Skip to main content

Bacillus anthracis and the Pathogenesis of Anthrax

  • Chapter

Part of the book series: Infectious Disease ((ID))

Abstract

Bacillus anthracis is the causative agent of anthrax, a disease of animals that is transmissible to humans. Because B. anthracis forms spores that can be aerosolized and sprayed with the intent to kill, this pathogen can also be viewed as an agent of biological warfare and bioterrorism (1). The accidental release of spores into the air in Sverdlosk, Russia, and the recent mail attacks in the United States in the Fall of 2001 led to human casualties that sadly document the pathogenic potential and bioterrorism threat of B. anthracis (2,3). Furthermore, it appears that B. anthracis has been a research focus of biological warfare industries and subject to genetic manipulation with the intent of generating pathogen variants with increased virulence or with resistance to medical therapies and vaccine prevention strategies (1,4,5). B. anthracis can be obtained from infected animals or soil and anthrax spores are easily prepared. Furthermore, B. anthracis spores display very low visibility when delivered as an aerosol spray or powder. Inhalational anthrax is the primary target disease of biological warfare schemes (6). The LD50 for human inhalation of anthrax is not known, but has been estimated from animal studies to be of the order of 10,000 spores, corresponding to approx 0.01 µg (2,7), and a kilogram amount of spores, if sprayed intentionally on an urban area, is capable of killing hundreds of thousands of people. Biological warfare is an evolving research enterprise, and B. anthracis strains resistant to the commonly used antibiotic therapies may be available to several countries and terrorist organizations (6). American defense strategies against bioterrorist or biological warfare attacks must focus on the development of novel therapies that circumvent drug and vaccine-resistant B. anthracis strains (8). Much attention is directed toward finding inhibitors that disrupt the function of anthrax toxin. Anthrax toxin is the major virulence factor of B. anthracis (9) and consists of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). PA combines with either LF or EF enzymes to mediate their translocation across the plasma membrane (10). The combination of PA and LF forms lethal toxin (LeTx) and that of PA and EF forms edema toxin (EdTx). Once bacteria have secreted a large amount of anthrax toxin, antibiotic treatment becomes far less effective. At this later stage of anthrax pathogenesis, it might be useful to disrupt the biological activity of the toxin. This chapter reviews current knowledge of the factors that contribute to the pathogenesis of B. anthracis and highlights recent reports of possible strategies for blocking toxin action (11–13). Additionally, based on the known mechanisms of listeria-mediated invasion and virulence, the currently available genome sequences of B. anthracis were searched in an attempt to identify B. anthracis genes that may act early during pathogenesis by contributing to bacterial attachment to host tissues or to toxin secretion

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meselson, M. (1999) The challenge of biological and chemical weapons. Bull. World Health Organ. 77, 102,103.

    PubMed  CAS  Google Scholar 

  2. Meselson, M., Guillemin, J., Hugh-Jones, M., et al. (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266, 1202–1208.

    PubMed  CAS  Google Scholar 

  3. Brown, K. (2001) Anthrax. A’ sure killer’ yields to medicine. Science 294, 1813,1814.

    PubMed  CAS  Google Scholar 

  4. Edsall, J. T. and Meselson, M. (1967) Proliferation of CB warfare. Science 156, 1029,1030.

    PubMed  CAS  Google Scholar 

  5. Harris, S. H. (1994) Factories of death: Japanese secret biological warfare, 1932–1945, and the American cover-up. Routledge, London.

    Google Scholar 

  6. Inglesby, T. V., Henderson, D. A., Bartlett, J. G., et al. (1999) Anthrax as a biological weapon: medical and public health management. Working group on civilian defense. JAMA 281, 2127–2137.

    PubMed  Google Scholar 

  7. Enserink, M. (2001) This time it was real: knowledge of anthrax put to the test. Science 294, 490,491.

    Google Scholar 

  8. Friedlander, A. M. (2001) Tackling anthrax. Nature 414, 160,161.

    PubMed  CAS  Google Scholar 

  9. Leppla, S. H. (2000) Anthrax toxin, in: Bacterial Protein Toxins. (Aktories, K. and Just, I., eds.), Springer, p. 445–472.

