Advertisement

Dissolved Air Flotation

  • Lawrence K. Wang
  • Edward M. Fahey
  • Zucheng Wu
Part of the Handbook of Environmental Engineering book series (HEE, volume 3)

Abstract

Adsorptive bubble separation processes make use of the selective adsorption of impurities at the gas/liquid or gas/solid interfaces of rising bubbles. The adsorbed impurities, which can be in soluble or insoluble form, are carried to the top of the bubble separation reactor, where they can be removed from the aqueous system (1,131,141,144). TO’Day, the adsorptive bubble separation processes are used for a variety of solute/liquid and solid/liquid separation applications (2, 3, 4,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79) and many analytical and control methods have been developed for control and monitoring of the processes (5, 6, 7, 8, 9, 10, 11,14,53, 63,1021, 2, 3,131,134). The process applications include water purification (12, 13, 14, 15, 16, 17, 18, 28, 29, 30, 31, 32, 33, 34, 35, 36,55,56,78, 79, 80, 81, 82, 83, 89,92,101,106,107,111,112,118, 119, 120, 121, 122, 123, 124, 130,138,142, 143, 144, 145, 146, 147), storm water runoff treatment (19,61,104,105,149), toxic substance removal (20,21,31, 32, 33, 34,57, 63,107), algae separation (22,23,48,87), odor substance stripping (24,107), bacteria separation (25,26,55,56), groundwater purification (27,109, 110, 111,133,150), industrial waste treatment (49, 50, 51, 52, 53, 54,57,58,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,81,82,93,96, 97, 98, 99, 100, 101, 113, 114, 115, 116, 117,119,127,129,132,137,144), municipal primary and secondary clarification (40, 41, 42, 43, 44, 45, 46, 47,85,86,91, 92, 93, 94, 95, 108,126,135,136, 139,140,146), tertiary clarification (88,89,115), sludge thickening (3,13,37, 38, 39,59,90, 125, 141), deinking operation, mineral compounds separation (31,57,84,154), and so forth. While there are various adsorptive bubble separation processes technically available, dissolved air flotation is the most commonly used flotation process in industry and municipalities tO’Day. In particular, dissolved air flotation is gradually replacing conventional sedimentation processes for clarification. Recently, new sequencing batch reactors (SBR) involving the use of dissolved air flotation (DAF) instead of sedimentation have been developed (133,151, 152, 153). The new SBR-DAF can be either a biological process or a physicochemical process.

Keywords

Suspended Solid Sequencing Batch Reactor Water Treatment Plant Powdered Activate Carbon United Nations Industrial Development Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Wang, Environmental Engineering Glossary, Veridian Engineering (formerly Calspan Corporation), Buffalo, New York, 420 pp. 1974.Google Scholar
  2. 2.
    L. K. Wang, Theory and Applications of Flotation Processes. US Department of Commerce, National Technical Information Service. Springfield, VA, PB 86-194198/AS, 1985.Google Scholar
  3. 3.
    I. Kumar and W. E. Eustance, Flotation Processes, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR 03-88-284, 1988.Google Scholar
  4. 4.
    L. Boyd and C. L. Shell, Proceedings of the 27th Industrial Waste Conference, 1972, pp. 705–713.Google Scholar
  5. 5.
    L. K. Wang, J. American Water Works Assoc., 67, 19–21; 182–184 (1975).Google Scholar
  6. 6.
    L. K. Wang and R. C. Ross, International J. Environ. Anal. Chem., 4, 285–300 (1976).CrossRefGoogle Scholar
  7. 7.
    L. K. Wang, J. Am. Oil Chem. Soc. 52, 340–346 (1975).CrossRefGoogle Scholar
  8. 8.
    L. K. Wang and D. F. Langley, Industrial Engineering & Chemistry, Product Research and Development 14, 210–212 (1975).CrossRefGoogle Scholar
  9. 9.
    L. K. Wang, J. Appl. Chem. Biotech. 25, 475–490 (1975).CrossRefGoogle Scholar
  10. 10.
    L. K. Wang and W. W. Shuster, Industrial Engineering & Chemistry, Product Research and Development, 14, 312–314 (1975).Google Scholar
  11. 11.
    L. K. Wang, M. H. S. Wang, and J. F. Kao, Water, Air and Soil Pollution 9, 337–348 (1978).Google Scholar
  12. 12.
    M. Krofta and L. K. Wang, J. New England Water Works Assoc. 249–264 (1985).Google Scholar
  13. 13.
    M. Krofta and L. K. Wang, J. New England Water Works Assoc. 265–284 (1985).Google Scholar
  14. 14.
    L. K. Wang, Engineering Manual for Operation, Testing, and Monitoring of Hillcrest Wastewater Treatment Facilities. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR 08/87-255, 1987.Google Scholar
  15. 15.
