Advertisement

Differentiation Potential of Adult Stem Cells

  • Henry E. Young
  • Asa C. BlackJr.
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Stem cells are a subcategory of cells designated as “precursor” cells. Precursor cells provide the cellular building blocks to maintain the tissues and organs of the body throughout the life-span of an individual. Precursor cells also provide the cellular building blocks for tissue replacement and repair following injury. There are three basic categories of precursor cells: lineage-uncommitted pluripotent stem cells; germ layer lineage-committed ectodermal, mesodermal, and endodermal stem cells; and lineage-committed progenitor cells. These three categories of precursor cells are based on their life-span, the nature of their lineage commitment, their ability to form various differentiated cell types, and their programmed developmental lineage pattern (Fig. 1).

Keywords

Stem Cell Pluripotent Stem Cell Adult Stem Cell Islet Transplantation Pancreatic Progenitor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young HE, Duplaa C, Yost MJ, et al. Clonogenic analysis reveals reserve stem cells in postnatal mammals. II. Pluripotent epiblastic-like stem cells. Anat Rec 2004;277A:178–203.CrossRefGoogle Scholar
  2. 2.
    Young HE, Duplaa C, Romero-Ramos M, et al. Adult reserve stem cells and their potential for tissue engineering. Cell Biochem Biophys 2004;40:1–80.PubMedGoogle Scholar
  3. 3.
    Young HE, Black Jr AC. Adult stem cells. Anat Rec 2004;276A:75–102.CrossRefGoogle Scholar
  4. 4.
    Young HE, Wright RP, Mancini ML, Lucas PA, Reagan CR, Black AC Jr. Bioactive factors affect proliferation and phenotypic expression in progenitor and pluripotent stem cells. Wound Repair Regen 1998;6:65–75.CrossRefGoogle Scholar
  5. 5.
    Romero-Ramos M, Vourc’h P, Young HE, et al. Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 2002;69:894–907PubMedCrossRefGoogle Scholar
  6. 6.
    Young HE, Steele TA, Bray RA, et al. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC Class-I. Proc Soc Exp Biol Med 1999;221:63–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Young HE, Duplaa C, Young TM, et al. Clonogenic analysis reveals reserve stem cells in postnatal mammals. I. Pluripotent mesenchymal stem cells. Anat Rec 2001;263:350–360.PubMedCrossRefGoogle Scholar
  8. 8.
    Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 2001; 264:51–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Young HE. Stem cells and tissue engineering. In: Huard J, Fu FH, eds. Gene Therapy and Tissue Engineering in Orthopaedic and Sports Medicine. Boston, Birkhauser, 2000, pp. 143–173.Google Scholar
  10. 10.
    Young HE. Existence of reserve quiescent stem cells in adults, from amphibians to humans. Curr Top Microbiol Immunol 2004;280:71–109.PubMedGoogle Scholar
  11. 11.
    Kacsoh B. Endocrine Physiology. McGraw-Hill, New York, 2000.Google Scholar
  12. 12.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.PubMedCrossRefGoogle Scholar
  13. 13.
    Kishimoto T, Kikutani H, von dem Borne AEGK, et al. Leucocyte Typing VI, White Cell Differentiation Antigens. Garland Publishing, Hamden, 1997.Google Scholar
  14. 14.
    Eisenbarth GS, Connelly J, Soeldner JS. The “natural” history of type I diabetes. Diabetes/Metab Rev 1987;3:873–891.Google Scholar
  15. 15.
    Ward WK, Beard JC, Porte D Jr. Clinical aspects of islet B-cell function in non-insulin-dependent diabetes mellitus Diabetes Metab Rev 1986;2:297–313.PubMedGoogle Scholar
  16. 16.
    Chandra RK. Nutritional regulation of immunity and risk of infection in old age. Immunology 1989;67: 141–147.PubMedGoogle Scholar
  17. 17.
    Fiatarone MA, Marks EC, Ryan ND, Meridith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 1990;263:3029–3034.PubMedCrossRefGoogle Scholar
  18. 18.
    Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45-to 78-yr-old men and women. J Appl Physiol 1991;71:644–650.PubMedGoogle Scholar
  19. 19.
    Walsh CH, Soler NG, James H, et al. Studies in whole body potassium and whole body nitrogen in newly diagnosed diabetics. Q J Med 1976;45:295–301.PubMedGoogle Scholar
  20. 20.
    Nair KS, Garrow JS, Ford C, Mahler RF, Halliday D. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia 1983;25:400–403PubMedCrossRefGoogle Scholar
  21. 21.
    Morgan HE, Jefferson LS, Wolpert EB, Rannels DE. Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J Biol Chem 1971;246:2163–2170.PubMedGoogle Scholar
  22. 22.
    Jefferson LS, Li JB, Rannels SR. Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J Biol Chem 1977;252:1476–1483.PubMedGoogle Scholar
  23. 23.
    Peavy DE, Taylor JM, Jefferson LS. Correlation of albumin production rates and albumin mRNA levels in livers of normal, diabetic and insulin-treated diabetic rats. Proc Nat Acad Sci USA 1978;75:5879–5883.PubMedCrossRefGoogle Scholar
  24. 24.
    Froesch ER, Guler HP, Schmid C, Ernst M, Zapf J. Insulin-like growth factors. In: Rifkin H, Porte D, eds. Ellenberg and Rifkin’s Diabetes Mellitus: Theory and Practice. New York, Elsevier Press, 1990, pp. 154–169.Google Scholar
  25. 25.
    Lemozy S, Pucilowska JB, Underwood LE. Reduction of insulin-like growth factor-I (IGF-I) in protein-restricted rats is associated with differential regulation of IGF-binding protein messenger ribonucleic acids in liver and kidney, and peptides in liver and serum. Endocrinology 1994;135:617–623.PubMedCrossRefGoogle Scholar
  26. 26.
    Straus DS. Nutritional regulation of hormones and growth factors that control mammalian growth. FASEB J 1994;8:6–12.PubMedGoogle Scholar
  27. 27.
    Tobin BW, Marchello MJ. Islet transplantation reverses carcass protein loss in diabetic rats without inducing disproportionate fat accumulation. Diabetologia 1995;38:881–888.PubMedCrossRefGoogle Scholar
  28. 28.
    Tobin BW, Lewis JT, Tobin BL, Finegood DT. Insulin action in previously diabetic rats receiving graded numbers of islets of Langerhans. Transplantation 1995;59:1464–1469.PubMedGoogle Scholar
  29. 29.
    Tobin BW, Welch-Holland KR, Marchello MJ. Pancreatic islet transplantation improves body composition, decreases energy intake and normalizes energy efficiency in previously diabetic female rats. J Nutr 1997;127: 1191–1197.PubMedGoogle Scholar
  30. 30.
    Weir GC, Bonner-Weir S. Islet transplantation as a treatment for diabetes. J Am Optom Assoc 1998; 69:727–732.PubMedGoogle Scholar
  31. 31.
    Shapiro AM, Lakey JR. Future trends in islet transplantation. Diabetes Technol Therapeutics 2000;2: 449–452.CrossRefGoogle Scholar
  32. 32.
    Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–238.PubMedCrossRefGoogle Scholar
  33. 33.
    Shapiro AM, Ryan EA, Lakey JR. Pancreatic islet transplantation in the treatment of diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2001;15:241–264.PubMedCrossRefGoogle Scholar
  34. 34.
    Ryan EA, Lakey JR, Shapiro AM. Clinical results after islet transplantation. J Investig Med 2001; 49:559–562.PubMedCrossRefGoogle Scholar
  35. 35.
    Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001;50:710–719.PubMedCrossRefGoogle Scholar
  36. 36.
    Cornelius JG, Tchernev V, Kao KJ, Peck AB. In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas. Horm Metab Res 1997;29:271–277.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramiya VK, Maraist M, Arfos KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000;6:278–282.PubMedCrossRefGoogle Scholar
  38. 38.
    Bonner-Weir S, Taneja M, Weir GC, Tatarkiewic, K, Song K-H, Sharma A, O’Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000;97:7999–8004.PubMedCrossRefGoogle Scholar
  39. 39.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389–1393.PubMedCrossRefGoogle Scholar
  40. 40.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.PubMedCrossRefGoogle Scholar
  41. 41.
    Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998;95:13726–13731.PubMedCrossRefGoogle Scholar
  42. 42.
    Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–162.PubMedCrossRefGoogle Scholar
  43. 43.
    Soria B, Skoudy A, Martin F. From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia 2001;4:407–415.CrossRefGoogle Scholar
  44. 44.
    Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki, KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 2001;50:1691–1697.PubMedCrossRefGoogle Scholar
  45. 45.
    Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003;299:363.PubMedGoogle Scholar
  46. 46.
    Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978;75:5565–5569.PubMedCrossRefGoogle Scholar
  47. 47.
    Damjanov I, Fox N, Knowles BB, Solter D, Lange PH, Fraley EE. Immunohistochemical localization of murine stage-specific embryonic antigens in human testicular germ cell tumors. Am J Pathol 1982;108:225–230.PubMedGoogle Scholar
  48. 48.
    Kannagi R, Cochran NA, Ishigami F, et al. Stage specific embryonic antigens ( SSEA-3 and-4) are epitopes of a unique globo-series ganglioside isolated from human treatocarcinoma cells. EMBO J 1983;2:2355–2361.PubMedGoogle Scholar
  49. 49.
    Estrera VT, Luo W, Phan D, Earley K, Hixson DC, Lin SH. The cytoplasmic domain of CCAM1 tumor suppressor is necessary and sufficient for suppressing the tumorigenicity of prostate cancer cells. Biochem Biophys Res Commun 1999;263:797–803.PubMedCrossRefGoogle Scholar
  50. 50.
    Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 2001; 19:271–278.PubMedCrossRefGoogle Scholar
  51. 51.
    Tole S, Kaprielian Z, Ou SK, Patterson PH. FORSE-1: a positionally regulated epitope in the developing rat central nervous system. J Neurosci 1995;15:957–969.PubMedGoogle Scholar
  52. 52.
    Tole S, Patterson PH. Regionalization of the developing forebrain: a comparison of FORSE-1, Dlx-2, and BF-1. J Neurosci 1995;15:970–980.PubMedGoogle Scholar
  53. 53.
    Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci 1985;5:3310–3328.PubMedGoogle Scholar
  54. 54.
    Gritti A, Frolichsthal-Schoeller P, Galli R, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 1999;19:3287–3297.PubMedGoogle Scholar
  55. 55.
    Drazba J, Pierce M, Lemmon V. Studies of the developing chick retina using monoclonal antibody 8A2 that recognizes a novel set of gangliosides. Dev Biol 1991;145:154–163.PubMedCrossRefGoogle Scholar
  56. 56.
    Baudier J, Glasser N, Gerard D. Ions binding to S100 proteins. I. Calcium-and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem 1986;261:8192–8203.PubMedGoogle Scholar
  57. 57.
    Banerjee A, Roach MC, Wall KA, Lopata MA, Cleveland DW, Luduena RF. A monoclonal antibody against the type II isotype of beta-tubulin. Preparation of isotypically altered tubulin. J Biol Chem 1988;263:3029–3034.PubMedGoogle Scholar
  58. 58.
    Banerjee A, Roach MC, Trcka P, Luduena RF. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J Biol Chem 1990;265:1794–1799.PubMedGoogle Scholar
  59. 59.
    Joshi HC, Cleveland DW. Diversity among tubulin subunits: toward what functional end? Cell Motil Cytoskeleton 1990;16:159–163.PubMedCrossRefGoogle Scholar
  60. 60.
    Wood JN, Anderton BH. Monoclonal antibodies to mammalian neurofilaments. Biosci Rep 1981;1: 263–268.PubMedCrossRefGoogle Scholar
  61. 61.
    Debus E, Weber K, Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 1983;25:193–203.PubMedCrossRefGoogle Scholar
  62. 62.
    Franke FE, Schachenmayr W, Osborn M, Altmannsberger M. Unexpected immunoreactivities of intermediate filament antibodies in human brain and brain tumors. Am J Pathol 1991;139:67–79.PubMedGoogle Scholar
  63. 63.
    Feany MB, Lee S, Edwards RH, Buckley KM. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 1992;70:861–867.PubMedCrossRefGoogle Scholar
  64. 64.
    Faris RA, McEntire KD, Thompson NL, Hixson DC. Identification and characterization of a rat hepatic oncofetal membrane glycoprotein. Cancer Res 1990;50:4755–4763.PubMedGoogle Scholar
  65. 65.
    Hixson DC, Faris RA, Thompson NL. An antigenic portrait of the liver during carcinogenesis. Pathobiology 1990;58:65–77.PubMedGoogle Scholar
  66. 66.
    Sprinkle TJ, Agee JF, Tippins RB, Chamberlain CR, Faguet GB, De Vries GH. Monoclonal antibody production to human and bovine 2¢:3¢-cyclic nucleotide 3¢-phosphodiesterase (CNPase): high-specificity recognition in whole brain acetone powders and conservation of sequence between CNP1 and CNP2. Brain Res 1987; 426: 349–357.PubMedCrossRefGoogle Scholar
  67. 67.
    Sprinkle TJ. 2¢,3¢-cyclic nucleotide 3¢-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol 1989;4:235–301.PubMedGoogle Scholar
  68. 68.
    Reynolds R, Carey EM, Herschkowitz N. Immunohistochemical localization of myelin basic protein and 2¢, 3¢-cyclicnucleotide 3¢-phosphohydrolase in flattened membrane expansions produced by cultured oligodendrocytes. Neuroscience 1989;28:181–188.PubMedCrossRefGoogle Scholar
  69. 69.
    Friedman B, Hockfield S, Black JA, Woodruff KA, Waxman SG. In situ demonstration of mature oligodendrocytes and their processes: an immunocytochemical study with a new monoclonal antibody, rip. Glia 1989;2: 380–390.PubMedCrossRefGoogle Scholar
  70. 70.
    Alvarez-Buylla A, Buskirk DR, Nottebohm F. Monoclonal antibody reveals radial glia in adult avian brain. J Comp Neurol 1987;264:159–170.PubMedCrossRefGoogle Scholar
  71. 71.
    Oseroff AR, Pfendt EA, DiCicco L, Morhenn VB. A murine monoclonal antibody (VM-1) against human basal cells inhibits the growth of human keratinocytes in culture. J Invest Dermatol 1985;84:257–261.PubMedCrossRefGoogle Scholar
  72. 72.
    Morhenn VB. VM-1 for keratinocyte, basal, cell attachment antigen (human). In: Developmental Studies Hybridoma Bank Product Catalog. The University of Iowa, Iowa City, 2002, p. 24.Google Scholar
  73. 73.
    Thulasi R, Dias P, Houghton PJ, Houghton JA. Alpha 2a-interferon-induced differentiation of human alveolar rhabdomyosarcoma cells: correlation with down-regulation of the insulin-like growth factor type I receptor. Cell Growth Differ 1996; 7:531–541.PubMedGoogle Scholar
  74. 74.
    Wright WE, Binder M, Funk W. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol 1991;11:4104–4110.PubMedGoogle Scholar
  75. 75.
    Debus E, Weber K, Osborn M. Monoclonal antibodies to desmin, the muscle-specific intermediate filament protein. EMBO J 1983b;2:2305–2312.PubMedGoogle Scholar
  76. 76.
    Bader D, Masaki T, Fischman DA. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol 1982;95:763–770.PubMedCrossRefGoogle Scholar
  77. 77.
    Naumann K, Pette D. Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 1994;55:203–211.PubMedCrossRefGoogle Scholar
  78. 78.
    Shafiq SA, Shimizu T, Fischman DA. Heterogeneity of type 1 skeletal muscle fibers revealed by monoclonal antibody to slow myosin. Muscle Nerve 1984;7:380–387.PubMedCrossRefGoogle Scholar
  79. 79.
    Webster C, Silberstein L, Hays AP, Blau HM. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 1988;52:503–513.PubMedCrossRefGoogle Scholar
  80. 80.
    Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986;103: 2787–2796.PubMedCrossRefGoogle Scholar
  81. 81.
    Frid MG, Shekhonin BV, Koteliansky VE, Glukhova MA. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol 1992;153:185–193.PubMedCrossRefGoogle Scholar
  82. 82.
    Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA 1993;90:999–1003.PubMedCrossRefGoogle Scholar
  83. 83.
    Eisenberg CA, Markwald RR. Mixed cultures of avian blastoderm cells and the quail mesoderm cell line QCE-6 provide evidence for the pluripotentiality of early mesoderm. Dev Biol 1997;191:167–181.PubMedCrossRefGoogle Scholar
  84. 84.
    Eisenberg CA, Gourdie RG, Eisenberg LM. Wnt-11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE-6. Development 1997;124:525–536.PubMedGoogle Scholar
  85. 85.
    Schaart G, Moens L, Endert JM. Ramaekers FC. Biochemical characterization of cardiotin, a sarcoplasmic reticulum associated protein. FEBS Lett 1997;403:168–172.PubMedCrossRefGoogle Scholar
  86. 86.
    Young HE, Dalley BK, Markwald RR. Glycoconjugates in normal wound tissue matrices during the initiation phase of limb regeneration in adult Ambystoma. Anat Rec 1989;223:231–241.PubMedCrossRefGoogle Scholar
  87. 87.
    Young HE, Dalley BK, Markwald RR. Effect of selected denervations on glycoconjugate composition and tissue morphology during the initiation phase of limb regeneration in adult Ambystoma. Anat Rec 1989;223: 223–230.PubMedCrossRefGoogle Scholar
  88. 88.
    Holmdahl R, Rubin K, Klareskog L, Larsson E, Wigzell H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum 1986; 29:400–410.PubMedCrossRefGoogle Scholar
  89. 89.
    Burgeson RE, Hollister DW. Collagen heterogeneity in human cartilage: identification of several new collagen chains. Biochem Biophys Res Commun 1979;87:1124–1131.PubMedCrossRefGoogle Scholar
  90. 90.
    Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima A. Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J Anat 1994;185:279–284.PubMedGoogle Scholar
  91. 91.
    Ye XJ, Terato K, Nakatani H, Cremer MA, Yoo TJ. Monoclonal antibodies against bovine type IX collagen (LMW fragment): production, characterization, and use for immunohistochemical localization studies. J Histochem Cytochem 1991;39:265–271.PubMedGoogle Scholar
  92. 92.
    Caterson B. 9/30/8-A-4 for link protein, 12/21/1-C-6 for proteoglycan hyaluronic acid binding region. In: Developmental Studies Hybridoma Bank Product Catalog. NICHHD. University of Iowa, Iowa City, 2001, p. 12.Google Scholar
  93. 93.
    Caterson B, Baker JR, Christner JE, Lee Y, Lentz M. Monoclonal antibodies as probes for determining the microheterogeneity of the link proteins of cartilage proteoglycan. J Biol Chem 1985;260:11348–11356.PubMedGoogle Scholar
  94. 94.
    Asher RA, Scheibe RJ, Keiser HD, Bignami A. On the existence of a cartilage-like proteoglycan and link proteins in the central nervous system. Glia 1995;13:294–308.PubMedCrossRefGoogle Scholar
  95. 95.
    Young HE, Carrino DA, Caplan AI. Histochemical analysis of newly synthesized and accumulated sulfated glycosaminoglycans during musculogenesis in the embryonic chick leg. J Morphol 1989;201:85–103.PubMedCrossRefGoogle Scholar
  96. 96.
    Young HE, Ceballos EM, Smith JC, et al. Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. In Vitro Cell Dev Biol Anim 1993;29A:723–736.CrossRefGoogle Scholar
  97. 97.
    Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol 1992;152:467–477.PubMedCrossRefGoogle Scholar
  98. 98.
    Gorski JP, Griffin D, Dudley G, et al. Bone acidic glycoprotein-75 is a major synthetic product of osteoblastic cells and localized as 75-and/or 50-kDa forms in mineralized phases of bone and growth plate and in serum. J Biol Chem 1990;265:14956–14963.PubMedGoogle Scholar
  99. 99.
    Ronnov-Jessen L, Celis JE, Van Deurs B, Petersen OW. A fibroblast-associated antigen: characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells. J Histochem Cytochem 1992; 40: 475–486.PubMedGoogle Scholar
  100. 100.
    Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia. N Eng J Med 1997;337:1584–1590.CrossRefGoogle Scholar
  101. 101.
    St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000; 289:1197–1202.PubMedCrossRefGoogle Scholar
  102. 102.
    Dittel BN, McCarthy JB, Wayner EA, LeBien TW. Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular cell adhesion molecule-1 (VCAM-1). Blood 1993;81:2272–2282.PubMedGoogle Scholar
  103. 103.
    Picker LJ, Nakache M, Butcher EC. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J Cell Biol 1989; 109:927–937.PubMedCrossRefGoogle Scholar
  104. 104.
    Lewinsohn DM, Nagler A, Ginzton N, Greenberg P, Butcher EC. Hematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule. Blood 1990;75:589–595PubMedGoogle Scholar
  105. 105.
    Butcher EC. Hermes-1 for CD44. In: Developmental Studies Hybridoma Bank Product Catalog. The University of Iowa, Iowa City, 2002, p. 12.Google Scholar
  106. 106.
    Hildreth JE, August JT. The human lymphocyte function-associated (HLFA) antigen and a related macrophage differentiation antigen (HMac-1): functional effects of subunit-specific monoclonal antibodies. J Immunol 1985; 134:3272–3280.PubMedGoogle Scholar
  107. 107.
    August JT, Hildreth JEK. H5A4 for CD11b (Mac-1, CR3), H5H5 for CD43 (human) sialophorin, H4C4 for CD44 human hyaluronate receptor, H5A5 for CD45 (lymphocyte common antigen) (human), H5C6 for CD63 (human) LIMP. In: Developmental Studies Hybridoma Bank Product Catalog. The University of Iowa, Iowa City, 2002, p. 11.Google Scholar
  108. 108.
    Mujoo K, Ali M, Sahib MK. Isolation, characterization, and synthesis of alpha-fetoprotein from neonatal rat brain. J Neurochem 1983;41:1223–1228.PubMedCrossRefGoogle Scholar
  109. 109.
    Hixson DC, De Lourdes Ponce M, Allison JP, Walborg EF Jr. Cell surface expression by adult rat hepatocytes of a non-collagen glycoprotein present in rat liver biomatrix. Exp Cell Res 1984;152: 402–414.PubMedCrossRefGoogle Scholar
  110. 110.
    Hixson DC, Brown J, McBride AC, Affigne S. Differentiation status of rat ductal cells and ethionine-induced hepatic carcinomas defined with surface-reactive monoclonal antibodies. Exp Mol Pathol 2000;68:152–169.PubMedCrossRefGoogle Scholar
  111. 111.
    Walborg EF Jr, Tsuchida S, Weeden DS, et al. Identification of dipeptidyl peptidase IV as a protein shared by the plasma membrane of hepatocytes and liver biomatrix. Exp Cell Res 1985;158:509–518.PubMedCrossRefGoogle Scholar
  112. 112.
    Faris RA, Monfils BA, Dunsford HA, Hixson DC. Antigenic relationship between oval cells and a subpopulation of hepatic foci, nodules, and carcinomas induced by the “resistant hepatocyte” model system. Cancer Res 1991;51:1308–1317.PubMedGoogle Scholar
  113. 113.
    Gordon GJ, Coleman WB, Hixson DC, Grisham JW. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am J Pathol 2000;156:607–619.PubMedGoogle Scholar
  114. 114.
    Hubbard AL, Bartles JR, Braiterman LT. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol 1985;100:1115–1125.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Henry E. Young
    • 1
  • Asa C. BlackJr.
    • 2
  1. 1.Department of Pediatrics, Division of Basic Medical ScienceMercer University School of MedicineMacon
  2. 2.Division of Basic Medical Science, Department of Obstetrics and GynecologyMercer University School of MedicineMacon

Personalised recommendations