    Google Scholar 

  10. Chaudry, G. J., Moayeri, M., Liu, S., and Leppla, S. H. (2001) Quickening the pace of anthrax research: three advances point towars possible therapies. Trends Microbiol. 10, 58–62.

    Google Scholar 

  11. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J., and Young, J. A. (2001) Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229.

    PubMed  CAS  Google Scholar 

  12. Pannifer, A. D., Wong, T. Y., Schwarzenbacher, R., et al. (2001) Crystal structure of the anthrax lethal factor. Nature 414, 229–233.

    PubMed  CAS  Google Scholar 

  13. Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V., and Dietrich, W. F. (2001) Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol. 11, 1503–1511.

    PubMed  CAS  Google Scholar 

  14. Koch, R. (1876) Die Aetiologie der Milzbrand-Krankheit, begruendet auf die Entwicklungsgeschichte des Bacillus Anthracis. Beitraege zur Biologie der Pflanzen 2, 277–310.

    Google Scholar 

  15. Pasteur, L. (1881) De l’attenuation des virus et de leur retour a la virulence. C.R. Acad. Sci. III 92, 429–435.

    Google Scholar 

  16. Williams, R. (1986) Bacillus anthracis and other spore forming bacilli, in: Infectious Disease and Medical Microbiology. (Braude, A., Davis, L., and Fierer, J., eds.), WB Saunders, Philadelphia, PA, pp. 270–278.

    Google Scholar 

  17. Titball, R. W., Turnbull, P. C., and Hutson, R. A. (1991) The monitoring and detection of Bacillus anthracis in the environment. Soc. Appl. Bacteriol. Symp. Ser. 20, 9S–18S.

    PubMed  CAS  Google Scholar 

  18. Turnbull, P. C. B. (1996) Anthrax is alive and well. PHLS Microbiol. Dig. 9, 103–106.

    Google Scholar 

  19. Sterne, M. (1967) Distribution and economic importance of anthrax. Fed. Proceed. 26, 1493–1495.

    CAS  Google Scholar 

  20. Dixon, T. C., Meselson, M., Guillemin, J., and Hanna, P. C. (1999) Anthrax. N. Engl. J. Med. 341, 815–826.

    PubMed  CAS  Google Scholar 

  21. Swartz, M. N. (2001) Recognition and management of anthrax—an update. N. Engl. J. Med. 345, 1621–1626.

    PubMed  CAS  Google Scholar 

  22. Dewan, P. K., Fry, A. M., Laserson, K., et al. (2002) Inhalational anthrax outbreak among postal workers, Washington, D.C., 2001. Emerg. Infect. Dis. 8, 1066–1072.

    PubMed  Google Scholar 

  23. Borio, L., Frank, D., Mani, V., et al. (2001) Death due to bioterrorism-related inhalational anthrax: report of two patients. JAMA 285, 2763–2773.

    Google Scholar 

  24. Keim, P., Price, L. B., Klevytska, A. M., et al. (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 182, 2928–2936.

    PubMed  CAS  Google Scholar 

  25. Read, T. D., Salzberg, S. L., Pop, M., et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296, 2028–2033.

    Google Scholar 

  26. Gold, H. (1967) Treatment of anthrax. Fed. Proc. 26, 1563–1568.

    PubMed  CAS  Google Scholar 

  27. Lightfoot, N. F., Scott, R. J. D., and Turnbull, P. C. B. (1989) Antimicrobial susceptibility of Bacillus anthracis, in: Proceedings of the International Workshop on Anthrax. Salisbury Medical Bulletin, Winchester, UK, pp. 95–98.

    Google Scholar 

  28. Friedlander, A. M., Welkos, S. L., Pitt, M. L. M., et al. (1993) Postexposure prophylaxis against experimental inhalation anthrax. J. Infect. Dis. 167, 1239–1242.

    PubMed  CAS  Google Scholar 

  29. Centers for Disease Control. (2001) Update: Investigation of Bioterrorism-Related Anthrax and Interim Guidelines for Exposure Management and Antimicrobial Therapy, October 2001. Morb. Mortal. Wkly Rep. 50, 909–919.

    Google Scholar 

  30. Sterne, M. (1937) Avirulent anthrax vaccine. Onderstepoort J. Vet. Sci Animal Ind. 21, 41–43.

    Google Scholar 

  31. Pittman, P. R., Kim-Ahn, G., Pifat, D. Y., et al. (2002) Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine 20, 1412–1420.

    PubMed  CAS  Google Scholar 

  32. Welkos, S., Little, S., Friedlander, A., Fritz, D., and Fellows, P. (2001) The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147, 1677–1685.

    PubMed  CAS  Google Scholar 

  33. Welkos, S., Friedlander, A. M., Weeks, S., Little, S., and Mendelson, I. (2002) In-vitro characterization of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J. Med. Microbiol. 51, 821–831.

    PubMed  CAS  Google Scholar 

  34. Metchnikoff, E. (1905) Immunity in Infectious Diseases. Cambridge University Press, Cambridge.

    Google Scholar 

  35. Guidi-Rontani, C. (2002) The alveolar macrophage: the Trojan horse of Bacillus anthracis. Trends Microbiol. 10, 405–409.

    PubMed  CAS  Google Scholar 

  36. Zwartouw, H. T. and Smith, H. (1956) Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochem. J. 63, 437–454.

    PubMed  CAS  Google Scholar 

  37. Preisz, H. (1909) Experimentelle studien ueber virulenz, empfaenglichkeit und immunitaet beim milzbrand. Zeitschr. Immunitaet.-Forsch. 5, 341–452.

    Google Scholar 

  38. Leppla, S. H. (1991) The anthrax toxin complex, in: Scourcebook of Bacterial Protein Toxins. (Alouf, J. and Freer, J. H., eds.), Academic Press, London, pp. 277–302.

    Google Scholar 

  39. Hanna, P. C., Acosta, D., and Collier, R. J. (1993) On the role of macrophages in anthrax. Proc. Natl. Acad. Sci. USA 90, 10,198–10,201.

    PubMed  CAS  Google Scholar 

  40. Vodkin, M. H. and Leppla, S. H. (1983) Cloning of the protective antigen gene of Bacillus anthracis. Cell 34, 693–697.

    PubMed  CAS  Google Scholar 

  41. Welkos, S. L., Lowe, J. R., Eden-McCutchan, F., Vodkin, M., Leppla, S. H., and Schmidt, J. J. (1988) Sequence and analysis of the DNA encoding the protective antigen of Bacillus anthracis. Gene 69, 287–300.

    PubMed  CAS  Google Scholar 

  42. Milne, J., Furlong, D., Hanna, P. C., Wall, J. S., and Collier, R. J. (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269, 20,607–20,612.

    PubMed  CAS  Google Scholar 

  43. Klimpel, K. R., Arora, N., and Leppla, S. H. (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13, 1093–1100.

    PubMed  CAS  Google Scholar 

  44. Duesbery, N. S., Webb, C. P., Leppla, S. H., et al. (1998) Proteolytic inactivation of Map-kinase-kinase by anthrax lethal factor. Science 280, 734–737.

    PubMed  CAS  Google Scholar 

  45. Vitale, G., Pellizzari, R., Recchi, C., Napolitani, G., Mock, M., and Montecucco, C. (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun. 248, 706–711.

    PubMed  CAS  Google Scholar 

  46. Park, J. M., Greten, F. R., Li, Z. W., and Karin, M. (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051.

    PubMed  CAS  Google Scholar 

  47. Tang, G. and Leppla, S. H. (1999) Proteasome activity is required for anthrax toxin to kill macrophages. Infect. Immun. 67, 3055–3060.

    PubMed  CAS  Google Scholar 

  48. Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V., and Dietrich, W. F. (2001) Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol. 11, 1503–1511.

    PubMed  CAS  Google Scholar 

  49. Leppla, S. H. (1984) Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17, 189–198.

    CAS  Google Scholar 

  50. Leppla, S. H. (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclin AMP concentrations in eukaryotic cells. Proc. Natl. Acad. Sci. USA 79, 3162–3166.

    PubMed  CAS  Google Scholar 

  51. Green, B. D., Battisti, L., Koehler, T. M., Thorne, C. B., and Ivins, B. E. (1985) Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49, 291–297.

    PubMed  CAS  Google Scholar 

  52. Mikesell, P., Ivins, B. E., Ristroph, J. D., and Dreier, T. M. (1983) Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371–376.

    PubMed  CAS  Google Scholar 

  53. Smith, H., Keppie, H. S., and Stanley, J. I. (1953) The chemical basis of the virulence of Bacillus anthracis. I. Properties of bacteria grown in vivo and preparation of extracts. Br. J. Exp. Pathol. 34, 477–485.

    PubMed  CAS  Google Scholar 

  54. Keppie, J., Smith, H., and Harris-Smith, P. W. (1963) The chemical basis of the virulence of Bacillus anthracis. II. Some biological properties of bacterial products. Br. J. Exp. Pathol. 34, 486–496.

    Google Scholar 

  55. Okinaka, R. T., Cloud, K., Hampton, O., et al. (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181, 6509–6515.

    PubMed  CAS  Google Scholar 

  56. Makino, S., Uchida, I., Terakado, N., Sasakawa, C., and Yoshikawa, M. (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171, 722–730.

    PubMed  CAS  Google Scholar 

  57. Uchida, I., Makino, S., Sasakawa, C., Yoshikawa, M., Sugimoto, C., and Terakado, N. (1993) Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol. Microbiol. 9, 487–496.

    PubMed  CAS  Google Scholar 

  58. Vietri, N. J., Marrero, R., Hoover, T. A., and Welkos, S. L. (1995) Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152, 1–9.

    PubMed  CAS  Google Scholar 

  59. Turnbull, P. C., Hutson, R. A., Ward, M. J., et al. (1992) Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 72, 21–28.

    PubMed  CAS  Google Scholar 

  60. Guidi-Rontani, C., Pereira, Y., Ruffie, S., Sirard, J. C., Weber-Levy, M., and Mock, M. (1999) Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol. Microbiol. 33, 407–414.

    PubMed  CAS  Google Scholar 

  61. Driks, A. (1999) Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63, 1–20.

    PubMed  CAS  Google Scholar 

  62. Piggot, P. and Losick, R. (2002) Sporulation genes and intercompartmental regulation, in: Bacillus subtilis and its Closest Relatives: From Genes to Cells. (Sonenshein, A. L., Hoch, J. A., and Losick, R., eds.), ASM, Washington, DC, pp. 483–517.

    Google Scholar 

  63. Driks, A. (2002) Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol. 10, 251–254.

    PubMed  CAS  Google Scholar 

  64. Hachisuka, Y., Kozuka, S., and Tsujikawa, M. (1984) Exosporia and appendages of spores of Bacillus species. Microbiol. Immunol. 28, 619–624.

    PubMed  CAS  Google Scholar 

  65. Matz, L. L., Beaman, T. C., and Gerhardt, P. (1970) Chemical composition of exosporium from spores of Bacillus cereus. J. Bacteriol. 101, 196–201.

    PubMed  CAS  Google Scholar 

  66. Beaman, T. C., Pankratz, H. S., and Gerhardt, P. (1971) Paracrystalline sheets reaggregated from solubilized exosporium of Bacillus cereus. J. Bacteriol. 107, 320–324.

    PubMed  CAS  Google Scholar 

  67. Hachisuka, Y., Kojima, K., and Sato, T. (1966) Fine filaments on the outside of the exosporium of Bacillus anthracis spores. J. Bacteriol. 91, 2382–2384.

    PubMed  CAS  Google Scholar 

  68. Charlton, S., Moir, A. J., Baillie, L., and Moir, A. Characterization of the exosporium of Bacillus cereus. J. Appl. Microbiol. 87, 241–245.

    Google Scholar 

  69. Garcia-Patrone, M. and Tandecarz, J. S. (1995) A glycoprotein multimer from Bacillus thuringiensis sporangia: dissociation into subunits and sugar composition. Mol. Cell. Biochem. 145, 29–37.

    PubMed  CAS  Google Scholar 

  70. Sylvestre, P., Couture-Tosi, E., and Mock, M. (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol. 45, 169–178.

    PubMed  CAS  Google Scholar 

  71. Gerhardt, P. (1967) Cytology of Bacillus anthracis. Fed. Proc. 26, 1504–1517.

    PubMed  CAS  Google Scholar 

  72. Ezzell, J. W. and Abshire, T. G. J. (1988) Immunological analysis of cell-associated antigens of Bacillus anthracis. Infect. Immun. 56, 349–356.

    PubMed  CAS  Google Scholar 

  73. Mignot, T., Mesnage, S., Couture-Tosi, E., Mock, M., and Fouet, A. (2002) Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol. 43, 1615–1627.

    PubMed  CAS  Google Scholar 

  74. Mesnage, S., Fontaine, T., Mignot, T., Delepierre, M., Mock, M., and Fouet, A. (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19, 4473–4484.

    PubMed  CAS  Google Scholar 

  75. Sára, M. and Sleytr, U. B. (2000) S-layer proteins. J. Bacteriol. 182, 859–868.

    PubMed  Google Scholar 

  76. Mock, M. and Fouet, A. (2001) Anthrax. Annu. Rev. Microbiol. 55, 647–671.

    PubMed  CAS  Google Scholar 

  77. Hanby, W. E. and Rydon, HNTcsoBaBJ-. (1946) The capsular substance of Bacillus anthracis. Biochem. J. 40, 297–309.

    PubMed  CAS  Google Scholar 

  78. Goodman, J. W. and Nitecki, D. E. (1967) Studies on the relation of a prior immune response to immunogenicity. Immunology 13, 577–583.

    PubMed  CAS  Google Scholar 

  79. Ezzel, J. W. and Welkos, S. L. (1999) The capsule of bacillus anthracis, a review. J. Appl. Microbiol. 87, 250.

    Google Scholar 

  80. Bartkus, J. M. and Leppla, S. H. (1989) Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect. Immun. 57, 2295–2300.

    PubMed  CAS  Google Scholar 

  81. Cataldi, A., Labruyère, E., and Mock, M. (1990) Construction and characterization of a protective antigen-deficient Bacillus anthracis strain. Mol. Microbiol. 4, 1111–1117.

    PubMed  CAS  Google Scholar 

  82. Koehler, T. M., Dai, Z., and Kaufman-Yarbray, M. (1994) Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J. Bacteriol. 176, 586–595.

    PubMed  CAS  Google Scholar 

  83. Uchida, I., Makino, S., Sekizaki, T., and Terakado, N. (1997) Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol. Microbiol. 23, 1229–1240.

    PubMed  CAS  Google Scholar 

  84. Dai, Z., Sirard, J.-C., Mock, M., and Koehler, T. M. (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol. Microbiol. 16, 1171–1181.

    PubMed  CAS  Google Scholar 

  85. Hoffmaster, A. R. and Koehler, T. M. (1999) Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 181, 4485–4492.

    PubMed  CAS  Google Scholar 

  86. Hoffmaster, A. R. and Koehler, T. M. (1999) Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87, 279–281.

    PubMed  CAS  Google Scholar 

  87. Saile, E. and Koehler, T. M. (2002) Control of anthrax gene expression by the transition state regulator abrB. J. Bacteriol. 184, 370–380.

    PubMed  CAS  Google Scholar 

  88. Strauch, M. A. and Hoch, J. A. (1993) Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7, 337–342.

    PubMed  CAS  Google Scholar 

  89. Fouet, A., Namy, O., and Lambert, G. (2000) Characterization of the operon encoding the alternative σB factor from Bacillus anthracis and its role in virulence. J. Bacteriol. 182, 5036–5045.

