. Ventilation during cardiopulmonary resuscitation: which method? Med J Austr 1985; 143:443–446.

    CAS  Google Scholar 

  231. Johannigman JA, Branson RD, Davis K Jr, Hurst JM. Techniques of emergency ventilation: A model to evaluate tidal volume, airway pressure, and gastric insufflation. J Trauma 1991; 31:93–98.

    Article  PubMed  CAS  Google Scholar 

  232. McSwain GR, Garrison WB, Artz CP. Evaluation of resuscitation from cardiopulmonary arrest by paramedics. Ann Emerg Med 1980; 9:341–345.

    Article  PubMed  CAS  Google Scholar 

  233. Harrison RR, Maull KI. Pocket mask ventilation: a superior method of acute airway management. Ann Emerg Med 1982; 11:74–76.

    Article  PubMed  CAS  Google Scholar 

  234. Hess D, Baran C. Ventilatory volumes using mouth-to-mouth, mouth-to-mask, and bag-valve-mask techniques. Am J Emerg Med 1985; 3: 292–296.

    Article  PubMed  CAS  Google Scholar 

  235. Jesudian MC, Harrison RR, Keenan RL, Maull KI. Bag-valve mask ventilation; two rescuers are better than one: Preliminary report. Crit Care Med 1985; 13:122–123.

    Article  PubMed  CAS  Google Scholar 

  236. Hodgkin JE, Foster GL, Nicolay LI. Cardiopulmonary resuscitation: development of an organized protocol. Crit Care Med 1977; 5:93–100.

    Article  PubMed  CAS  Google Scholar 

  237. Hirschman AM, Kravath RE. Venting vs ventilating. A danger of manual resuscitation bags. Chest 1982; 82:369–370.

    Article  PubMed  CAS  Google Scholar 

  238. Florete OG Jr. Airway devices and their application. In: Kirby RR, Gravenstein N, eds. Clinical Anesthesia Practice. Philadelphia, PA: WB Saunders, 1994, 303.

    Google Scholar 

  239. Milner A. The importance of ventilation to effective resuscitation in the term and preterm infant. Semin Neonatol 2001; 6:219–224.

    Article  PubMed  CAS  Google Scholar 

  240. Vyas H, Field D, Milner AD, Hopkin IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol 1986; 2:189–193.

    Article  PubMed  CAS  Google Scholar 

  241. Ikegami M, Kallapur S, Michna J, et al. Lung injury and surfactant metabolism after hyperventilation of premature lambs. Pediatr Res 2000; 47:398–404.

    Article  PubMed  CAS  Google Scholar 

  242. Milner AD, Saunders RA. Pressure and volume changes during the first breath of human neonates. Arch Dis Child 1977; 52:918–924.

    PubMed  CAS  Google Scholar 

  243. Head H. On the regulation of respiration. J Physiol 1889; 10:1–70.

    PubMed  CAS  Google Scholar 

  244. Vyas H, Milner AD, Hopkin IE. Efficacy of face mask resuscitation at birth. BMJ 1984; 289: 1563–1565.

    PubMed  Google Scholar 

  245. Vyas H, Milner AD, Hopkin IE. Face mask resuscitation: Does it lead to gastric distension? Arch Dis Child 1983; 58:373–375.

    PubMed  CAS  Google Scholar 

  246. Pepe PE, Copass MK, Joyce TH. Prehospital endotracheal intubation: Rationale for training emergency medical personnel. Ann Emerg Med 1985; 14:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  247. Florete Jr, OG. Airway Management. In: Civetta JM, Taylor RW, Kirby RR, eds. Critical care, 2nd Ed. Philadelphia, PA: JB Lippincott, 1991, p. 1427.

    Google Scholar 

  248. Bolder PM, Healey TE, Bolder AR Beatty PC, Kay B. The extra work of breathing through adult endotracheal tubes. Anesth Analg 1986; 65:853–859.

    Article  PubMed  CAS  Google Scholar 

  249. Conrardy PA, Goodman LR, Lainge F, Singer MM. Alteration of endotracheal tube position: Flexion and extension of the neck. Crit Care Med 1976; 4:8–12.

    Article  Google Scholar 

  250. Rabey PG, Murphy PJ, Langton JA, et al. Effect of laryngeal mask airway on lower oesophageal sphincter pressure in patients during general anaesthesia. Brit J Anaesth 1992; 69:346–348.

