Skip to main content

Raft Lipid Metabolism in Relation to Alkyl-Lysophospholipid-Induced Apoptosis

  • Chapter
Membrane Microdomain Signaling

Abstract

Lipid rafts are membrane microdomains occurring mainly (but not exclusively) in the plasma membrane. They show a distinct lipid packing and fluidity compared to the bulk of the plasma membrane. Membrane fluidity is inversely related to the degree of packing of the various apolar acyl and sphingoid chains of phospho- and (glyco)sphingolipids with cholesterol (van Blitterswijk et al., 1987). Lipid rafts have low fluidity (high rigidity) and can only exist by virtue of tight physical interactions between sphingolipids and cholesterol. It has long been recognized that membrane fluidity affects critical cellular processes such as ligand-receptor interactions, endocytosis, antigen presentation, and functional coupling of occupied receptor via G-proteins to effector enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrami L., Liu S., Cosson P., Leppla S. H., and van der Goot F. G. (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Ayllon V., Fleischer A., Cayla X., Garcia A., and Rebollo A. (2002) Segregation of Bad from lipid rafts is implicated in the induction of apoptosis. J. Immunol. 168, 3387–3393.

    PubMed  CAS  Google Scholar 

  • Baburina I. and Jackowski S. (1998) Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 273, 2169–2173.

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis V. A. (2002) Slick recruitment to the Golgi. Science 295, 290–291.

    Article  PubMed  CAS  Google Scholar 

  • Baron C. L. and Malhotra V. (2002) Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Basu S., Bayoumy S., Zhang Y., Lozano J., and Kolesnick R. (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J. Biol. Chem. 273, 30,419–30,426.

    Article  PubMed  CAS  Google Scholar 

  • Berkovic D., Grundel O., Berkovic K., Wildfang I., Hess C. F., and Schmoll H. J. (1997) Synergistic cytotoxic effects of ether phospholipid analogues and ionizing radiation in human carcinoma cells. Radiother. Oncol. 43, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Bi K., Roth M. G., and Ktistakis N. T. (1997) Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol. 7, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Boggs K. P., Rock C. O., and Jackowski S. (1995) Lysophosphatidylcholine attenuates the cytotoxic effects of the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. J. Biol. Chem. 270, 11,612–11,618.

    Article  PubMed  CAS  Google Scholar 

  • Borst P. and Oude Elferink R. P. (2002) Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher M. S. and Munro S. (1993) Cholesterol and the Golgi apparatus. Science 261, 1280–1281.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and London E. (1998) Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and London E. (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17,221–17,224.

    Article  PubMed  CAS  Google Scholar 

  • Burger K. N. J., van der Bijl P., and van Meer G. (1996) Topology of sphingolipid galactosyltransferase in ER and Golgi: Transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J. Cell Biol. 133, 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Butler J. D., Comly M. E., Kruth H. S., Vanier M., Filling-Katz M., Fink J., et al. (1987) Niemann-pick variant disorders: Comparison of errors of cellular cholesterol homeostasis in group D and group C fibroblasts. Proc. Natl. Acad. Sci. USA 84, 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Clement J. M. and Kent C. (1999) CTP:phosphocholine cytidylyltransferase: insights into regulatory mechanisms and novel functions. Biochem. Biophys. Res. Commun. 257, 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Colell A., Morales A., Fernandez-Checa J. C., and Garcia-Ruiz C. (2002) Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-alpha-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. Possible role of ganglioside GD3. FEBS Lett. 526, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Collins R. N. and Warren G. 1992. Sphingolipid transport in mitotic HeLa cells. J. Biol. Chem. 267, 24,906–24,911.

    PubMed  CAS  Google Scholar 

  • Cremesti A., Paris F., Grassmé H., Holler N., Tschopp J., Fuks Z., et al. (2001) Ceramide enables Fas to cap and kill. J. Biol. Chem. 276, 23,954–23,961.

    Article  PubMed  CAS  Google Scholar 

  • Davies J. P., Chen F. W., and Ioannou Y. A. (2000) Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298.

    Article  PubMed  CAS  Google Scholar 

  • Debry P., Nash E. A., Neklason D. W., and Metherall J. E. (1997) Role of multidrug resistance P-glycoproteins in cholesterol esterification. J. Biol. Chem. 272, 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  • DeGrella R. F. and Simoni R. D. (1982) Intracellular transport of cholesterol to the plasma membrane. J. Biol. Chem. 257, 14,256–14,262.

    PubMed  CAS  Google Scholar 

  • De Maria R., Lenti L., Malisan F., d’Agostino F., Tomassini B., Zeuner A., et al. (1997) Requirement for GD3 ganglioside in CD95-and ceramide-induced apoptosis. Science 277, 1652–1655.

    Article  PubMed  Google Scholar 

  • Diomede L., Piovani B., Re F., Principe P., Colotta F., Modest E. J., et al. (1994) The induction of apoptosis is a common feature of the cytotoxic action of ether-linked glycerophospholipids in human leukemic cells. Int. J. Cancer 57, 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Eisenkolb M., Zenzmaier C., Leitner E., and Schneiter R. (2002) A specific structural requirement for ergosterol in long-chain fatty acid synthesis mutants important for maintaining raft domains in yeast. Mol. Biol. Cell 13, 4414–4428.

    Article  PubMed  CAS  Google Scholar 

  • Gagescu R., Demaurex N., Parton R. G., Hunziker W., Huber L. A., and Gruenberg J. (2000) The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791.

    PubMed  CAS  Google Scholar 

  • Gajate C., Fonteriz R. I., Cabaner C., Alvarez-Noves G., Alvarez-Rodriguez Y., Modolell M., et al. (2000) Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int. J. Cancer 85, 674–682.

    Article  PubMed  CAS  Google Scholar 

  • Gajate C. and Mollinedo F. (2001) The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98, 3860–3863.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ruiz C., Colell A., Morales A., Calvo M., Enrich C., Fernandez-Checa J. C. (2002) Trafficking of ganglioside GD3 to mitochondria by tumor necosis factor-alpha. J. Biol. Chem. 277, 36,443–36,448.

    Article  PubMed  CAS  Google Scholar 

  • Garrigues A., Escargueil A. E., and Orlowski S. (2002) The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc. Natl. Acad. Sci. USA 99, 10,347–10,352.

    Article  PubMed  CAS  Google Scholar 

  • Geilen C. C., Wieder T., and Reutter W. (1992) Hexadecylphosphocholine inhibits translocation of CTP:choline-phosphate cytidylyltransferase in Madin-Darby canine kidney cells. J. Biol. Chem. 267, 6719–6724.

    PubMed  CAS  Google Scholar 

  • Giammarioli A. M, Garofalo T., Sorice M., Misasi R., Gambardella L., Gradini R., et al. (2001) GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett. 506, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Grassmé H., Jekle A., Riehle A., Schwarz H., Berger J., Sandhoff K., et al. (2001) CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20,589–20,596.

    Article  PubMed  Google Scholar 

  • Grassmé H., Jendrossek V., Bock J., Riehle A., and Gulbins E. (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J. Immunol. 168, 298–307.

    PubMed  Google Scholar 

  • Hannan L. A. and Edidin M. (1996) Traffic, polarity, and detergent solubility of a glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J. Cell Biol. 133, 1265–1276.

    Article  PubMed  CAS  Google Scholar 

  • Henneberry A. L., Lagace T. A., Ridgway N. D., and McMaster C. R. (2001) Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for Sec14p-dependent Golgi function, and cell growth. Mol. Biol. Cell 12, 511–520.

    PubMed  CAS  Google Scholar 

  • Henneberry A. L., Wright M. M., and McMaster C. R. (2002) The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell 13, 3148–3161.

    Article  PubMed  CAS  Google Scholar 

  • Hueber A.-O., Bernard A.-M., Herincs Z., Couzinet A., and He H.-T. (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E. (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Kabarowski J. H., Zhu K., Le L. Q., Witte O. N., and Xu Y. (2001) Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293, 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., et al. (1997) Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Kelley E. E., Modest E. J., and Burns C. P. (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem. Pharmacol. 45, 2435–2439.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T., Beuchat M. H., Lindsay M., Frias S., Palmiter R. D., Sakuraba H., et al. (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat. Cell Biol. 1, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Lala P., Ito S., and Lingwood C. A. (2000) Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 105-to 106-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J. Biol. Chem. 275, 6246–6251.

    Article  PubMed  CAS  Google Scholar 

  • Lange Y. (1991) Disposition of intracellular cholesterol in fibroblasts. J. Lipid Res. 32, 329–339.

    PubMed  CAS  Google Scholar 

  • Lauer S., VanWye J., Harrison T., McManus H., Samuel B. U., Hiller N. L., et al. (2000) Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564.

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch M., Lavie Y. 2000. Multidrug resistance: a role for cholesterol efflux pathways? Trends Biochem. Sci. 25, 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Liscum L. and Collins G. J. (1991) Characterization of Chinese hamster ovary cells that are resistant to 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one inhibition of low density lipoprotein-derived cholesterol metabolism. J. Biol. Chem. 266, 16,599–16,606.

    PubMed  CAS  Google Scholar 

  • Liscum L. and Dahl N. K. (1992) Intracellular cholesterol transport. J. Lipid Res. 33, 1239–1254.

    PubMed  CAS  Google Scholar 

  • Liscum L. and Faust J. R. (1987) Low density lipoprotein (LDL)-mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann-Pick type C fibroblasts. Biol. Chem. 262, 17,002–17,008.

    CAS  Google Scholar 

  • Liscum L. and Faust J. R. (1989) The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one. J. Biol. Chem. 264, 11,796–17,806.

    PubMed  CAS  Google Scholar 

  • Liscum L., Ruggiero R. M., and Faust J. R. (1989) The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J. Cell Biol. 108, 1625–1636.

    Article  PubMed  CAS  Google Scholar 

  • Luker G. D., Nilsson K. R., Covey D. F., and Piwnica-Worms D. (1999) Multidrug resistance (MDR1) P-glycoprotein enhances esterification of plasma membrane cholesterol. J. Biol. Chem. 274, 6979–6991.

    Article  PubMed  CAS  Google Scholar 

  • Mandon E. C., Ehses I., Rother J., van Echten G., and Sandhoff K. (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J. Biol. Chem. 267, 11,144–11,148.

    PubMed  CAS  Google Scholar 

  • Mattjus P., Bittman R., and Slotte J. P. (1996) Molecular interactions and lateral domain formation in monolayers containing cholesterol and phosphatidylcholines with acyl-or alkyl-linked C16 chains. Langmuir 12, 1284–1290.

    Article  CAS  Google Scholar 

  • Mayor S., Sabharanjak S., and Maxfield F. R. (1998) Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17, 4626–4638.

    Article  PubMed  CAS  Google Scholar 

  • Melchiorri D., Martini F., Lococo E., Gradini R., Barletta E, De Maria R., et al. (2002) An early increase in the disialoganglioside GD3 contributes to the development of neuronal apoptosis in culture. Cell Death Diff. 9, 609–615.

    Article  CAS  Google Scholar 

  • Mollinedo F., Martinez-Dalmau R., and Modolell M. (1993) Early and selective induction of apoptosis in human leukemic cells by the alkyl-lysophospholipid ET-18-OCH3. Biochem. Biophys. Res. Commun. 192, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Mollinedo F., Gajate C., and Modolell M. (1994) The ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine induces expression of fos and jun protooncogenes and activates AP-1 transcription factor in human leukaemic cells. Biochem. J. 302, 325–329.

    PubMed  CAS  Google Scholar 

  • Mollinedo F., Fernandez-Luna J. L., Gajate C., Martin-Martin B., Benito A., Martinez-Dalmau R., et al. (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): Molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res. 57, 1320–1328.

    PubMed  CAS  Google Scholar 

  • Morandat S., Bortolato M., and Roux B. (2002) Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme. Biochim. Biophys. Acta 1564, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Nichols B. J. and Lippincott-Schwartz J. (2001) Endocytosis without clathrin coats. Trends Cell Biol. 11, 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Pauig S. B. and Daniel L. W. (1996) Protein kinase C inhibition by ET-18-OCH3 and related analogs. A target for cancer chemotherapy. Adv. Exp. Med. Biol. 416, 173–180.

    PubMed  CAS  Google Scholar 

  • Pelkmans L. and Helenius A. (2002) Endocytosis via caveolae. Traffic 3, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Posse de Chaves E., Vance D. E., Campenot R. B., and Vance J. E. (1995) Alkylphosphocholines inhibit choline uptake and phosphatidylcholine biosynthesis in rat sympathetic neurons and impair axonal extension. Biochem. J. 312, 411–417.

    PubMed  CAS  Google Scholar 

  • Powis G., Seewald M. J., Gratas C., Melder D., Riebow J., and Modest E. J. (1992) Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res. 52, 2835–2840.

    PubMed  CAS  Google Scholar 

  • Powis G. (1995) Anticancer drugs acting against signaling pathways. Curr. Opin. Oncol. 7, 554–559.

    PubMed  CAS  Google Scholar 

  • Puoti A., Desponds C., and Conzelmann A. (1991) Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi. J. Cell Biol. 113, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Puri V., Watanabe R., Singh R. D., Dominguez M., Brown J. C., Wheatley C. L., et al. (2001) Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lafrasse C., Rousson R., Bonnet J., Pentchev P. G., Louisot P., and Vanier M. T. (1990) Abnormal cholesterol metabolism in imipramine-treated fibroblast cultures. Similarities with Niemann-Pick type C disease. Biochim. Biophys. Acta 1043, 123–128.

    PubMed  CAS  Google Scholar 

  • Rothberg K. G., Ying Y. S., Kamen B. A., and Anderson R. G. (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrafolate. J. Cell Biol. 111, 2931–2938.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter G. A., Zerp S. F., Bartelink H., van Blitterswijk W. J., and Verheij M. (1999) Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res. 59, 2457–2463.

    PubMed  CAS  Google Scholar 

  • Ruiter G. A., Verheij M., Zerp S. F., and van Blitterswijk W. J. (2001) Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 49, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter G. A., Verheij M., Zerp S. F., Moolenaar W. H., and van Blitterswijk W. J. (2002) Submicromolar doses of alkyl-lysophospholipids induce rapid internalization, but not activation, of epidermal growth factor receptor and concomitant MAPK/ERK activation in A431 cells. Int. J. Cancer 102, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter G. A., Zerp S. F., Bartelink H., van Blitterswijk W. J., and Verheij M. (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 2, 167–173.

    Article  Google Scholar 

  • Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., et al. (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G., Kaminski W. E., and Orso E. (2000) ABC transporters in cellular lipid trafficking. Curr. Opin. Lipidol. 11, 493–501.

    Article  PubMed  CAS  Google Scholar 

  • Seewald M. J., Olsen R. A., Sehgal I., Melder D. C., Modest E. J., and Powis G. (1990) Inhibition of growth factor-dependent inositol phosphate Ca2+ signaling by antitumor ether lipid analogues. Cancer Res. 50, 4458–4463.

    PubMed  CAS  Google Scholar 

  • Siddhanta A., Backer J. M., and Shields D. (2000) Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J. Biol. Chem. 275, 12,023–12,031.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Ikonen E. (2000) How cells handle cholesterol. Science 290, 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Toomre D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Slotte J. P. and Bierman E. L. (1988) Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem. J. 250, 653–658.

    PubMed  CAS  Google Scholar 

  • Small G. W., Strum J. C., and Daniel L. W. (1997) Characterization of an HL-60 cell variant resistant to the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Lipids 32, 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Smets L. A., van Rooij H., and Salomons G. S. (1999) Signalling steps in apoptosis by ether lipids. Apoptosis 4, 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Sprong H., van der Sluijs P., and van Meer G. (2001) How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513.

    Article  PubMed  CAS  Google Scholar 

  • Stekar J., Hilgard P., and Klenner T. (1995) Opposite effect of miltefosine on the antineoplastic activity and haematological toxicity of cyclophosphamide. Eur. J. Cancer 31A, 372–374.

    Article  PubMed  CAS  Google Scholar 

  • Storey M. K., Byers D. M., Cook H. W., and Ridgway N. D. (1998) Cholesterol regulates oxysterol binding protein (OSBP) phosphorylation and Golgi localization in Chinese hamster ovary cells: correlation with stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. Biochem. J. 336, 247–256.

    PubMed  CAS  Google Scholar 

  • Swain E., Baudry K., Stukey J., McDonough V., Germann M., and Nickels J. T. Jr. (2002a) Sterol-dependent regulation of sphingolipid metabolism in Saccharomyces cerevisiae. J. Biol. Chem. 277, 26,177–26,184.

    Article  PubMed  CAS  Google Scholar 

  • Swain E., Stukey J., McDonough V., Germann M., Liu Y., Sturley S. L., and Nickels J. T. Jr. (2002b) Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1. J. Biol. Chem. 277, 36,152–36,160.

    Article  PubMed  CAS  Google Scholar 

  • Tepper A. D., Ruurs P., Wiedmer T., Sims P. J., Borst J., and van Blitterswijk W. J. (2000) Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J. Cell Biol. 150, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Tomassini B. and Testi R. (2002) Mitochondria as sensors of sphingolipids. Biochimie 84, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Ãœberall F., Oberhuber H., Maly K., Zaknun J., Demuth L., and Grunicke H. H. (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 51, 807–812.

    PubMed  Google Scholar 

  • van Blitterswijk W. J., van der Meer B. W., and Hilkman H. (1987) Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry 26, 1746–1756.

    Article  PubMed  Google Scholar 

  • van Blitterswijk W. J., van der Luit A. H., Caan W., Verheij M., and Borst J. (2001) Sphingolipids related to apoptosis from the point of view of membrane structure and topology. Biochem. Soc. Trans. 29, 819–824.

    Article  PubMed  Google Scholar 

  • van Blitterswijk W. J., van der Luit A. H., Veldman R. J., Verheij M., and Borst J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics. Biochem. J. 369, 199–211.

    Article  PubMed  Google Scholar 

  • van der Luit A. H., Budde M., Ruurs P., Verheij M., and van Blitterswijk W. J. (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J. Biol. Chem. 277, 39,541–39,547.

    Article  PubMed  CAS  Google Scholar 

  • van der Luit A. H., Budde M., Verheij M., and van Blitterswijk W. J. (2003) Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine. Biochem. J. 374, 747–753.

    Article  CAS  Google Scholar 

  • van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., et al. (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517.

    Article  PubMed  Google Scholar 

  • Venkataraman K. and Futerman A. H. (2000) Ceramide as a second messenger: Sticky solutions to sticky problems. Trends Cell. Biol. 10, 408–412.

    Article  PubMed  CAS  Google Scholar 

  • Vidalain P. O., Azocar O., Servet-Delprat C., Rabourdin-Combe C., Gerlier D., and Manie S. (2000) CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J. 19, 3304–3313.

    Article  PubMed  CAS  Google Scholar 

  • von Haefen C., Wieder T., Gillissen B., Starck L., Graupner V., Dorken B., et al. (2002) Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene 21, 4009–4019.

    Article  CAS  Google Scholar 

  • Wieder T., Geilen C. C., and Reutter W. (1993) Antagonism of phorbol-ester-stimulated phosphatidylcholine biosynthesis by the phospholipid analogue hexadecylphosphocholine. Biochem. J. 291, 561–567.

    PubMed  CAS  Google Scholar 

  • Weigert R., Silletta M. G., Spano S., Turacchio G., Cericola C., Colanzi A., et al. (1999) CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X. and Arthur G. (1995) Effect of 1-O-octadecyl-2-O-methyl-glycerophosphocholine on phosphatidylcholine and phosphatidylethanolamine synthesis in MCF-7 and A549 cells and its relationship to inhibition of cell proliferation. Eur. J. Biochem. 232, 881–888.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X., Lu X., Richard C., Xiong W., Litchfield D. W., Bittman R., et al. (1996) 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J. Clin. Invest. 98, 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller R. A., Layne M. D., and Modest E. J. (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J. Lipid Res. 36, 1866–1875.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

van der Luit, A.H., Verheij, M., van Blitterswijk, W.J. (2005). Raft Lipid Metabolism in Relation to Alkyl-Lysophospholipid-Induced Apoptosis. In: Mattson, M.P. (eds) Membrane Microdomain Signaling. Humana Press. https://doi.org/10.1385/1-59259-803-X:091

Download citation

Publish with us

Policies and ethics