Skip to main content

Integration Issues: Dealing with Intermittency

  • Chapter
  • 46 Accesses

Abstract

Some renewable energy sources are variable, so that mechanisms have to be available to balance their impact on the power grid system. Grid systems already deal with supply and demand variations, in part by ramping backup plants up and down, and with moderate levels of renewables added, this will remain sufficient, but as and when the renewable contribution rises, the existing mechanisms will have to be extended and additional mechanisms added. Options include smart grid demand-management systems, supergrid imports balanced over time by exports of excess supply, increased use of pumped hydro and new compressed air storage systems, along with power-to-gas systems converting surplus supply to stored hydrogen/methane and flexible CHP/district heating systems linked to large heat stores.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboumahboub, T., Schaber, K.,Tzscheutschler, P. and Hamacher, T. (2010) ‘Optimization of the Utilization of Renewable Energy Sources in the Electricity Sector’, Recent Advances in Energy and Environment Conference: http://www.wseas.us/e-library/conferences/2010/Cambridge/EE/EE-29.pdf

    Google Scholar 

  • Agora (2015) ‘The European Power System in 2030–Flexibility Challenges and Integration–Benefits’, Fraunhofer Institute Report for Agora Energiewende: www.agora-energiewende.org/service/publikationen/publikation/pub-action/show/pub-title/the-europeanpower-system-in-2030-flexibility-challenges-and-integration-benefits/

    Google Scholar 

  • Alexander, M., James, P. and Richardson, N. (2015) ‘Energy Storage against Interconnection as a Balancing Mechanism for a 100% Renewable UK Electricity Grid’, IET Renewable Power Generation, 9 (2), March, pp. 131–141: http://digital-library.theiet.org/content/journals/10.1049/iet-rpg.2014.0042

    Article  Google Scholar 

  • Andrews, R. (2015) ‘The Difficulties of Powering the Modern World with Renewables’, Energy Matters web site, 10 June: http://euanmearns.com/the-difficulties-of-powering-the-modern-world-with-renewables

    Google Scholar 

  • Apt, J. and Jaramillo, P. (2014) ‘Variable Renewable Energy and the Electricity Grid’, Routledge, London: http://www.routledge.com/

    Google Scholar 

  • Aris, C. (2014) ‘Wind Power Reassessed: A Review of the UK Wind Resource for Electricity Generation’, Scientific Alliance Report for the Adam Smith Institute, London: www.adamsmith.org/wp-content/uploads/2014/10/Assessment7.pdf

    Google Scholar 

  • Barnham, K. (2014) ‘The Burning Answer,’ Weidenfeld and Nicolson, London: http://www.orionbooks.co.uk/books/detail.page?isbn=9781780225333

    Google Scholar 

  • Becker, S., Frew, B., Andresen, G., Jacobson, M., Schramm, S. and Greiner, M. (2015) ‘Renewable Build-Up Pathways for the US: Generation Costs Are Not System Costs’, Energy, 81, 1 March, pp. 437–445: http://www.sciencedirect.com/science/article/pii/S0360544214014285

    Article  Google Scholar 

  • Borenstein, S (2015) ‘Is the Future of Electricity Generation Really Distributed?’, Energy Institute at Haas, University of California Berkeley Blog: http://energyathaas.wordpress.com/2015/05/04/is-thefuture-of-electricity-generation-really-distributed/

    Google Scholar 

  • Boyle, G. (ed) (2009) ‘Renewable Electricity and the Grid’, Earthscan, London: http://www.routledge.com/books/details/9781844077892/#des cription

    Google Scholar 

  • Chatzivasileiadis, S., Ernst, D. and Andersson, G. (2013) ‘The Global Grid’, Renewable Energy, 57, September, pp. 372–383: http://www.sciencedirect.com/science/article/pii/S0960148113000700

    Article  Google Scholar 

  • Colthorpe, A. (2014) ‘Report Challenges Short-Term Role of Storage in Germany’s Energy Transition’, PV Tech, 22 September: http://www.pv-tech.org/news/energy-storage-not-needed-in-germany-until-nation-hits-90-renewables-penetr

    Google Scholar 

  • Darling, R., Gallagher, K., Kowalski, J., Ha, S. and Brushett, F. (2014) ‘Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries’, Energy Environmental Science, 7, September, pp. 3459–3477: http://pubs.rsc.org/en/Content/ArticleLanding/2014/EE/C4EE02158D

    Article  CAS  Google Scholar 

  • DECC (2012) ‘Capturing the Full Electricity Efficiency Potential of the UK’, Department of Energy and Climate Change, London: http://webarchive.nationalarchives.gov.uk/20121217150421/http://www.decc.gov.uk/en/content/cms/emissions/edr/edr.aspx

    Google Scholar 

  • DENA (2014a) ‘Pilot- und Demonstrationsprojekte im Power-to-GasKonzept’, Deutsche Energie-Agentur: http://www.powertogas.info/power-to-gas/interaktive-projektkarte.html

    Google Scholar 

  • DENA (2014b) ‘Dena Calls for Rapid Expansion of Electricity Storage Facilities,’ DENA Press Release, 7 October: http://www.dena.de/en/press-releases/pressemitteilungen/dena-fordert-stromspeichermuessen-zuegig-ausgebaut-werden.html

    Google Scholar 

  • Desertec (2015) Desertec Foundation web site: http://www.desertec.org/concept/

    Google Scholar 

  • Druckman, A., Chitnis, M., Sorrell, S. and Jackson, T. (2011) ‘Missing Carbon Reductions? Exploring Rebound and Backfire Effects in UK Households’, Energy Policy, 39 (6): http://www.sciencedirect.com/science/article/pii/S0301421511002473

    Google Scholar 

  • Ela, E., Kirby, B., Botterud, A., Milostan, C., Krad, I. and Koritarov, V. (2013) ‘The Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation’, US National Renewable Energy Laboratory paper: http://www.consultkirby.com/files/NREL-CP-5500–58655_Role_of_Pumped _Storage.pdf

    Google Scholar 

  • Elliott, D. (2012) ‘Emergence of European Supergrids,’ Energy Strategy Reviews, 1 (3), March, pp. 171–173: http://www.sciencedirect.com/science/article/pii/S2211467X12000120

    Article  Google Scholar 

  • Elliott, D. (2015) ‘Energy Use in Buildings’, International Journal of Ambient Energy, 36 (2) February, p. 49: http://www.tandfonline.com/doi/full/10.1080/01430750.2015.1013007#abstract

    Article  Google Scholar 

  • ETI (2015) ‘Decarbonising Heat for UK Homes’, Energy Technologies Institute, Loughborough and Birmingham: http://theeti.cmail20.com/t/j-l-ddjhol-otiukhuju-k/

    Google Scholar 

  • Gaelectric (2011) ‘CAES Compressed Air Energy Storage’, Gaelectric web site: http://www.gaelectric.ie/index.php/energy-storage/

    Google Scholar 

  • Gillingham, K., Rapson, D. and Wagner, G. (2014) ‘The Rebound Effect and Energy Efficiency Policy’, E2e Working Paper 013, University of California, Berkeley, Massachusetts Institute of Technology and the University of Chicago: http://e2e.haas.berkeley.edu/pdf/workingpapers/WP013.pdf

    Google Scholar 

  • Gruver, M. and Brown, M. (2014) ‘eRenewable Energy Plan Hinges on Huge Utah Caverns’, Associated Press, 24 September 24: http://bigstory.ap.org/article/3084cb4c459f4ffd9b666f5d5d2e44e3/wind-energyproposal-would-light-los-angeles-hom

    Google Scholar 

  • Hales, R. (2014) ‘The First 100% Green Grid Is Online, Figuratively Speaking’, Cleantechnica, 16 September: http://cleantechnica.com/2014/09/16/fist-100-green-grid-online-figuratively-speaking

    Google Scholar 

  • Highview (2015) High View Power Storage web site: http://www.highview-power.com/

    Google Scholar 

  • IEA (2013) ‘Energy Efficient Building Envelopes’, Technology Road Map, International Energy Agency, Paris: http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergyEfficientBuilding Envelopes.pdf

    Google Scholar 

  • IEA (2014) ‘The Power of Transformation–Wind, Sun and the Economics of Flexible Power Systems’, International Energy Agency, Paris: http://www.iea.org/textbase/npsum/givar2014sum.pdf press release

    Google Scholar 

  • IEA (2015) ‘How2Guide for Smart Grids in Distribution Networks?, International Energy Agency, Paris: www.iea.org/publications/freepublications/publication/TechnologyRoadmapHow2GuideforSmartGridsinDistributionNetworks.pdf

    Google Scholar 

  • IPCC (2014) ‘Fifth Assessment Report’, Intergovernmental Panel on Climate Change, Geneva: http://www.ipcc.ch/

    Google Scholar 

  • Jones, L. (ed) (2014) ‘Renewable Energy Integration’, Elsevier, London: http://www.elsevier.com/books/renewable-energy-integration/jones/978–0–12–407910–6

    Google Scholar 

  • Jones, S. (2012) ‘Mountain Ahead for “Battery of Europe”’, Utility Week, 11 June: http://www.utilityweek.co.uk/news/mountain-ahead-forbattery-of-europe/824882#.VRQVgYUhuRp

    Google Scholar 

  • JRC (2012) ‘District Heating and Cooling’, European Commission Joint Research Centre, Petten: http://setis.ec.europa.eu/system/files/JRCDistrictheatingandcooling.pdf

    Google Scholar 

  • JRC (2013) ‘Assessment of the European potential for PHS’, European Commission Joint Research Centre: http://setis.ec.europa.eu/newsroom-items-folder/jrc-report-european-potential-pumpedhydropower-energy-storage

    Google Scholar 

  • Kanellos, M. (2014) ‘Will Lithium Ion Work for Grid-Scale Storage?’, Renewable Energy World, 2 October: http://www.renewableenergyworld.com/rea/blog/post/2014/10/will-lithium-ionwork-for-grid-scale-storage

    Google Scholar 

  • Martin, M. (2015) ‘Energy Transition Fast Forward! Scouting the Solutions for the 80–100% Renewable Economy: The Exergeia Report’, Impact Economy, Geneva: http://www.impacteconomy.com/en/primer4_details.php

    Google Scholar 

  • Martinez, S. and Hughes, W. (2015) ‘Bringing Variable Renewable Energy Up to Scale: Options for Grid Integration Using Natural Gas and Energy Storage’, World Bank Report: http://documents.worldbank.org/curated/en/2015/02/24141471/bringing-variable-renewable-energyup-scale-options-grid-integration-using-natural-gas-energy-storage

    Google Scholar 

  • MIT (2015) ‘The Future of Solar Energy’, Massachusetts Institute of Technology, Cambridge, MA: http://mitei.mit.edu/futureofsolar

    Google Scholar 

  • Mitchell, C., Froggatt, A. and Hoggett, R. (2014) ‘Governance and Disruptive Energy System Change’, Conference Paper, International Workshop on Incumbent–Challenger Interactions in Energy Transitions’, 22–23 September, University of Stuttgart, Germany: http://projects.exeter.ac.uk/igov/wp-content/uploads/2014/09/Poststuttgart-1-final-paper.pdf

    Google Scholar 

  • Normark, B., Faure, A., Deane, P. and Pye, S (2014) ‘How Can Batteries Support the EU Electricity Network?’, Insight-Energy Report for the European Commission: http://www.insightenergy.org/featured_topics?page=2#featured-topic-2

    Google Scholar 

  • Olivier, D. (2012) ‘Less Is More’, Association for Environment Conscious Building: http://www.aecb.net/publications/less-is-more-how-we-cankeep-going-without-breaking-the-planet-or-the-bank/

    Google Scholar 

  • PennEnergy (2014) ‘$8B Renewable Energy Initiative Proposed for Los Angeles’, PennEnergy, 23 September: http://www.pennenergy.com/articles/pennenergy/2014/09/8b-renewable-energy-initiativeproposed-for-los-angeles.html

    Google Scholar 

  • Pentland, W. (2015) ‘Energy Storage Is the Real Target of Spain’s New Tax on the Sun’, Forbes,18 June: http://www.forbes.com/sites/williampentland/2015/06/18/energy-storage-is-the-real-target-of-spainsnew-tax-on-the-sun/

    Google Scholar 

  • Pfenninger, S. and Keirstead, J. (2015) ‘Renewables, Nuclear, or Fossil Fuels? Scenarios for Great Britain’s Power System Considering Costs, Emissions and Energy Security’, Applied Energy, 152, 15 August, pp. 83–93: http://www.sciencedirect.com/science/article/pii/S0306261915005656

    Article  CAS  Google Scholar 

  • POST (2015) ‘Energy Storage’, UK Parliamentary Office of Science and Technology, POSTNote, 492: http://www.parliament.uk/briefingpapers/POST-PN-492/energy-storage

    Google Scholar 

  • Poyry (2011) ‘Analysing Technical Constraints on Renewable Generation to 2050’, Pyory Consultants Report to the Committee on Climate Change, March: http://www.poyry.com/sites/default/files/technicalconstraintsonrenewablegeneration-march2011.pdf

    Google Scholar 

  • Pugwash (2013) ‘Pathways to 2050: Three Possible UK Energy Strategies’, British Pugwash Group, London: http://britishpugwash.org/pathwaysto-2050-three-possible-uk-energy-strategies/

    Google Scholar 

  • RMI (2014) ‘The Economics of Grid Defection,’ Rocky Mountain Institute, Colorado: http://www.rmi.org/electricity_grid_defection-economics_of_grid_defection

    Google Scholar 

  • Rodriguez, R., Sarah Becker, S., Andresen, G., Heide, D. and Greiner, M. (2014) ‘Transmission Needs across a Fully Renewable European Power System’, Renewable Energy, 63, March, pp. 467–476: http://www.sciencedirect.com/science/article/pii/S0960148113005351

    Article  Google Scholar 

  • Scheer, H. (2005) ‘A Solar Manifesto’, Earthscan, London: http://www.routledge.com/books/details/9781902916514/

    Google Scholar 

  • Sheffield University (2014) ‘Giant Battery to Help Tackle Energy Storage Challenges’, University of Sheffield Press Release, 24 July: http://www.sheffield.ac.uk/faculty/engineering/enews/giant-battery-1.426169

    Google Scholar 

  • Sorensen, B. (2014) ‘Energy Intermittency’, Routledge, London: http://www.routledge.com/books/details/9781466516069/

    Google Scholar 

  • Spross, J. (2014) ‘Home Solar Plus a Battery Could Be Cheaper Than the Grid in Germany in Just a Few Years’ Climate Progress’, 3 October: http://thinkprogress.org/climate/2014/10/03/3575371/hsbc-solar-batterygermany/

    Google Scholar 

  • Tesla (2015) ‘Powerwall Lithium-Ion 7/10kWh Domestic Batteries’, Tesla Press Release: http://www.teslamotors.com/powerwall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 David Elliott

About this chapter

Cite this chapter

Elliott, D. (2015). Integration Issues: Dealing with Intermittency. In: Green Energy Futures: A Big Change for the Good. Palgrave Macmillan, London. https://doi.org/10.1057/9781137584434_4

Download citation

Publish with us

Policies and ethics