    Article  PubMed  CAS  Google Scholar 

  251. Rhee KJ, O’Malley RJ, Turner JE, et al. Field airway management of the trauma patient: The efficacy of bag mask ventilation. Am J Emerg Med 1988; 6:333–336.

    Article  PubMed  CAS  Google Scholar 

  252. Pennant JH, Walker MB. Comparison of the endotracheal tube and the laryngeal mask in airway management by paramedical personnel. Anesth Analg 1992; 74:531–534.

    Article  PubMed  CAS  Google Scholar 

  253. Reinhart DJ, Simmons G. Comparison of placement of the laryngeal mask airway with endotracheal tube by paramedics and respiratory therapists. Ann Emerg Med 1994; 24:260–263.

    PubMed  CAS  Google Scholar 

  254. Davies PRF, Tighe SQM, Greenslade GL, et al. Laryngeal mask airway and tracheal tube insertion by unskilled personnel. Lancet 1990; 336:977–979.

    Article  PubMed  CAS  Google Scholar 

  255. Devitt JH, Wenstone R, Noel AG, et al. The laryngeal mask airway and positive-pressure ventilation. Anesth 1994; 80:550–555.

    Article  CAS  Google Scholar 

  256. Brimacombe J, White A, Berry A. Effect of cricoid pressure on ease of insertion of the laryngeal mask airway. Br J Anaesth 1993; 71:800–802.

    Article  PubMed  CAS  Google Scholar 

  257. Brain AIJ, Verghese C, Strube PJ. The LMA ‘ProSeal’—a laryngeal mask with an esophageal vent. Br J Anaesth 2000; 84:650–654.

    PubMed  CAS  Google Scholar 

  258. Keller C, Brimacombe J. Mucosal pressure and oropharyngeal leak pressure with the ProSeal vs laryngeal mask airway in anaesthetized paralyzed patients. Br J Anaesth 2000; 85:262–266.

    Article  PubMed  CAS  Google Scholar 

  259. Schofferman J, Oill P, Lewis AJ. The esophageal obturator airway: A clinical evaluation. Chest 1976; 69:67–71.

    Article  PubMed  CAS  Google Scholar 

  260. Shea SR, MacDonald JR, Gruzinski G. Prehospital endotracheal tube airway or esophageal gastric tube airway: A critical comparison. Ann Emerg Med 1985; 14:102–112.

    Article  PubMed  CAS  Google Scholar 

  261. Rumball CJ, McDonald D. The PTL, Combitube, laryngeal mask and oral airway: A randomized prehospital comparative study of ventilatory device effectiveness and cost-effectiveness in 470 cases of cardiorespiratory arrest. Prehosp Emerg Care 1997; 1:1–10.

    Article  PubMed  CAS  Google Scholar 

  262. Vézina D, Lessard MR, Bussières J, et al. Complications associated with the use of the esophagealtracheal Combitube. Can J Anaesth 1998; 45:76–80.

    PubMed  Google Scholar 

  263. Walz R, Davis S, Panning B. Is the Combitube a useful emergency airway device for anesthesiologists? [letter]. Anesth Analg 1999; 88:233.

    Article  PubMed  CAS  Google Scholar 

  264. Niemann JT, Rosboough JP, Myers R, et al. The pharyngotracheal lumen airway: preliminary investigation of a new adjunct. Ann Emerg Med 1984; 13:591–596.

    Article  PubMed  CAS  Google Scholar 

  265. Ocker H, Wenzel B, Schmucker P, et al. Effectiveness of various airway management techniques in a bench model simulating a cardiac arrest. J Emerg Med 2001; 20:7–12.

    Article  PubMed  CAS  Google Scholar 

  266. Calkins MD, Robinson TD: Combat trauma airway management: Endotracheal intubation versus a laryngeal mask airway versus Combitube. Use by Navy SEAL and reconnaissance combat corpsmen. J Trauma 1999; 46:927–932.

    Article  PubMed  CAS  Google Scholar 

  267. Greene MK, Roden R, Hinchley G. The laryngeal mask airway: Two cases of pre-hospital care. Anaesth 1992; 47:688–689.

    Article  CAS  Google Scholar 

  268. Kokkinis K. The use of the laryngeal mask airway in CPR. Resuscitation 1994; 27:9–12.

    Article  PubMed  CAS  Google Scholar 

  269. Martens P. The use of laryngeal mask airway by nurses during cardiopulmonary resuscitation. Anaesth 1994; 49:731–773.

    Article  CAS  Google Scholar 

  270. Leach A, Alexander CA, Stone B. The laryngeal mask in cardiopulmonary resuscitation in a district general hospital: A preliminary communication. Resuscitation 1993; 25:245–248.

    Article  PubMed  CAS  Google Scholar 

  271. Alexander R, Hodgson P, Lomax D, et al. A comparison of the laryngeal mask airway and Guedel airway, bag and facemask for manual ventilation formal training. Anaesth 1993; 48:231–234.

    Article  CAS  Google Scholar 

  272. Martin PD, Cyna AM, Hunter WA, et al. Training nursing staff in airway management of resuscitations: a clinical comparison of the facemask and laryngeal mask. Anaesth 1993; 48:33–37.

    Article  CAS  Google Scholar 

  273. Brimacombe JR, Berry A. The incidence of aspiration associated with laryngeal mask airway: Metaanalysis of published literature. J Clin Anesth 1995; 7:297–305.

    Article  PubMed  CAS  Google Scholar 

  274. Frass M, Frenzer R, Zdrahal F, et al. The esophageal tracheal Combitube: Preliminary results with a new airway for CPR. Ann Emerg Med 1987; 16:768–772.

    Article  PubMed  CAS  Google Scholar 

  275. Frass M, Frenzer R, Zdrahal F, et al. Ventilation with the esophageal tracheal Combitube in cardiopulmonary resuscitations. Promptness and effectiveness. Chest 1988; 93:781–784.

    Article  PubMed  CAS  Google Scholar 

  276. Staudinger T, Brugger S, Watschinger B, et al. Emergency intubation with a Combitube: Comparison with the endotracheal airway. Ann Emerg Med 1993; 22:1573–1575.

    Article  PubMed  CAS  Google Scholar 

  277. Atherton GL, Johnson GC. Ability of paramedics to use the Combitube in prehospital cardiac arrest. Ann Emerg Med 1993; 22:1263–1268.

    Article  PubMed  CAS  Google Scholar 

  278. Blostein PA, Koestner AJ, Hoak S. Failed rapid sequence intubation in trauma patients: Esophageal tracheal Combitube is a useful adjunct. J Trauma 1998; 44:534–537.

    PubMed  CAS  Google Scholar 

  279. Gabbott DA, Sasada MP. Orotracheal intubations in trauma patients with cervical fractures. Arch Surg 1994; 129:1104–1105.

    PubMed  CAS  Google Scholar 

  280. Pennant JH, Jajraj NM, Pace NA. Laryngeal mask airway in cervical spine injuries. Anesth Analg 1992; 74:1074–1075.

    Article  Google Scholar 

  281. Keller C, Brimacombe J, Kleinsasser A. Does the ProSeal laryngeal mask airway prevent aspiration of regurgitated fluid? Anesth Analg 2000; 91:1017–1020.

    Article  PubMed  CAS  Google Scholar 

  282. Mercer MH, Gabbott DA. Insertion of the Combitube airway with a cervical spine immobilized in the rigid cervical collar. Anaesth 1998; 53:971–974.

    Article  CAS  Google Scholar 

  283. Caparosa RJ, Zavatsky AR. Practical aspects of the cricothyroid space. Laryngoscope 1957; 67: 577–591.

    Article  PubMed  CAS  Google Scholar 

  284. Melker RJ, Florete OG. Percutaneous cricothyroidotomy and tracheostomy. In: Benumof JL, ed. Airway management: principles and practice. St. Louis, MO: Mosby, 1996, pp. 484–512.

    Google Scholar 

  285. Laurie K, Zielinski T, McKnit S, et al. Improving the efficiency of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Crit Care Med 2000; 28(11 Suppl):207–209.

    Article  Google Scholar 

  286. Lurie KG, Mulligan KA, McKnite S, et al. Optimizing standards of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 1998; 113:1084–1090.

    PubMed  CAS  Google Scholar 

  287. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 2000; 101:989–994.

    PubMed  CAS  Google Scholar 

  288. Voelckel WG, Lurie KG, Zielinski T, et al. The effect of positive end-expiratory pressure during active compression decompression cardiopulmonary resuscitation with the inspiratory threshold valve. Anesth Analg 2001; 92:967–974.

    Article  PubMed  CAS  Google Scholar 

  289. Sulek CA, Kirby RR. The recurring problem of negative-pressure pulmonary edema. Curr Rev Anesth 1998; 18:243–250.

    Google Scholar 

  290. Branson RD. Transport ventilators. In: Branson, RD, Hess DR, Chatburn RL, eds. Respiratory Care Equipment, 2nd Ed. Philadelphia, PA: Lippincott Williams & Wilkins 1999, pp. 527–565.

    Google Scholar 

  291. Gervais HW, Eberle B, Konietzke D, et al. Comparison of blood gases of ventilated patients during transport. Crit Care Med 1987; 15:761.

    Article  PubMed  CAS  Google Scholar 

  292. Gazmuri RJ, Weil MH, Bisera J, Rackow EC. End-tidal carbon dioxide tension as a monitor of native blood flow during resuscitation by extracorporeal circulation. J Thorac Cardiovasc Surg 1991; 101: 984–988.

    PubMed  CAS  Google Scholar 

  293. Gudipati CV, Weil MH, Bisera J, Deshmukh HG, Rackow EC. Expired carbon dioxide: A noninvasive monitor of cardiopulmonary resuscitation. Circulation 1988; 77:234–239.

    PubMed  CAS  Google Scholar 

  294. Sanders AB, Atlas M, Ewy GA, Kern KB, Bragg S. Expired CO2 as an index of coronary perfusion pressure. Am J Emerg Med 1985; 3:147–149.

    Article  PubMed  CAS  Google Scholar 

  295. Kalenda Z. The capnogram as a guide to the efficacy of cardiac massage. Resuscitation 1978; 6:259–263.

    Article  PubMed  CAS  Google Scholar 

  296. Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Eng J Med 1988; 318:607–611.

    Article  CAS  Google Scholar 

  297. Garnett AR, Ornato JP, Gonzalez ER, Johnson EB. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 1987; 257:512–515.

    Article  PubMed  CAS  Google Scholar 

  298. Grundler WG, Weil MH, Bisera J, Rackow EC. Observations on end-tidal carbon dioxide during experimental cardiopulmonary arrest. J Clin Res 1984; 32:672A.

    Google Scholar 

  299. Sanders AB, Ewy GA, Bragg S, Atlas M, Kern KB. Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest. Ann Emerg Med 1985; 14:948–952.

    Article  PubMed  CAS  Google Scholar 

  300. Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation: A prognostic indicator for survival. JAMA 1989; 262:1347–1351.

    Article  PubMed  CAS  Google Scholar 

  301. Trevino RP, Bisera J, Weil MH, Rackow EC, Grundler WG. End-tidal CO2 as a guide to successful cardiopulmonary resuscitation: a preliminary report. Crit Care Med 1985; 13:910–911.

    Article  PubMed  CAS  Google Scholar 

  302. Wiklund L, Söderberg D, Henneberg S, Rubertsson S, Stjernström H, Groth T. Kinetics of carbon dioxide during cardiopulmonary resuscitation. Crit Care Med 1986; 14:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  303. Callaham M, Barton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 1990; 18:358–362.

    Article  PubMed  CAS  Google Scholar 

  304. Bhende MS, Thompson AE, Cook DR. Validity of a disposable end-tidal CO2 detector in verifying endotracheal tube position in infants and children. Ann Emerg Med 1990; 19:483.

    Google Scholar 

  305. Mickelson KS, Sterner SP, Ruiz E. Exhaled PCO2 as a predictor of endotracheal tube placement. Ann Emerg Med 1986; 15:657.

    Google Scholar 

  306. Ornato JP, Shipley JB, Racht EM, et al. Multicenter study of end-tidal carbon dioxide in the prehospital setting. Ann Emerg Med 1992; 21:518–523.

    Article  PubMed  CAS  Google Scholar 

  307. Vukmir RB, Heller MB, Stein KL. Confirmation of endotracheal tube placement: A miniaturized qualitative CO2 detector. Ann Emerg Med 1991; 20:726–729.

    Article  PubMed  CAS  Google Scholar 

  308. Ornato JP, Levine RL, Young DS, Racht EM, Garnett AR, Gonzalez ER. Effect of applied chest compression on systemic arterial pressure and end-tidal carbon dioxide concentration during CPR in human beings. Ann Emerg Med 1989; 18:732–737.

    Article  PubMed  CAS  Google Scholar 

  309. Ornato JP, Gonzalez ER, Garnett AR, Levine RL, McClung BK. Effect of cardiopulmonary resuscitation compression rate on end-tidal carbon dioxide concentration and arterial pressure in man. Crit Care Med 1988; 16:241–245.

    Article  PubMed  CAS  Google Scholar 

  310. Ward KR, Menegazzi JJ, Zelenak RR. A comparison of mechanical CPR and manual CPR by monitoring end-tidal PCO2 in human cardiac arrest. Ann Emerg Med 1990; 19:456.

    Article  Google Scholar 

  311. Ward KR, Sullivan RJ, Zelenak RR, Summer WR. A comparison of interposed abdominal compression CPR and standard CPR by monitoring end-tidal PCO2. Ann Emerg Med 1989; 18:831–837.

    Article  PubMed  CAS  Google Scholar 

  312. Bircher NG. Acidosis of cardiopulmonary resuscitation: carbon dioxide transport and anaerobiosis. Crit Care Med 1992; 20:1203–1205.

    Article  PubMed  CAS  Google Scholar 

  313. Gravenstein JS, Paulus DA, Hayes TJ. Capnography in Clinical Practice. Boston, MA: Butterworth Publishers, 1989, 65–70.

    Google Scholar 

  314. Lambertsen CJ. Transport of oxygen and carbon dioxide by the blood. In: Mountcastle VB, Ed. Medical Physiology. St. Louis, MO: Mosby, 1974, pp. 1399–1422.

    Google Scholar 

  315. Idris A, Staples E, O’Brien D, et al. End-tidal carbon dioxide during extremely low cardiac output. Ann Emerg Med 1994; 23:568–572.

    Article  PubMed  CAS  Google Scholar 

  316. Martin GB, Gentile NT, Paradis NA, Moeggenberg, Appleton TJ, Nowak RM. Effect of epinephrine on end-tidal carbon dioxide monitoring during CPR. Ann Emerg Med 1990; 19:396–398.

    Article  PubMed  CAS  Google Scholar 

  317. Niemann JT, Rosborough JP, Ung S, Criley JM. Coronary perfusion pressure during experimental cardiopulmonary resuscitation. Ann Emerg Med 1982; 11:127–131.

    Article  PubMed  CAS  Google Scholar 

  318. Falk JL, Sayre MR. Confirmation of airway placement. Prehosp Emerg Care 1999; 3:273–278.

    Article  PubMed  CAS  Google Scholar 

  319. Barton CW, Callaham ML. Possible confounding effect of minute ventilation on ETCO2 in cardiac arrest. Ann Emerg Med 1991; 20:445–446.

    Article  Google Scholar 

  320. Gazmuri RJ, von Planta M, Weil MH, Rackow EC. Arterial PCO2 as an indicator of systemic perfusion during cardiopulmonary resuscitation. Crit Care Med 1989; 17:237–240.

    Article  PubMed  CAS  Google Scholar 

  321. Angelos MG, DeBehnke DJ, Leasure JE. Arterial blood gases during cardiac arrest: markers of blood flow in a canine model. Resuscitation 1992; 23:101–111.

    Article  PubMed  CAS  Google Scholar 

  322. Tenney SM. A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures. Resp Phys 1974; 20:283–296.

    Article  CAS  Google Scholar 

  323. Lee J, Wright F, Barber R, et al. Central venous oxygen saturation in shock. Anesth 1972; 36: 472–478.

    Article  CAS  Google Scholar 

  324. Kasnitz P, Druger GL, Yorra F, et al. Mixed venous oxygen tension and hyperlactemia. JAMA 1976; 236:570–574.

    Article  PubMed  CAS  Google Scholar 

  325. Emerman CL, Pinchak AC, Hagen JF, Hancock D. A comparison of venous blood gases during cardiac arrest. Am J Emerg Med 1988; 6:580–583.

    Article  PubMed  CAS  Google Scholar 

  326. Kissoon N, Rosenberg H, Gloor J, Vidal R. Comparison of the acid-base status of blood obtained from intraosseous and central venous sites during steady-and low-flowstates. Crit Care Med 1993; 21: 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  327. Kissoon N, Idris A, Wenzel V, Peterson R, Murphy S, Rush W. Comparison of the acid-base balance of intraosseous and mixed venous blood gases during cardiopulmonary resuscitation. Pediatric Research 1994; 35(Part 2):54A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gabrielli, A., Layon, A.J., Idris, A.H. (2005). Physiology of Ventilation During Cardiac Arrest. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:039

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:039

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics