Advertisement

History and Overview of Orexin/Hypocretin Research

From Orphan GPCR to Integrative Physiology
  • Michihiro Mieda
  • Takeshi Sakurai
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Since its discovery in 1998, the field of orexin/hypocretin biology has grown rapidly. In the last 6 yr, more than 900 articles on orexin/hypocretin research have been published. Information on the role of the orexin/hypocretin system in narcolepsy-cataplexy has had a huge impact on the study of sleep and wakefulness. Scientists are now using a multidisciplinary approach to understand various aspects of the physiological functions of orexins/hypocretins in order to apply orexin/hypocretin biology to the diagnosis and treatment of sleep-related disorders.

Keywords

Sodium Oxybate Rostral Ventromedial Medulla Rostral Ventrolateral Medulla Orexin Neuron Inhibitory Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Lecea, L., Kilduff, T.S., Peyron, C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U S A 95, 322–327.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakurai, T., Amemiya, A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.PubMedCrossRefGoogle Scholar
  3. 3.
    Aldrich, M.S. (1998) Diagnostic aspects of narcolepsy. Neurology 50, S2–S7.PubMedCrossRefGoogle Scholar
  4. 4.
    Bassetti, C. and Aldrich, M.S. (1996) Narcolepsy. Neurol. Clin. 14, 545–571.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin, L., Faraco, J., Li, R., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.PubMedCrossRefGoogle Scholar
  6. 6.
    Chemelli, R.M., Willie, J.T., Sinton, C.M., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.PubMedCrossRefGoogle Scholar
  7. 7.
    Mignot, E., Lammers, G.J., Ripley, B., et al. (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., and Mignot, E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Peyron, C., Faraco, J., Rogers, W., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.PubMedCrossRefGoogle Scholar
  10. 10.
    Thannickal, T.C., Moore, R.Y., Nienhuis, R., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.PubMedCrossRefGoogle Scholar
  11. 11.
    Peyron, C., Tighe, D.K., van den Pol, A.N., et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015.PubMedGoogle Scholar
  12. 12.
    Date, Y., Ueta, Y., Yamashita, H., et al. (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U S A 96, 748–753.PubMedCrossRefGoogle Scholar
  13. 13.
    Hagan, J.J., Leslie, R.A., Patel, S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. U S A 96, 10911–10916.PubMedCrossRefGoogle Scholar
  14. 14.
    Ida, T., Nakahara, K., Katayama, T., Murakami, N., and Nakazato, M. (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 821, 526–529.PubMedCrossRefGoogle Scholar
  15. 15.
    Lubkin, M. and Stricker-Krongrad, A. (1998). Independent feeding and metabolic actions of orexins in mice. Biochem.Biophys Res. Commun. 253, 241–245.PubMedCrossRefGoogle Scholar
  16. 16.
    Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M., and Kannan, H. (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780–R1785.PubMedGoogle Scholar
  17. 17.
    Takahashi, N., Okumura, T., Yamada, H., and Kohgo, Y. (1999) Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem. Biophys. Res. Commun. 254, 623–627.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobashi, M., Furudono, Y., Matsuo, R., and Yamamoto, T. (2002) Central orexin facilitates gastric relaxation and contractility in rats. Neurosci. Lett. 332, 171–174.PubMedCrossRefGoogle Scholar
  19. 19.
    Kiyashchenko, L.I., Mileykovskiy, B.Y., Lai, Y.Y., and Siegel, J.M. (2001) Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J. Neurophysiol 85, 2008–2016.PubMedGoogle Scholar
  20. 20.
    Mileykovskiy, B.Y., Kiyashchenko, L.I., and Siegel, J.M. (2002) Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla. J. Neurophysiol. 87, 2480–2489.PubMedGoogle Scholar
  21. 21.
    Xi, M.C., Fung, S.J., Yamuy, J., Morales, F.R., and Chase, M.H. (2002) Induction of active (REM) sleep and motor inhibition by hypocretin in the nucleus pontis oralis of the cat. J. Neurophysiol. 87, 2880–2888.PubMedGoogle Scholar
  22. 22.
    Machado, B.H., Bonagamba, L.G., Dun, S.L., Kwok, E.H., and Dun, N.J. (2002) Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul. Pept. 104, 75–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Ciriello, J. and De Oliveira, C.V. (2003) Cardiac effects of hypocretin-1 in nucleus ambiguus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 6, 6.Google Scholar
  24. 24.
    Ciriello, J., Li, Z., and de Oliveira, C.V. (2003) Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Res. 991, 84–95.PubMedCrossRefGoogle Scholar
  25. 25.
    De Oliveira, C.V., Rosas-Arellano, M.P., Solano-Flores, L.P., and Ciriello, J. (2003) Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract. Am. J. Physiol. Heart Circ. Physiol. 284, H1369–H1377.PubMedGoogle Scholar
  26. 26.
    Siegel, J.M. (2004) Hypocretin (orexin): role in normal behavior and neuropathology. Annu. Rev. Psychol., 55, 125–148.PubMedCrossRefGoogle Scholar
  27. 27.
    van den Pol, A.N., Gao, X.B., Obrietan, K., Kilduff, T.S., and Belousov, A.B. (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18, 7962–7971.PubMedGoogle Scholar
  28. 28.
    Mieda, M. and Yanagisawa, M. (2002) Sleep, feeding, and neuropeptides: roles of orexins and orexin receptors. Curr. Opin. Neurobiol. 12, 339–345.PubMedCrossRefGoogle Scholar
  29. 29.
    Torterolo, P., Yamuy, J., Sampogna, S., Morales, F.R., and Chase, M.H. (2003) Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 26, 25–28.PubMedGoogle Scholar
  30. 30.
    Espana, R.A., Valentino, R.J., and Berridge, C.W. (2003) Fos immunoreactivity in hypocretinsynthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121, 201–217.PubMedCrossRefGoogle Scholar
  31. 31.
    Edwards, C.M., Abusnana, S., Sunter, D., Murphy, K.G., Ghatei, M.A., and Bloom, S.R. (1999) The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J. Endocrinol. 160, R7–R12.PubMedCrossRefGoogle Scholar
  32. 32.
    Haynes, A.C., Jackson, B., Overend, P., et al. (1999) Effects of single and chronic intracerebroventricular administration of the orexins on feeding in the rat. Peptides 20, 1099–1105PubMedCrossRefGoogle Scholar
  33. 33.
    Haynes, A.C., Jackson, B., Chapman, H., et al. (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept. 96, 45–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamada, H., Okumura, T., Motomura, W., Kobayashi, Y., and Kohgo, Y. (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem. Biophys. Res. Commun. 267, 527–531.PubMedCrossRefGoogle Scholar
  35. 35.
    Hara, J., Beuckmann, C.T., Nambu, T., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Willie, J.T., Chemelli, R.M., Sinton, C.M., and Yanagisawa, M. (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 24, 429–458.PubMedCrossRefGoogle Scholar
  37. 37.
    Taheri, S., Zeitzer, J.M., and Mignot, E. (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu. Rev. Neurosci. 25, 283–313.PubMedCrossRefGoogle Scholar
  38. 38.
    Spiegelman, B.M. and Flier, J.S. (2001) Obesity and the regulation of energy balance. Cell 104, 531–543.PubMedCrossRefGoogle Scholar
  39. 39.
    Moriguchi, T., Sakurai, T., Nambu T., Yanagisawa, M., and Goto K. (1999) Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett. 264, 101–104.PubMedCrossRefGoogle Scholar
  40. 40.
    Cai, X.J., Evans, M.L., Lister, C.A., et al. (2001) Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50, 105–112.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamanaka, A., Beuckmann, C.T., Willie, J.T., et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701–713.PubMedCrossRefGoogle Scholar
  42. 42.
    Estabrooke, I.V., McCarthy, M.T., Ko, E., et al. (2001) Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662.PubMedGoogle Scholar
  43. 43.
    Zeitzer, J.M., Buckmaster, C.L., Parker, K.J., Hauck, C.M., Lyons, D.M., and Mignot, E. (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23, 3555–3560.PubMedGoogle Scholar
  44. 44.
    Zhu, L., Onaka, T., Sakurai, T., and Yada, T. (2002) Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport 13, 1351–1353.PubMedCrossRefGoogle Scholar
  45. 45.
    Fadel, J., Bubser, M., and Deutch, A.Y. (2002) Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J. Neurosci. 22, 6742–6746.PubMedGoogle Scholar
  46. 46.
    Mignot, E. (1998) Genetic and familial aspects of narcolepsy. Neurology 50, S16–S22.PubMedGoogle Scholar
  47. 47.
    Scammell, T.E. (2003) The neurobiology, diagnosis, and treatment of narcolepsy. Ann. Neurol. 53, 154–166.PubMedCrossRefGoogle Scholar
  48. 48.
    Mieda, M., Willie, J.T., Hara, J., Sinton, C.M., Sakurai, T., and Yanagisawa, M. (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl. Acad. Sci. U S A 101, 4649–4654.PubMedCrossRefGoogle Scholar
  49. 49.
    Fujiki, N., Yoshida, Y., Ripley, B., Mignot E., and Nishino, S. (2003) Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep 26, 953–959.PubMedGoogle Scholar
  50. 50.
    Smart, D., Haynes, A.C., Williams, G., and Arch, J.R. (2002) Orexins and the treatment of obesity. Eur. J. Pharmacol. 440, 199–212.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Michihiro Mieda
    • 1
  • Takeshi Sakurai
    • 2
    • 3
  1. 1.Department of Molecular Neuroscience, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Pharmacology, Institute of Basic Medical SciencesUniversity of TsukubaIbarakiJapan
  3. 3.ERATO Yanagisawa Orphan Receptor ProjectJapan Science and Technology AgencyTokyoJapan

Personalised recommendations