    M. Krofta and L. K. Wang, J. American Water Works Assoc. 74, 304–310 (1982).Google Scholar
  16. 16.
    M. Krofta and L. K. Wang, Proceedings of the 1987 Joint Conference of American Water Works Association and Water Pollution Control Federation, Cheyenne, WY, 1987.Google Scholar
  17. 17.
    L. K. Wang, D. Barns, P. Milne, B. C. Wu, and J. Hollen, Removal of Extremely High Color from Water Containing Trihalomethane Precursor by Flotation and Filtration, US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB83-240374, 11, 1983.Google Scholar
  18. 18.
    M. Krofta, L. K. Wang, and M. Boutroy, Development of a New Treatment System Consisting of Adsorption Flotation and Filtration. US Department of Commerce, National Technical Information Service, Springfield, VA. Report No.PB85-20940l/AS, 1984.Google Scholar
  19. 19.
    M. Krofta, L. K. Wang, R. Robinson, and W. Mahoney, Flotation Treatment of Contaminated Storm Run Off Water. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/03-85-124, 1985.Google Scholar
  20. 20.
    L. K. Wang, B. C. Wu, A. Meier, et al., Removal of Arsenic from Water and Wastewater. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/10-84/6; US Department of Commerce, National Technical Information Service, Springfield, VA. Report No. PB86-169299, 1984.Google Scholar
  21. 21.
    M. Krofta, L. K. Wang, B. C. Wu, and R. Foote, Treatment of West Springfield Raw Water for Ethylene Dibromide Removal, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/05-85/138, 1985.Google Scholar
  22. 22.
    M. Krofta, L. K. Wang, R. L. Spencer, and J. Weber, Proceedings of the Water Quality and Public Health Conference, Worcester Polytechnic Institute, Worcester, MA, pp. 103–110; US Department of Commerce, National Technical Information Service, Springfield, VA. Report No. PB83-219550, 1983.Google Scholar
  23. 23.
    Y. Nurdogan, An Advanced Dissolved Air Flotation System for Microalgae Separation., University of California, Berkeley, CA, 1987.Google Scholar
  24. 24.
    L. K. Wang, Odor Pollution Control by Chemical Treatment, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/10-85/156, 1985.Google Scholar
  25. 25.
    L. K. Wang and P. J. Kolodziej, Proceedings of the Water Quality and Public Health Conference. Worcester Polytechnic Institute, Worcester, MA, pp. 17–29; US Department of Commerce, National Technical Information Service, Springfield, VA. Report No. PB83-244053, 1983.Google Scholar
  26. 26.
    M. Krofta and L. K. Wang, American Institute of Chemical Engineers National Conference Proceedings, Houston, TX; US Dept of Commerce, National Technical Information Service, Springfield, VA. Report No. PB83-232843, 1983.Google Scholar
  27. 27.
    L. K. Wang and B. C. Wu, OCEESA J. 1, 15–18 (1984); US Department of Commerce, National Technical Information Service, Springfield, VA. Report No. PB85-167229/AS.Google Scholar
  28. 28.
    L. K. Wang and B. C. Wu, Treatment of Watervliet Reservoir Water, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/05-87/262, 1987.Google Scholar
  29. 29.
    L. K. Wang and C. Gaetani, Investigation of Potable Water Supply at the Village of Coxsackie, New York, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/09-86/204, 1986.Google Scholar
  30. 30.
    L. K. Wang and B. C. Wu, Investigation of a Sandfloat Pilot Plant for the City of Beacon, New York. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/07-87/263, 1987.Google Scholar
  31. 31.
    C. J. Bien, A Study of Lead Content and Proposed New Flotation Technique of Lead Removal in Drinking Water. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Master’s Thesis No.LIR/MS-l982/Bien (M. Krofta and L. K. Wang, advisors), 1982.Google Scholar
  32. 32.
    B. C. Wu, Separation of Organics and Inorganics from Water by Bubble Separation Process. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Master’s thesis No. LIR/MS-1982/Wu. (M. Krofta and L. K. Wang, advisors), 1982.Google Scholar
  33. 33.
    M. Krofta and L. K. Wang, Treatment of Raw Water from Black River, NY by Flotation-Filtration Process, Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/06-84/5, 1984.Google Scholar
  34. 34.
    M. Krofta and L. K. Wang, Proceedings of the American Water Works Association, Water Reuse Symposium III, San Diego, CA, Vol. 3, pp. 1238–1250, 1984.Google Scholar
  35. 35.
    M. Krofta and L. K. Wang, Proceedings of the American Water Works Association, Water Reuse Symposium II, San Diego, CA, Vol. 3, pp. 1251–1264, 1984.Google Scholar
  36. 36.
    T. F. Zabel and J. D. Melbourne, Development in Water Treatment. Water Research Center, Medmenham, Bucks, UK, 1980.Google Scholar
  37. 37.
    M. Krofta and L. K. Wang, Drying, Hemisphere Publishing Corp., Harper & Row Publishers, New York, 1986, Vol. 2, pp. 765–771.Google Scholar
  38. 38.
    M. Krofta and L. K. Wang, Drying, Hemisphere Publishing Corp., Harper & Row Publishers, New York, 1986, Vol. 2, pp. 772–780.Google Scholar
  39. 39.
    US EPA, Process Design Manual for Sludge Treatment and Disposal. US Environmental Protection Agency, Cincinnati, OH. Technical Report No. 625/1-74-006, 1974.Google Scholar
  40. 40.
    M. Krofta, D. B. Guss, and L. K. Wang, Civil Engineering for Practicing & Design Engineers, Pergamon Press, New York, 1983, Vol. 2, pp. 307–324.Google Scholar
  41. 41.
    C. P. C. Poon, L. K. Wang, and M. H. S. Wang, In: Handbook of Environmental Engineering, L. K. Wang and N. C. Pereira (eds.), Humana Press, Totowa, NJ, 1986, Vol. 3, pp. 229–303.Google Scholar
  42. 42.
    M. Krofta and L. K. Wang, TAPPI J. 70, 92–96 (1987).Google Scholar
  43. 43.
    M. V. Childers, Proceedings of National Council for Air and Improvement Southern Regional Meeting, 1984.Google Scholar
  44. 44.
    L. K. Wang, M. H. S. Wang, and C. P. C. Poon, Trickling Filters. In: Handbook of Environmental Engineering, L. K. Wang and N. C. Pereira (eds.), Humana Press, Totowa, NJ, 1986, Vol. 3, pp. 361–426.Google Scholar
  45. 45.
    M. Krofta and L. K. Wang, Proceedings of the 41st Industrial Waste Conference, Lewis Publishers Inc., Chelsea, MI, 1987, pp. 67–72.Google Scholar
  46. 46.
    L. K. Wang, M. H. S. Wang, and C. P. C. Poon, Effluent and Water Treatment Journal. 24, 9–95 (1984).Google Scholar
  47. 47.
    C. P. C. Poon, L. K. Wang, and M. H. S. Wang, Waste Stabilization Ponds and Lagoons. In: Handbook of Environmental Engineering, L. K. Wang and N. C. Pereira (eds.), Humana Press, Totowa, NJ, 1986, Vol. 3, pp. 305–360.Google Scholar
  48. 48.
    M. Krofta, L. K. Wang, R. L. Spencer, and J. Weber, Algae Separation by Dissolved Air Flotation. US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB83-219550, 1983.Google Scholar
  49. 49.
    M. Lundh, L. Jonsson, and J. Dahlquist, Water Research 36, 1585–1595 (2002).CrossRefGoogle Scholar
  50. 50.
    A. R. Shawwa and D. W. Smith, Water Science Technology 38, 245–252 (1998).CrossRefGoogle Scholar
  51. 51.
    F. W. Pontius, Water Quality and Treatment, 4th ed., McGraw-Hill, New York, 1990, pp. 367–453.Google Scholar
  52. 52.
    Y. Chung, Y. C. Choi, Y. H. Choi, and H. S. Kang, Water Research 34, 817–824 (2000).CrossRefGoogle Scholar
  53. 53.
    S. Steinbach and J. Haarhoff, Water Science Technology 38, 303–310 (1998).CrossRefGoogle Scholar
  54. 54.
    A. A. Al-Shamrani, A. James, and H. Xiao, Water Research 36, 1503–1512 (2002).CrossRefGoogle Scholar
  55. 55.
    J. K. Edzwald and M. B. Kelley, Water Science Technology 37, 1–8 (1998).CrossRefGoogle Scholar
  56. 56.
    K. French, R. K. Guest, G. R. Finch, and C. N. Haas, Water Research 34, 4116–4119 (2000).CrossRefGoogle Scholar
  57. 57.
    L. Stoica, M. Dinculescu, and C. G. Plapcianu, Water Research 32, 3021–3030 (1998).CrossRefGoogle Scholar
  58. 58.
    G. Offringa, Water Science Technology 31, 159–72 (1995).CrossRefGoogle Scholar
  59. 59.
    T. H. Chung and D. Y. Kim, Water Science Technology 36, 223–230 (1997).CrossRefGoogle Scholar
  60. 60.
    N. T. Manjunath, I. Mehrotra, and R. P. Mathur, Water Research 34, 1930–1936 (2000).CrossRefGoogle Scholar
  61. 61.
    S. Laine, T. Poujol, S. Dufay, J. Baron, and P. Robert, Water Science Technology 38, 99–105 (1998).CrossRefGoogle Scholar
  62. 62.
    P. Jokela and P. Keskitalo, Water Science Technology 40, 33–41 (1999).CrossRefGoogle Scholar
  63. 63.
    J. P. Malley, Jr., Environmental Technology 11, 1161–1168 (1991).Google Scholar
  64. 64.
    D. Q. Bunker, Jr., J. K. Edzwald, J. Dahlquist, and L. Gillberg, Water Science Technology 31, 63–71 (1995).CrossRefGoogle Scholar
  65. 65.
    D. M. Leppinen, J. Water Supply: Research And Technology-Aqua 49, 258–259 (2000).Google Scholar
  66. 66.
    D. Miskovic, B. Dalmacija, Z. Zivanov, E. Karlovic, Z. Hain, and S. Maric, Water Science Technology 18, 105–114 (1986).Google Scholar
  67. 67.
    J. K. Edzwald, J. P. Walsh, G. S. Kaminski, and H. J. Dunn, J. Am. Water Works Assoc., 84, 92–100 (1992).Google Scholar
  68. 68.
    K. Fukushi, Y. Matsui, and N. Tambo, J. Water Supply: Research And Technology-Aqua. 47, 76–86 (1998).Google Scholar
  69. 69.
    R. Klute, S. Langer, and R. Pfeifer, Water Science Technology 31, 59–62 (1995).CrossRefGoogle Scholar
  70. 70.
    A. Vlaski, A. N. Van Breemen, and G. J. Alaerts, J. Water Supply: Research And Technology-Aqua. 45, 53–261 (1996).Google Scholar
  71. 71.
    C. C. Ho and K. Ahmad, J. Colloid Interface Sci. 216, 25–33 (1999).CrossRefGoogle Scholar
  72. 72.
    M. Lundh, L. Jonsson, and J. Dahlquist, Water Research 34, 21–30 (2000).CrossRefGoogle Scholar
  73. 73.
    M. Lundh, L. Jonsson, and J. Dahlquist, Water Science Technology 43, 185–194 (2001).Google Scholar
  74. 74.
    C. T. Ta, J. Beckley, and A. Eades,Water Science Technology 43, 145–152 (2001).Google Scholar
  75. 75.
    A. R. Shawwa and D. W. Smith, Water Science Technology 38, 245–252 (1998).CrossRefGoogle Scholar
  76. 76.
    V. Dupre, M. Ponasse Y. Aurelle, and A. Secq, Water Research 32, 2491–2497 (1998).CrossRefGoogle Scholar
  77. 77.
    M. Krofta and L. K. Wang, Development of An Innovative and Cost Effective Municipal-Industrial Waste Treatment System. US Department of Commerce, National Technical Information Service, Springfield, VA. PB88-168109/AS, 1985.Google Scholar
  78. 78.
    R. J. Scriven, S. K. Ouki, A. S. Doggart, and M. J. Bauer, Water Science Technology, 39, 211–215 (1999).CrossRefGoogle Scholar
  79. 79.
    E. Fahey, Pilot Scale Demonstrations and Full Scale Operation of Potable Water Flotation-Filtration Plants. Lenox Institute of Water Technology, Lenox, MA. Master’s thesis. (L. K. Wang and D. B. Aulenbach, advisors), 2001.Google Scholar
  80. 80.
    M. Krofta and L. K. Wang, Treatment of Potable Water from Seoul, Korea by Flotation, Filtration and Adsorption. US Department of Commerce, National Technical Information Service, Springfield, VA. PB88-200530/AS, 1985.Google Scholar
  81. 81.
    M. Krofta and L. K. Wang, Proceedings of the 1985 Powder and Bulk Solids Conference, Chicago, IL, 28 pp. 1985.Google Scholar
  82. 82.
    L. K. Wang, B. C. Wu, R. Fat, and F. Rogalla, Treatment of Scallop Processing Wastewater by Flotation, Adsorption and Ion Exchange. US Department of Commerce, National Technical Information Service, Springfield, VA. PB89-143556/AS, 1985.Google Scholar
  83. 83.
    G. M. Huntley, L. K. Wang, and L. W. Layer, Evaluation of Sodium Aluminate as a Coagulant for Cost Savings at Water Treatment Plants. US Department of Commerce, National Technical Information Service, Springfield, VA. PB88-168075/AS, 1985.Google Scholar
  84. 84.
    M. Krofta, L. K. Wang, and R. Foote, Separation of High Grade Sulfur from an Ore by Flotation. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA., Technical Report No. LIR/09-85/155, 1985.Google Scholar
  85. 85.
    L. K. Wang, Secondary Treatment of Bangor Primary Effluent by Supracell Clarifier. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/11-85/160, 1985.Google Scholar
  86. 86.
    M. Krofta and L. K. Wang, Investigation of Municipal Wastewater Treatment by a Compact Innovative System. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/01-86/165, 1986.Google Scholar
  87. 87.
    L. K. Wang, Removal of Algae from Lagoon Effluent. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/01-88/167, 1988.Google Scholar
  88. 88.
    M. Krofta and L. K. Wang, Tertiary Wastewater Treatment. US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB88-168133/AS, 1986.Google Scholar
  89. 89.
    L. K. Wang, Symposium on Environmental Technology and Management, US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No PB88-200589/AS, 1986.Google Scholar
  90. 90.
    L. K. Wang, A Promising and Affordable Solution to Sludge Treatment. US Department of Commerce, National Technical Information Service, Springfield,VA. Technical Report No. PB88-168398/AS, 1986.Google Scholar
  91. 91.
    M. Krofta, and L. K. Wang, Municipal Waste Treatment by Supracell Flotation, Chemical Oxidation and Star System, US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB88-200548/AS, 1986.Google Scholar
  92. 92.
    M. Krofta, and L. K. Wang, Dissolved Air Flotation Processes. US Department of Commerce, National Technical Information Service, Springfield,VA. Technical Report No. PB88-168448/AS, 1986.Google Scholar
  93. 93.
    M. Krofta, D. Guss, and L. K. Wang, Proc. 42nd Industrial Waste Conference, Purdue Univ., Lewis Publishers, Chelsea, MI, 1988, pp. 185–195.Google Scholar
  94. 94.
    L. K. Wang and P. G. Daly, Preliminary Design Report of a 10-MGD Deep Shaft Flotation Plant for the City of Bangor. US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB88-200597/AS, 1987.Google Scholar
  95. 95.
    L. K. Wang and P. G. Daly, Preliminary Design Report of a 10-MGD Deep Shaft Flotation Plant for the City of Bangor, US Department of Commerce, National Technical Information Service, Springfield, VA. Technical Report No. PB88-200605/AS, 1987.Google Scholar
  96. 96.
    M. Krofta, L. K. Wang, and C. D. Pollman, Procedings of the 43rd Industrial Waste Conference, Lewis Publishers, Chelsea, MI, pp. 535. 1989.Google Scholar
  97. 97.
    M. Krofta and L. K. Wang, Proceedings of the 43rd Industrial Waste Conference, pp. 673. 1989.Google Scholar
  98. 98.
    L. K. Wang, Recent Development in Cooling Water Treatment with Ozone. Lenox Institute of Water Technology, Lenox, MA. LIR/03-88-285, 1988.Google Scholar
  99. 99.
    L. K. Wang, Treatment of Cooling Tower Water with Ozone, Lenox Institute of Water Technology, Lenox, MA. LIR/05-88/303, 1988.Google Scholar
  100. 100.
    M. Krofta, D. Guss, and L. K. Wang, Proceedings of the 1988 Food Processing Waste Conference, GTI, Atlanta, GA, 1988.Google Scholar
  101. 101.
    M. Krofta, and L. K. Wang, Proceedings of National Water Supply Improvement Association Conference, San Diego, CA, 1988.Google Scholar
  102. 102.
    L. K. Wang and M. H. S. Wang, Proceedings of the 44th Industrial Waste Conference, 1990, pp. 493–504.Google Scholar
  103. 103.
    M. Krofta, and L. K. Wang, Proceedings of the 44th Industrial Waste Conference, 1990, pp. 505–515.Google Scholar
  104. 104.
    L. K. Wang and W. J. Mahoney, Water Treatment 9, 223–233 (1994).Google Scholar
  105. 105.
    L. K. Wang, M. H. S. Wang, and W. J. Mahoney, Proceedings of the 44th Industrial Waste Conference, 1990, pp. 667–673.Google Scholar
  106. 106.
    L. K. Wang, Using Air Flotation and Filtration in Removal of Color, Trihalomethane Precursors and Giardia Cysts. NYSDOH workshop on water treatment chemicals and filtration, American Slow Sand Association Annual Meeting, 1989.Google Scholar
  107. 107.
    L. K. Wang, M. H. S. Wang, and F. M. Hoagland, Water Treatment 7, 1–16 (1992).Google Scholar
  108. 108.
    L. K. Wang and J. P. VanDyke, Proceedings of Annual Meeting of Engineering Foundation, Palm Coast, FL, Dec. 1989.Google Scholar
  109. 109.
    L. K. Wang, Great Lakes 90 Conference Proceedings, Hazardous Materials Control Research Institute, Silver Spring, MD, Sept. 1990.Google Scholar
  110. 110.
    L. K. Wang, Proceedings of New York-New Jersey Environmental Exposition, NYNJE, Belmont, MA, Oct. 1990.Google Scholar
  111. 111.
    L. K. Wang, Proceedings of Modern Engineering Technology Seminar, Taipei, Taiwan, ROC, Dec. 1990.Google Scholar
  112. 112.
    T. Pieterse and R. Kfir, Water Quality Int., 4, 31 (1991).Google Scholar
  113. 113.
    B. Rusten, B. Eikebrokk, and G. Thorvaldsen, Water Science Technology, 22, 108 (1990).Google Scholar
  114. 114.
    P. Keskitaol and I. Sundholm, Proceedings of the 6th International Symposium on Agricultural and Food Processing Wastes, Chicago, IL, Dec. 1990.Google Scholar
  115. 115.
    H. J. Kiuru, Water Science Technology, 22,139 (1990).Google Scholar
  116. 116.
    D. Guss and R. Hebert, 1990 TAPPI Nonwovens Conference & Technology Exposition, 1990.Google Scholar
  117. 117.
    D. Guss and D. Brown, 1991 TAPPI Environmental Conference, April, 1991.Google Scholar
  118. 118.
    J. A. Kollajtis Proceedings of the Annual AWWA Conference, Water Quality for the New Decade, Philadelphia, PA, 1991, pp. 433–448.Google Scholar
  119. 119.
    L. K. Wang, Proceedings of the 1991 Annual Conference of the Korea Society of Water Pollution Research and Control, Seoul, Korea, Feb. 1991.Google Scholar
  120. 120.
    J. P. Malley and J. K. Edzwald, J. Water SRT-Aqua 40, 7–17 (1991).Google Scholar
  121. 121.
    L. K. Wang, M. H. S. Wang, and P. Kolodzicj, Water Treatment 7, 387–406 (1992).Google Scholar
  122. 122.
    L. Mahony, Proceedings TAPPI Contaminents Seminar, 1992.Google Scholar
  123. 123.
    K. A. Graham and M. Venkatesh, Proceedings of the 47th Industrial Waste Conference, Lewis Publishers, Chelsea, MI, 1992.Google Scholar
  124. 124.
    L. K. Wang, and C. S. Hwang, Proceedings of the 1991 Annual Conference of the Korean Society of Water Pollution Research and Control, Seoul Korea, Water Treatment 8, 7–16, 1993.Google Scholar
  125. 125.
    S. Cizinska, V. Matejo, C. Wase, Y. Klasson, J. Krejci, and G. Dalhammar, Water Research, 26, 139 (1992).CrossRefGoogle Scholar
  126. 126.
    N. Dewitt and N. K. Shammas, Proceedings Water Environment Federation 65th Annual Conference & Expo., New Orleans, LA, Sept. 1992.Google Scholar
  127. 127.
    M. Viitasaari, Environ. & Safety Tech., pp. 49, 51, 53, 55 (1993).Google Scholar
  128. 128.
    B. Pascual, B. Tansel, and R. Shalewitz, Proceedings of the 49th Industrial Waste Conference, Lewis Publishers, Chelsea, MI, 1994.Google Scholar
  129. 129.
    L. K. Wang and M. Cheryan, Application of Membrane Technology in Food Industry for Cleaner Production. United Nations Industrial Development Organization (UNIDO) Technical Paper No. 8-6-95, 1995.Google Scholar
  130. 130.
    L. K. Wang, The State of the Art Technologies for Water Treatment and Management. United Nations Industrial Development Organization (UNIDO) Technical Paper No. 8-8-95, 1995.Google Scholar
  131. 131.
    L. K. Wang, Water Treatment 10, 41–54 (1995).Google Scholar
  132. 132.
    M. Viitasaari, P. Jokela, and J. Heinanen, Water Science Technology, 31, 299–313 (1995).CrossRefGoogle Scholar
  133. 133.
    L. K. Wang, P. Wang, and N. L. Clesceri, Water Treatment 10, 121–134 (1995).Google Scholar
  134. 134.
    L. K. Wang and M. H. S. Wang, Water Treatment 10, 261–282 (1995).Google Scholar
  135. 135.
    R. Gnirss and A. Peter-Frohlich, Water Science Technology 34, 257–265 (1996).CrossRefGoogle Scholar
  136. 136.
    M. Krofta, D. Miskovic, D. Burgess, and E. Fahey, Water Science Technology 33, 171–179 (1996).CrossRefGoogle Scholar
  137. 137.
    R. E. Carawan and E.G. Valentine, Dissolved Air Flotation Systems for Bakeries, North Carolina Cooperative Extension Service, Tchnical Report No. CD-43, March, 1986.Google Scholar
  138. 138.
    L. K. Wang, OCEESA J., 13, 12–16 (1996).Google Scholar
  139. 139.
    M. Krofta and D. Burgess, Proceedings of the First International Conference on Environmental Restoration, Ljubljana, Slovenia, July, 1987.Google Scholar
  140. 140.
    D. Guss and R. L. Klaer, Water Environ. Fed. Conf., Chicago, IL, Oct. 1997.Google Scholar
  141. 141.
    M. Krofta and L. K. Wang, Flotation and Related Adsorptive Bubble Separation Processes. 4th ed. Lenox Institute of Water Technology, Lenox, MA. Technical Manual No. Lenox 7-25-1999/348, 1999.Google Scholar
  142. 142.
    L. K. Wang and S. Kopko, City of Cape Coral Reverse Osmosis Water Treatment Facility,. US Deparment of Commerce, National Technical Information Service, Springfield, VA. 1987; Proceedings of Advances in Filtration and Separation Technology, American Filtration and Separation Society, Vol. 11, pp. 499–506. http://www.afssociety.org/publications/Contents/vol11.shtml.Google Scholar
  143. 143.
    C. C. Yannoni, Q. Zhu, and S. D. Clark, J. New England Water Works Assoc., 113, 115–127 (1999).Google Scholar
  144. 144.
    M. Krofta and L. K. Wang, Flotation Engineering. 1st ed. Lenox Institute of Water Technology, Lenox, MA. Technical Manual No. Lenox/1-06-2000/368, Jan. 2000.Google Scholar
  145. 145.
    T. Hedberg, J. Dahlquist, D. Karlsson, and L. O. Sorman, Water Science and Technology, 37, 81–88 (1998).CrossRefGoogle Scholar
  146. 146.
    H. Kiuru and R. Vahala, Proceedings of the 4th International Conference on DAF in Water and Wastewater Treatment, IWA Publishing (International Water Association); 2001.Google Scholar
  147. 147.
    Editor, Engineering News Records (ENR), p. 55 May 19, 2003.Google Scholar
  148. 148.
    Pan America Environmental, Dissolved Air Flotation Operational Theory,. Pan America Environmental, Wauconda, IL, http://www.panamenv.com/dissolved-air-flotation-theory.html, 2003.Google Scholar
  149. 149.
    L. K. Wang, and M. H. S. Wang, Handbook of Industrial Waste Treatment, 1st ed., Marcel Dekker, New York, pp. 61–125, 1992.Google Scholar
  150. 150.
    L. K. Wang, Site Remediation and Groundwater Decontamination. In: Handbook of Industrial and Hazardous Wastes Treatment, 2nd ed., L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis (eds.), Marcel Dekker, New York, pp. 923–969, 2004.Google Scholar
  151. 151.
    L. K. Wang, L. Kurylko and M. H. S. Wang, Sequencing Batch Liquid Treatment. US Patent No. 5354458. US Patent & Trademark Office, Washington, DC, 1996.Google Scholar
  152. 152.
    D. Nolasco, D. Irvine, and M. Monoharan, Water Environment & Technology. 10, 91–96 (1998).Google Scholar
  153. 153.
    L. K. Wang, and Y. Li, Sequencing Batch Reactors. In: Biological Treatment Processes, L. K. Wang, N. C. Pereira, and Y. T. Hung (eds.), Humana Press, Totowa, NJ, 2005.Google Scholar
  154. 154.
    L. K. Wang, J. V. Krouzek, and U. Kounitson, Case Studies of Cleaner Production and Site Remediation. United Nations Industrial Development Organization (UNIDO), Vienna, Austria. Training Manual No. DTT-5-4-95, 1995.Google Scholar
  155. 155.
    L. K. Wang, Water Treatment, 6, 127–146 (1991).Google Scholar
  156. 156.
    W. L. Forestell and L. K. Wang, J. New England Water Works Assoc. 99, 249–284 (1991).Google Scholar
  157. 157.
    D. Nickols and I. A. Grossley, The Current Status of Dissolved Air Flotation in the USA. Technical Report. Hazen and Sawyer, New York, 2003.Google Scholar
  158. 158.
    US EPA, Personal communications with Dr. Lawrence K. Wang of Lenox Institute of Water Technology, Lenox, MA, 2002.Google Scholar
  159. 159.
    L. K. Wang, Feasibility Study of Treating Field Military Wastewater by a Process System Including Powdered Carbon Adsorption, Polymer Coagulation, and Diatomite Filtration, U.S. Defense Technical Information Center, Alexandria, VA, ADA077198, 1973.Google Scholar
  160. 160.
    L. K. Wang, Investigation of Methods for Determining Optimum Powdered Carbon and Polyeletrolyte Dosages in Military Wastewater Treatment Systems, U.S. Defense Technical Information Center, Alexandria, VA, ADA082506, 1973.Google Scholar
  161. 161.
    L. K. Wang, J of Applied Chemistry and Biotech, 25, 491–503 (1975).CrossRefGoogle Scholar
  162. 162.
    L. K. Wang, Water and Sewage Works, 123, 42–47, 1976.Google Scholar
  163. 163.
    L. K. Wang, Water and Sewage Works 124, 32–36 (1977).Google Scholar
  164. 164.
    L. K. Wang, Gas Dissolving System and Method, U. S. Patent No. 5049320, September 17 1991. US Patent & Trademark Office, Washington, DC, 1991.Google Scholar
  165. 165.
    L. K. Wang, Gas Dissolving and Releasing Liquid Treatment System. U. S. Patent No. 5167806, December 1, 1992. US Patent & Trademark Office, Washington, DC, 1992.Google Scholar
  166. 166.
    L. K. Wang, Water and Wastewater Treatment. U.S. Patent No. 5240600, August 31, 1993. US Patent & Trademark Office, Washington, DC, 1993.Google Scholar
  167. 167.
    L. K. Wang, Improved Method and Apparatus for Liquid Treatment. U.S. Patent No. 5256299, October 26, 1993, US Patent & Trademark Office, Washington, DC, 1993.Google Scholar
  168. 168.
    L. K. Wang, Combined Coarse and Fine Bubbles Separation System. U.S. Patent No. 5275732, January, 4, 1994. US Patent & Trademark Office, Washington, DC, 1994.Google Scholar
  169. 169.
    M. Krofta and L. K. Wang, Proceedings of the Seventh Mid-Atlantic Industrial Waste Conference, 1985, pp. 207–216.Google Scholar
  170. 170.
    L. K. Wang, Micro/Ultra Filtration System, U.S. Patent No. 4,973,404, Nov. 1990. US Patent & Trademark Office, Washington, DC, 1990.Google Scholar
  171. 171.
    L. K. Wang, Reduction of Color, Odor, Humic Acid and Toxic Substances by Adsorption, Flotation and Filtration, Annual Meeting of American Institute of Chemical Engineers, Symposium on Design of Adsorption Systems for Pollution Control, Philadelphia, PA (P926-08-89-20), 1989.Google Scholar
  172. 172.
    Dongshin, Dissolved Air Flotation. Technical Report. Dongshin, Seoul, Korea. September 26, 2003.Google Scholar
  173. 173.
    L. K. Wang, J. S. Wu, N. K. Shammas, and D. A. Vaccari, Recarbonation and Softening. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Sahmmas (eds.). Humana Press, Totowa, NJ, pp. 199–228, 2005.Google Scholar
  174. 174.
    L. K. Wang, Canad. J. Chem. Engin. 60, 116–122 (1982) (NTIS-A131138).CrossRefGoogle Scholar
  175. 175.
    L. K. Wang, Flotation and Best Available Technologies for Tannery Waste Treatment. Manual No. Lenox/10-18-1999/362. Lenox Institute of Water Technology, Lenox, MA, USA. Training Manual No. UNIDO-DTT-1-15-96. United Nations Industrial Development Organization, Vienna, Austria, 1999.Google Scholar
  176. 176.
    L. K. Wang, 1974 Earth Environment and Resources Conference Digest of Technical Papers, 1(74), 56–57 (1974).Google Scholar
  177. 177.
    J. M. Wong, and F. Y. Chang, Application of High-Rate Clarification Processes (DAF, AquaDAF, and Actiflo) to Optimize Drinking Water Treatment, Technical paper presented at the California-Nevada Section AWWA Fall Conference in San Diego, CA, October 6–9, 2003.Google Scholar
  178. 178.
    L. B. Stovall, Source Water Protection: Greenville, South Carolina. US Environmental Protection Agency, Washington, DC, March 12, 2003.Google Scholar
  179. 179.
    W. A. Selke, L. K. Wang, N. K. Shammas, and D. A. Aulenbach, Correction Factor of Gas Dissolution Under Pressure for Flotation System Design, Technical Note, International Association of Flotation Technology, Newtonville, NY, Nov. 2003.Google Scholar
  180. 180.
    M. H. S. Wang, Separation of Lignin from Aqueous Solution by Adsorptive Bubble Separation Processes. Ph.D. thesis. 241 pp. Rutgers University, New Brunswick, NJ. 1972.Google Scholar
  181. 181.
    L. K. Wang, Continuous Bubble Fractionation Process. Ph.D. thesis. 171 pp. Rutgers University, New Brunswick NJ. 1972.Google Scholar
  182. 182.
    L. K. Wang, Y. T. Hung, H. H. Lo and C. Yapijakis (eds.). Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker Inc., NYC, NY. pp. 873–921, 2004.Google Scholar
  183. 183.
    L. K. Wang, N. K. Shammas and Y. T. Hung (eds.). Advanced Physicochemical Treatment Processes. Humana Press, Totowa, NJ, 2005.Google Scholar
  184. 184.
    R. M. Manamy. Public Works. pp. 24–28, Dec. (2003).Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Lawrence K. Wang
    • 1
    • 2
    • 3
  • Edward M. Fahey
    • 4
  • Zucheng Wu
    • 5
  1. 1.Zorex CorporationNewtonville
  2. 2.Lenox Institute of Water TechnologyLenox
  3. 3.Krofta Engineering CorporationLenox
  4. 4.DAF EnvironmentalLLCHinsdale
  5. 5.Department of Environmental Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations