Advertisement

Biology of the Vascularized Fibular Graft

  • Elizabeth Joneschild
  • James R. Urbaniak

Abstract

In the practice of orthopedics, bone grafting is a common procedure used to enhance the regeneration of bone and lead to the restoration of skeletal integrity. Bony regeneration is needed to reconstruct a wide variety of traumatic, developmental, degenerative, and neoplastic disorders that affect the skeletal system. The source of bone for grafting has evolved over the past two centuries to include autogenous cancellous or cortical, allogenic frozen, freeze-dried, or processed cortical, corticocancellous, and cancellous grafts, and demineralized bone matrix. Recently, synthetic or engineered bone graft substitutes have also been approved for use. Although this chapter concentrates on the autogenous vascularized fibular graft, a brief review of the history and basic science of bone grafting will serve as an introduction.

Keywords

Femoral Head Bone Graft Demineralized Bone Matrix Core Decompression Fibular Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Meekeren, J. (1988) Heel en geneeskonstige aanmerkingen. Commelijn, Amsterdam, 1668 (quoted from deBoer).Google Scholar
  2. 2.
    DeBoer, H. H. (1988) The History of Bone Grafts. Clin. Orthop. Rel. Res. 226, 292–298Google Scholar
  3. 3.
    de Heyde, A. (1988) Anatomia Mytuli, Subjecta Centuria Observatorium. Janssonio Waesbergois, Amsterdam, 1684 (quoted from de Boer).Google Scholar
  4. 4.
    Ollier, L. (1988) Traite de la regeneration des os. Mason, Paris, 1867 (quoted from de Boer).Google Scholar
  5. 5.
    Barth, A. (1893) Uber Histologische Befunde nach Knochenimplantationen. Arch. Klin. Chir. 46, 409.Google Scholar
  6. 6.
    Curtis, B. F. (1988) Cases of bone implantation and transplantation for cyst of tibia, osteomyelitic cavities and ununited fractures. Am. J. Med. Sci. 106, 30, 1893 (Quoted from de Boer).Google Scholar
  7. 7.
    Phemister, D. B. (1914) The fate of transplanted bone and regenerative power of its various constituents. Surg. Gynecol. Obstet. 19, 303–333.Google Scholar
  8. 8.
    Sauer, H.-D. and Schoettle, H. (1979) The stability of osteosynthesis bridging defects. Arch. Orthop. Traumat. Surg. 95, 27–30.CrossRefGoogle Scholar
  9. 9.
    Walter, P. H., von (1988) Wiedereinheiling der bei der Transpanation ausgebohrton Knochenscheibe. J. Chir. Augen-Heilkund 2, 571, 1821 (quoted from de Boer).Google Scholar
  10. 10.
    Macewen, H. (1988) Observations concerning transplantation of bone. Proc. Roy. Soc. Lond. 32, 232, 1891 (quoted from de Boer).CrossRefGoogle Scholar
  11. 11.
    Albee, F. H. (1915) Bone Graft Surgery. Saunders, Philadelphia.Google Scholar
  12. 12.
    Stevenson, S. (1998) Enhancement of fracture healing with autogenous and allogenic bone grafts. Clin. Orthop. Rel. Res. 355S, S239–S246.CrossRefGoogle Scholar
  13. 13.
    Einhorn, T. A. (1995) Current concepts review: enhancement of fracture healing. J. Bone Joint Surg. 77A, 940–956.Google Scholar
  14. 14.
    Urist, M. R. (1980) Bone transplants and implants, in Fundamental and Clinical Bone Physiology (Urist, M. R., ed.), Lippincott, Philadelphia, pp. 331–368.Google Scholar
  15. 15.
    Burwell, R. G. (1969) The fate of bone grafts, in Recent Advances in Orthopaedics (Apley, A. G., ed.), Churchill Livingston, London, pp. 115–207.Google Scholar
  16. 16.
    Kushner, A. (1940) Evaluation of Wolff’s law of bone formation. J. Bone Joint Surg. 22, 589–596.Google Scholar
  17. 17.
    Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., and Recker, R. (1996) Bone biology II: formation, form, modeling, remodeling, and regulation of cell function, in Instructional Course Lectures (Douglas, J. and Pritchard, M. D., eds.), American Academy of Orthopaedic Surgery, Rosemont, IL, Vol. 45, 387–399.Google Scholar
  18. 18.
    Carter, D. R. (1984) Mechanical loading histories and cortical bone remodeling. Calcif. Tisssue Int. 36(Suppl. 1), S19–S24.CrossRefGoogle Scholar
  19. 19.
    Urist, M. R. (1965) Bone: formation by autoinduction. Science 150, 893–899.PubMedCrossRefGoogle Scholar
  20. 20.
    Gray, J. C. and Elves, M. W. (1979) Early osteogenesis in compact bone isografts: a quantitative study of the contribution of the different graft cells. Calcif. Tissue Int. 29, 225–237.PubMedCrossRefGoogle Scholar
  21. 21.
    Younger, E. M. and Chapman, M. W. (1989) Morbidity at bone graft donor sites. J. Orthop. Trauma 3, 192–195.PubMedCrossRefGoogle Scholar
  22. 22.
    Enneking, W. F., Burchart, H., Puhl, J. J., and Piotrowski, G. (1975) Physical and biological repair in dog cortical-bone transplants. J. Bone Joint Surg. 73A, 1123–1142.Google Scholar
  23. 23.
    Aronson, J. and Cornell, C. N. (1999) Bone healing and grafting. In Orthopaedic Knowledge Update (Beaty, J. H., ed.), American Academy of Orthopaedic Surgeons, Rosement, IL, p. 28.Google Scholar
  24. 24.
    Berrey, B. H., Lord, C. F., Gebhardt, C., and Mankin, H. J. (1990) Fractures of allografts. J. Bone Joint Surg. 72A, 825–833.Google Scholar
  25. 25.
    Muscolo, D. L., Petracchi, L. J., Ayerza, M. A., and Calabrese, M. E. (1992) Massive femoral allografts followed for 22 to 36 years. J. Bone Joint Surg. 74B, 887–892.Google Scholar
  26. 26.
    Thompson, R. C., Pickvance, E. A., and Garry, D. (1993) Fractures in large-segment allografts. J. Bone Joint Surg. 75A, 1663–1673.Google Scholar
  27. 27.
    Goldberg, V. M. and Stevenson, S. (1989) Bone transplantation, in Surgery of the Musculoskeletal System, Vol. 1, Ed 2 (McCollister Evarts, C., ed.), Churchill Livingston, New York, pp. 115–150.Google Scholar
  28. 28.
    Yazdi, M., Bernick, S., Paule, W. J., et al. (1991) Postmortem degradation of demineralized bone matrix oseoinductive potential-effect of time and storage temperature. Clin. Orthop. 262, 281–287.PubMedGoogle Scholar
  29. 29.
    Phelps, A. M. (1891) Transplantation of tissue from lower animals to man. Med. Records 39, 221 (quoted from de Boer).Google Scholar
  30. 30.
    Huntington, T. W. (1905) Case of bone transference—use of segment of fibula to supply a defect in the tibia. Ann. Surg. 41, 249–251.PubMedGoogle Scholar
  31. 31.
    Weiland, A. J. (1981) Current concepts review: vascularized free bone transplants. J. Bone Joint Surg. 63A, 166–169.Google Scholar
  32. 32.
    Carrel, A. (1908) Results of the transplantation of blood vessels, organs, and limbs. JAMA 51, 1661.Google Scholar
  33. 33.
    McKee, D. M. (1978) Microvascular bone transplantation. Clin. Plastic Surg. 5, 283–292.Google Scholar
  34. 34.
    Sowa, D. T. and Weiland, A. J. (1987) Clinical applications of vascularized bone autografts. Orthop. Clin. N. Am. 18(2), 257–273.Google Scholar
  35. 35.
    Adelaar, R. S., Soucacos, P. N., and Urbaniak, J. R. (1974) Autologous cortical bone grafts with microsurgical anastomosis of periosteal vessels. Surg. Forum 25, 487–489.PubMedGoogle Scholar
  36. 36.
    Ostrup, L. T. and Fredrickson, J. M. (1974) Distant transfer of a free, living, bone graft by microvascular anastomoses —an experimental study. Plast. Reconstr. Surg. 54, 274–285.PubMedCrossRefGoogle Scholar
  37. 37.
    Doi, K., Tominaga, S., and Shibata, T. (1977) Bone grafts with microvascular anastomoses of vascular pedicles: an experimental study in dogs. J. Bone Joint Surg. 59A, 809–815.Google Scholar
  38. 38.
    Serafin, D., Villareal-Rois, A., and Georgiage, N. (1977) A rib-containing free flap to reconstruct mandibular defects. Br. J. Plastic Surg. 30, 263–266.CrossRefGoogle Scholar
  39. 39.
    Buncke, H. J., Furnas, D. W., Gordon, L., et al. (1977) Free osteocutaneous flap from a rib to the tibia. Plast. Reconstr. Surg. 59, 799–805.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor, G. I., Miller, G. D. H., and Ham, F. J. (1975) The free vascularized bone graft—pa clinical extension of microvascular techniques. Plast. Reconstr. Surg. 55(5), 533–544.PubMedGoogle Scholar
  41. 41.
    Weiland, A. J., Kleinert, H. E., Kutz, J. E., et al. (1979) Free vascularized bone grafts in surgery of the upper extremity. J. Hand Surg. 4, 129–144.Google Scholar
  42. 42.
    Chen, C.-W., Yu, Z.-J., and Wang, Y. (1979) A new method of treatment of congenital tibial pseudarthrosis using free vascularized fibular grafts: a preliminary report. Ann. Acad. Med. Singapore 8, 465–473.PubMedGoogle Scholar
  43. 43.
    Trueta, J. and Caladias, A. X. (1964) A study of the blood supply of long bones. Surg. Gynecol. Obstet. 118, 485–498.PubMedGoogle Scholar
  44. 44.
    Johnson, R. W. Jr. (1927) A physiological study of the blood supply of the diaphysis. J. Bone Joint Surg. 9, 153–184.Google Scholar
  45. 45.
    Rhinelander, R. W. (1973) Effects of medullary nailing on the normal blood supply of diaphyseal cortex, in AAOS Instructional Course Lectures, Vol. 22. Mosby, St Louis, pp. 161–187.Google Scholar
  46. 46.
    Berggen, A., Weiland, A. J., and Dorfman, H. (1982) Free vascularized bone grafts: factors affecting their survival and ability to heal to recipient bone defects. Plast. Reconstr. Surg. 69(1), 19–29.CrossRefGoogle Scholar
  47. 47.
    Osterman, A. L. and Bora, F. W. (1984) Free vascularized bone grafting for large-gap nonunion of long bones. Orthop. Clin. N. Am. 15, 131–142.Google Scholar
  48. 48.
    Weiland, A. J. (1990) Clinical applications of vascularized bone autographs, in Bone and Cartilage Allografts (Friedlaender, G. E. and Goldberg, V. M., eds.), American Academy of Orthopedic Surgeons, Park Ridge, IL, pp. 239–245.Google Scholar
  49. 49.
    Zucman, P., Mauer, P., and Berbesson, C. (1968) The effects of autografts of bone and periosteum in recent diaphyseal fractures. J. Bone Joint Surg. 50B, 409.Google Scholar
  50. 50.
    Urbaniak, J. R. Vascularized bone grafts, in Clinical Surgery, pp. 41–54.Google Scholar
  51. 51.
    Taylor, G. I. (1979) Fibular transplantation, in Microsurgical Composite Tissue Transplantation (Serafin, D. and Buncke, H. J. Jr., eds.), Mosby, St. Louis, pp. 418-423.Google Scholar
  52. 52.
    Goldberg, V. M., Shaffer, J. W., Field, G., and Davy, D. T. (1987) Biology of vascularized bone grafts. Orthop. Clin. N. Am. 18(2), 197–205.Google Scholar
  53. 53.
    Hu, C.-T., Chang, C. W., Su, K.-L., et al. (1979) Free vascularized bone graft using microvascular technique. Ann. Acad. Med. Singapore 8, 459–464.PubMedGoogle Scholar
  54. 54.
    Urbaniak, J. R. and Harvey, E. J. (1998) Revascularization of the femoral head in osteonecrosis. J. Am. Acad. Orthop. Surg. 6, 44–54.PubMedGoogle Scholar
  55. 55.
    Weiland, A. J., Moore, J. R., and Daniel, R. K. (1983) Vascularized bone autographs. Clin. Orthop. 174, 87–95.PubMedGoogle Scholar
  56. 56.
    Pacelli, L. L., Gillard, J., McLoughlin, S. W., and Buehler, M. J. (2003) A biomechanical analysis of donor-site ankle instability following free fibular graft harvest. J. Bone Joint Surg. 85A, 597–603.Google Scholar
  57. 57.
    Goldberg, V. M., Stevenson, S., Schaffer, J., Davy, D., Klein, L., and Field, G. (1990) Biology of vascularized bone grafts, in Bone and Cartilage Allografts (Friedlaender, G. E. and Goldberg, V. M., eds.), American Academy of Orthopedic Surgeons, Park Ridge, IL, pp. 13–26.Google Scholar
  58. 58.
    Goldberg, V. M., Stevenson, S., Schaffer, J., et al. (1990) Biological and physical properties of autogenous vascularized fibular grafts in dogs. J. Bone Joint Surg. 72A(6), 801–810.Google Scholar
  59. 59.
    Plakseychuk, A. Y., Kim, S.-Y., Park, B.-C., Varitimidis, S. E., Rubash, H. E., and Sotereanos, D. G. (2003) Vascularized compared with nonvascularized fibular grafting for the treatment of osteoneocrosis of the femoral head. J. Bone Joint Surg. 85A, 589–596.Google Scholar
  60. 60.
    Siegert, J. J. and Wood, M. B. (1990) Blood flow evaluation of vascularized bone transfers in a canine model. J. Orthop. Res. 8, 291–296.PubMedCrossRefGoogle Scholar
  61. 61.
    Arlet, J. (1992) Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin. Orthop. Rel. Res. 249, 209–218.Google Scholar
  62. 62.
    Ficat, R. P. (1985) Idiopathic bone necrosis of the femoral ead. Early diagnosis and treatment. J. Bone Joint Surg. 67B, 3–9.Google Scholar
  63. 63.
    Scully, S. P., Aaron, R. K., and Urbaniak, J. R. (1998) Survival analysis of hips treated with core decompression or vascularized fibular grafting because of avascular necrosis. J. Bone Joint Surg. 80A, 1270–1275.Google Scholar
  64. 64.
    Urbaniak, J. R., Coogan, P. G., Gunneson, E. B., and Nunley, J. A. (1995) Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. J. Bone Joint Surg. 77A, 681–694.Google Scholar
  65. 65.
    Brunelli, G. A., Vigaso, A., and Brunelli, G. R. (1995) Microvascular fibular grafts in skeletal reconstruction. Clin. Orthop. Rel. Res. 314, 241–246.Google Scholar
  66. 66.
    Louie, B. E., McKee, M. D., Richards, R. R., et al. (1999) Treatment of osteonecrosis of the femoral head by free vascularized fibular grafting: an analysis of surgical outcome and patient health status. Can. J. Surg. 42, 274–283.PubMedGoogle Scholar
  67. 67.
    Sotereanos, D. G., Plakseychuk, A. Y., and Rubash, H. E. (1997) Free vascularized fibula grafting for the treatment of osteonecrosis of the femoral head. Clin. Orthop. Rel. Res. 344, 243–256.Google Scholar
  68. 68.
    Yoo, M. C., Chung, D. W., and Hahn, C. S. (1992) Free vascularized fibular grafting for the treatment of osteonecrosis of the femoral head. Clin. Orthop. Rel. Res. 277, 128–138.Google Scholar
  69. 69.
    Soucacos, P. N., Beris, A. E., Malizos, K., Koropilias, A., Zalavras, H., and Dailiana, Z. (2001) Treatment of avascular necrosis of the femoral head with vascularized fibular transplant. Clin. Orthop. Rel. Res. 386, 120–130.CrossRefGoogle Scholar
  70. 70.
    Steinberg, M. E., Hayken, G. D., and Steinberg, D. R. (1984) A new method for evaluation and staging of avascular necrosis of the femoral head, in Bone (Arlet, J., Ficat, R. P., and Hungerford, D. S., eds.), Williams & Wilkins, Baltimore, pp. 398–493.Google Scholar
  71. 71.
    Judet, H. and Gilbert, A. (2001) Long-term results of free vascularized fibular grafting for femoral head necrosis. Clin. Orthop. Rel. Res. 386, 114–119.CrossRefGoogle Scholar
  72. 72.
    Merle D’aubigne, R. (1970) Cotation chiffree de la fonction de la hanche. Rev. Chir. Orthop. Reparatrice App. Mot. 56, 481–486.Google Scholar
  73. 73.
    Berend, K. R., Gunneson, E. E., and Urbaniak, J. R. (2003) Free vascularized fibular grafting for the treatment of postcollapse osteonecrosis of the femoral head. J. Bone Joint Surg. 85A, 987–993.Google Scholar
  74. 74.
    Bozic, K. J., Zurakowski, D., and Thornhill, T. S. (1999) Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J. Bone Joint Surg. 81A, 200–209.Google Scholar
  75. 75.
    Mont, M. A., Jones, L. C., Pacheco, I., and Hungerford, D. S. (1998) Radiographic predictors of outcome of core decompression for hips with osteonecrosis stage III. Clin. Orthop. Rel. Res. 354, 159–168.CrossRefGoogle Scholar
  76. 76.
    Lavernia, C. J., Sierra, R. J., and Grieco, F. R. (1999) Osteonecrosis of the femoral head. J. Am. Acad. Orthop. Surg. 7, 250–261.PubMedGoogle Scholar
  77. 77.
    Mont, M. A. and Hungerford, D. S. (1995) Non-traumatic avascular necrosis of the femoral head. J. Bone Joint Surg. 77A, 459–474.Google Scholar
  78. 78.
    Pfeifer, W. (1957) Eine ungewohnliche Form und Genese von symmetrischen Osteonekrosen beider Femur-und Humeruskopfkappen. Fortschr. Geb. Rontgen. Nuklearmed. 87, 346–349.CrossRefGoogle Scholar
  79. 79.
    Montella, B. J., Nunley, J. A., and Urbaniak, J. R. (1999) Osteonecrosis of the femoral head associated with pregnancy. J. Bone Joint Surg. 81A, 790–798.Google Scholar
  80. 80.
    Dean, G. S., Kime, R. C., Fitch, R. D., Gunneson, E., and Urbaniak, J. R. (2001) Treatment of osteonecrosis in the hip of pediatric patients by free vascularized fibular graft. Clin. Orthop. Rel. Res. 386, 106–113.CrossRefGoogle Scholar
  81. 81.
    Wood, M. B. (1990) Femoral reconstruction by vascularized bone transfer. Microsurgery 11, 74–79.PubMedCrossRefGoogle Scholar
  82. 82.
    Maeda, M., Bryant, M. H., Yamagata, M., Li, G., Earle, J. D., and Chao, E. Y. S. (1998) Effects of irradiation on cortical bone and their time-related changes. A biomechanical and histomorphological study. J. Bone Joint Surg. 70A, 392–399.Google Scholar
  83. 83.
    Markbreiter, L. A., Pelker, R. R., Friedlander, G. E., Peschel, R., and Panjabi, M. M. (1989) The effect of radiation on the fracture repair process. A biomechanical evaluation of a closed fracture in a rat model. J. Orthop. Res. 7, 178–183.PubMedCrossRefGoogle Scholar
  84. 84.
    Widmann, R. F., Pelker, R. R., Friedlaender, G. E., Panjabi, M. M., and Peschel, R. E. (1993) Effects of prefracture irradiation on the biomechaniacal parameters of fracture healing. J. Orthop. Res. 11, 422–428.PubMedCrossRefGoogle Scholar
  85. 85.
    Duffy, G. P., Wood, M. B., Rock, M. G., and Sim, F. H. (2000) Vascularized free fibular transfer combined with autografting for the management of fracture nonunions associated with radiation therapy. J. Bone Joint Surg. 82A, 544–554.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Elizabeth Joneschild
    • 1
  • James R. Urbaniak
    • 2
  1. 1.Seattle Hand Surgery GroupSeattle
  2. 2.Division of Orthopaedic SurgeryDuke University Medical CenterDurham

Personalised recommendations