    PubMed  CAS  Google Scholar 

  90. Navarre, W. W. and Schneewind, O. (1999) Surface proteins of Gram-positive bacteria and the mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229.

    PubMed  CAS  Google Scholar 

  91. Mazmanian, S. K., Liu, G., Ton-That, H., and Schneewind, O. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763.

    PubMed  CAS  Google Scholar 

  92. Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E., and Schneewind, O. (2000) Staphylococcus aureus mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97, 5510–5515.

    PubMed  CAS  Google Scholar 

  93. Mazmanian, S. K., Ton-That, H., Su, K., and Schneewind, O. (2002) An iron-regulated sortase enzyme anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99, 2293–2298.

    PubMed  CAS  Google Scholar 

  94. Mazmanian, S. K., Skaar, E. P., Gasper, A. H., et al. (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299, 906–909.

    PubMed  CAS  Google Scholar 

  95. Glaser, P., Frangeul, L., Buchrieser, C., et al. (2001) Comparative genomics of Listeria species. Science 294, 849–852.

    PubMed  CAS  Google Scholar 

  96. Bierne, H., Mazmanian, S. K., Trost, M., et al. (2002) Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43, 869–881.

    PubMed  CAS  Google Scholar 

  97. Gaillard, J.-L., Berche, P., Frehel, C., Gouin, E., and Cossart, P. (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65, 1127–1141.

    PubMed  CAS  Google Scholar 

  98. Mengaud, J., Ohayon, H., Gounon, P., Mege, M., and Cossart, P. (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84, 923–932.

    PubMed  CAS  Google Scholar 

  99. Lecuit, M., Vandormael-Pournin, S., Lefort, J., et al. (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725.

    PubMed  CAS  Google Scholar 

  100. Pallen, M. J., Lam, A. C., Antonio, M., and Dunbar, K. (2001) An embarrassment of sortases-a richness of substrates. Trends Microbiol. 9, 97–101.

    PubMed  CAS  Google Scholar 

  101. Dramsi, S. and Cossart, P. (1998) Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166.

    PubMed  CAS  Google Scholar 

  102. Portnoy, D. A., Jacks, P. A., and Hinrichs, D. J. (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167, 1459–1471.

    PubMed  CAS  Google Scholar 

  103. Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P. (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531.

    PubMed  CAS  Google Scholar 

  104. Camilli, A., Tilney, L. G., and Portnoy, D. A. (1993) Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8, 143–157.

    PubMed  CAS  Google Scholar 

  105. Cossart, P. and Lecuit, M. (1998) Interactions of Listeria monocytogenes with mammalian cells during the entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806.

    PubMed  CAS  Google Scholar 

  106. Hanna, P. C.(1997) Anthrax pathogenesis and host response. Curr. Top. Microbiol. Immunol. 225, 13–35.

    Google Scholar 

  107. Guidi-Rontani, C., Weber-Levy, M., Labruyere, E., and Mock, M. (1999) Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31, 9–17.

    PubMed  CAS  Google Scholar 

  108. Dixon, T. C., Fadl, A. A., Koehler, T. M., Swanson, J. A., and Hanna, P. C. (2000) Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape. Cell. Microbiol. 2, 453–463.

    PubMed  CAS  Google Scholar 

  109. Decatur, A. L. and Portnoy, D. A. (2000) A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290, 992–995.

    PubMed  CAS  Google Scholar 

  110. Guidi-Rontani, C., Levy, M., Ohayon, H., and Mock, M. (2001) Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol. Microbiol. 42, 931–938.

    PubMed  CAS  Google Scholar 

  111. Maynard, J., Maassen, C., Leppla, S., et al. (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601.

    PubMed  CAS  Google Scholar 

  112. Sellman, B. R., Mourez, M., and Collier, R. J. (2001) Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292, 695–697.

    PubMed  CAS  Google Scholar 

  113. Schuch, R., Nelson, D., and Fischetti, V. A. (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Missiakas, D.M., Schneewind, O. (2005). Bacillus anthracis and the Pathogenesis of Anthrax. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:079

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:079

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics