Skip to main content

Herbert Simon and Agent-Based Computational Economics

  • Chapter
Minds, Models and Milieux

Part of the book series: Archival Insights into the Evolution of Economics ((AIEE))

Abstract

Herbert Simon was a quintessential interdisciplinary scholar who made pioneering contributions concerning the notion of bounded rationality, built models based on it, and made important advances in understanding complex systems. His importance in the field of artificial intelligence, which was in turn the inspiration of agent-based computational economics (ACE), is discussed in detail in Chen (2005). Among all the Nobel Laureates in Economics, there are at least three whose work has been acknowledged by the ACE community. They are Friedrich Hayek (1899–1992), Thomas Schelling (1921-), and Elinor Ostrom (1933–2012). The last two worked directly on ACE. Schelling’s celebrated work on the segregation model is considered one of earliest publications on ACE (Schelling, 1971). Ostrom contributed to the development of empirical agent-based models (Janssen and Ostrom, 2006). Hayek did not work on ACE, but the connection of his work to ACE has been pointed out by Vriend (2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alam, S.J. and Geller, A. (2012). Networks in Agent-Based Social Simulation. In Agent-Based Models of Geographical Systems, ed. A. J. Heppenstall, A. T. Crooks, L. M. See and M. Batty. Heidelberg: Springer.

    Google Scholar 

  • Albin, P. S. (1975). The Analysis of Complex Socioeconomic Systems. Lexington: Lexington Books.

    Google Scholar 

  • Albin, P. S. (1982). The Metalogic of Economic Predictions, Calculations and Propositions. Mathematical Social Sciences 3 (4), 329–58.

    Article  Google Scholar 

  • Albin, P. S. (1992). Approximations of Cooperative Equilibria in Multi-person Prisoners’ Dilemma Played by Cellular Automata. Mathematical Social Sciences, 24(2), 293–319.

    Article  Google Scholar 

  • Albin, P. S. (1998). Barriers and Bounds to Rationality: Essays on Economic Complexity and Dynamics in Interactive Systems. Princeton: Princeton University Press.

    Google Scholar 

  • Alfarano, S. and Milakovic, M. (2009). Network structure and N-dependence in agent based herding models. Journal of Economic Dynamics & Control, 33, 78–92.

    Article  Google Scholar 

  • Axelrod, R. (1997). Advancing the Art of Simulation in the Social Sciences. In Simulating Social Phenomena. Heidelberg: Springer, 21–40.

    Chapter  Google Scholar 

  • Axelrod, R. and Tesfatsion, L. (2006). Appendix A: A Guide for Newcomers to Agent-Based Modeling in the Social Sciences. Handbook of computational economics 2, 1647–59.

    Google Scholar 

  • Barabási, A.-L. and Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286 (5439), 509–12.

    Article  Google Scholar 

  • Borrill, P. L. and Tesfatsion, L. (2011). Agent-Based Modeling: The Right Mathematics for the Social Sciences? In The Elgar Companion to Recent Economic Methodology, ed. J. B. Davis. Cheltenham: Edward Elgar, 228–54.

    Google Scholar 

  • Callebaut, W. and Rasskin-Gutman, D. (eds) (2005). Modularity: Understanding the Development and Evolution of Natural Complex Systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Casari, M. (2004). Can Genetic Algorithms Explain Experimental Anomalies? Computational Economics, 24 (3), 257–75.

    Article  Google Scholar 

  • Cederman, L.-E. (2002). Agent-Based Modeling in Political Science. The Political Methodologist 10 (1), 16–22.

    Google Scholar 

  • Chang, M.-H. and Harrington, J. E. (2006). Agent-Based Models of Organizations. In L. Tesfatsion and Judd, K. L. (eds), Handbook of Computational Economics, Vol. 2, ch. 26. Amsterdam: Elsevier, 1273–337.

    Google Scholar 

  • Chen, S.-H. (2002). Evolutionary Computation in Economics and Finance, Volume 100. Heidelberg: Springer.

    Book  Google Scholar 

  • Chen, S.-H. (2005). Computational Intelligence in Economics and Finance: Carrying on the Legacy of Herbert Simon. Information Sciences, 170, 121–31.

    Article  Google Scholar 

  • Chen, S.-H. (2008). Computational Intelligence in Agent-Based Computational Economics. In In Computational Intelligence: A Compendium, ed. J. Fulcher and L. C. Jain. Heidelberg: Springer, 517–94.

    Google Scholar 

  • Chen, S.-H. (2012). Varieties of Agents in Agent-Based Computational Economics: A Historical and an Interdisciplinary Perspective. Journal of Economic Dynamics and Control, 36, 1–25.

    Article  Google Scholar 

  • Chen, S.-H. (2014). Neuroeconomics and Agent-Based Computational Economics. International Journal of Applied Behavioral Economics, 3 (2), 15–34.

    Article  Google Scholar 

  • Chen, S.-H., Chang, C.-L. and Du, Y.-R. (2012). Agent-Based Economic Models and Econometrics. The Knowledge Engineering Review, 27 (02), 187–219.

    Article  Google Scholar 

  • Chen, S.-H. and Chih, B.-T. (2007). Modularity, Product Innovation, and Consumer Satisfaction: An Agent-Based Approach. In Intelligent Data Engineering about Automated Learning, IDEAL 2007, LNCS 4881, ed. H. Yin, P. Tino, E. Corchado, and W. Byrne. Heidelberg: Springer.

    Google Scholar 

  • Chen, S.-H. and Gostoli, U. (2012). Coordination in the El-Farol Bar problem: The Role of Social Preferences and Social Networks. In 2012 IEEE Congress on Evolutionary Computation (CEC), 1–8. IEEE.

    Google Scholar 

  • Chen, S.-H. and Tai, C.-C. (2003). Trading Restrictions, Price Dynamics and Allocative Efficiency in Double Auction Markets: Analysis Based on Agent-Based Modeling and Simulations. Advances in Complex Systems, 6 (3), 283–302.

    Article  Google Scholar 

  • Chen, S.-H. and Tai, C.-C. (2010). The Agent-Based Double Auction Markets: 15 Years on. In Simulating Interacting Agents and Social Phenomena, ed. K. Takadama, C. Cioffi-Revilla, and G. Deffuant. Heidelberg: Springer, 119–36.

    Google Scholar 

  • Chen, S.-H. and Wang, S. G. (2011). Emergent Complexity in Agent-Based Computational Economics. Journal of Economic Surveys, 25 (3), 527–46.

    Article  Google Scholar 

  • Chen, S.-H. and Yu, T. (2011). Agents Learned, but Do We? Knowledge Discovery Using the Agent-Based Double Auction Markets. Frontiers of Electrical and Electronic Engineering in China, 6 (1), 159–70.

    Article  Google Scholar 

  • Chie, B.-T. and Chen, S.-H (2013). Non-Price Competition in a Modular Economy: An Agent-Based Computational Model. Economia Politica, XXX (3), 273–99.

    Google Scholar 

  • Chie, B.-T. and Chen, S.-H (2014). Competition in a New Industrial Economy: Toward an Agent-Based Economic Model of Modularity. Administrative Sciences, 4 (3), 192–218.

    Article  Google Scholar 

  • Cincotti, S., Raberto, M. and Teglio, A. (2010). Credit Money and Macroeconomic Instability in the Agent-Based Model and Simulator EURACE. Economics: The Open-Access, Open-Assessment E-Journal, 4, 1–32.

    Google Scholar 

  • Cincotti, S., Raberto, M. and Teglio, A. (2012). The EURACE Macroeconomic Model and Simulator. In Agent-based Dynamics, Norms, and Corporate Governance. The proceedings of the 16th World Congress of the International Economic Association, Volume 2. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Davis, J. B. (2013). The Emergence of Agent-Based Modeling in Economics: Individuals Come Down to Bits. Filosofia de la Economia, 1 (2), 229–46.

    Google Scholar 

  • Delli Gatti, D., Desiderio, S., Gaffeo, E., Cirillo, P. and Gallegati, M. (2011). Macroeconomics from the Bottom-up, Volume 1. Heidelberg: Springer.

    Book  Google Scholar 

  • Duffy, J. (2006). Agent-based models and human subject experiments. In Handbook of Computational Economics, ed. L. Tesfatsion and K. L. Judd. Amsterdam: Elsevier, ch. 19, 49–1011.

    Google Scholar 

  • Epstein, J. M. and Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom Up. Washington, D.C.: Brookings Institution Press.

    Google Scholar 

  • Feigenbaum, E. A. and Simon, H. A. (1984). EPAM-like Models of Recognition and Learning. Cognitive Science, 8 (4), 305–36.

    Article  Google Scholar 

  • Gabaix, X. (2008). Power Laws in Economics and Finance. Technical report, National Bureau of Economic Research.

    Book  Google Scholar 

  • Gallegati, M., Keen, S., Lux, T. and Ormerod, P. (2006). Worrying Trends in Econophysics. Physica A: Statistical Mechanics and its Applications, 370 (1), 1–6.

    Article  Google Scholar 

  • Gallegati, M. and Richiardi, M. G. (2011). Agent Based Models in Economics and Complexity. In, Complex Systems in Finance and Econometrics, ed. R. A. Meyers. Heidelberg: Springer, 30–53.

    Google Scholar 

  • Gigerenzer, G. (2004). Fast and Frugal Heuristics: The Tools of Bounded Rationality. In Blackwell Handbook of Judgment and Decision Making, ed. D. J. Koehler and N. Harvey. Oxford: Blackwell.

    Google Scholar 

  • Gigerenzer, G. and Selten, R. (eds) (2001). Bounded Rationality: The Adaptive Toolbox. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gobet, F, de Voogt, A. and Retschitzki, J. (2004). Moves in Mind: the Psychology of Board Games. New York: Psychology Press, Taylor & Francis.

    Google Scholar 

  • Gobet, F. and Simon, H. A. (1996). Templates in Chess Memory: A Mechanism for Recalling Several Boards. Cognitive Psychology, 31 (1), 1–40.

    Article  Google Scholar 

  • Gobet, F. and Simon, H. A. (2000). Five Seconds or Sixty? Presentation Time in Expert Memory. Cognitive Science, 24 (4), 651–82.

    Article  Google Scholar 

  • Gode, D. K. and Sunder, S. (1993). Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality. Journal of Political Economy, 101 (1), 119–37.

    Article  Google Scholar 

  • Goodwin, R. M. (1947). Dynamical Coupling with Special Reference to Markets Having Production Lags. Econometrica, 15 (3), 181–203.

    Article  Google Scholar 

  • Halas, M. (2011). Abductive Reasoning as the Logic of Agent-Based Modelling. In Proceedings of the 25th European Conference on Modelling and Simulation, ed. T. Burczynski, J. Kolodziej, A. Byrski, and M. Carvalho. European Council for Modelling and Simulation.

    Google Scholar 

  • Hommes, C. (2011). The Heterogeneous Expectations Hypothesis: Some Evidence from the Lab. Journal of Economic Dynamics and Control, 35 (1), 1–24.

    Article  Google Scholar 

  • Janssen, M. A. and Ostrom, E. (2006). Empirically Based, Agent-Based Models. Ecology and Society, 11 (2), 37.

    Google Scholar 

  • Kampouridis, M., Chen, S.-H. and Tsang, E. (2012a). Market Fraction Hypothesis: A Proposed Test. International Review of Financial Analysis, 23, 41–54.

    Article  Google Scholar 

  • Kampouridis, M., Chen, S.-H. and Tsang, E. (2012b). Microstructure Dynamics and Agent-Based Financial Markets: Can Dinosaurs Return? Advances in Complex Systems, 15 (supp02).

    Google Scholar 

  • Kao, Y.-F. (2013). Studies in Classical Behavioural Economics. Ph D thesis, University of Trento, Italy.

    Google Scholar 

  • Keenan, D. C. and O'Brien M. J. (1993). Competition, Collusion, and Chaos. Journal of Economic Dynamics and Control, 17 (3), 327–353.

    Article  Google Scholar 

  • Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press.

    Google Scholar 

  • Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press.

    Google Scholar 

  • Langley, P., Simon, H. A., Bradshaw, G. L. and Zytkow, J. M (1987). Scientific Discovery: Computational Explorations of the Creative Processes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Liang, Y.-H. and Zhao, T.-J. (2005). Distributed English Text Chunking Using Multiagent Based Architecture. In MICAI 2005: Advances in Artificial Intelligence, Lecture Notes in Computer Science, ed. A. Gelbukh, A. de Albornoz, and H. Terashima-Marin. Berlin Heidelberg: Springer, 752–60.

    Google Scholar 

  • Marks, R. (2006). Market Design Using Agent-Based Models. In Handbook of Computational Economics, ed. L. Tesfatsion and K. L. Judd. Amsterdam: Elsevier, ch. 27, 1339–80.

    Google Scholar 

  • Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. The Psychological Review, 63 (2), 81–97.

    Article  Google Scholar 

  • Mitzenmacher, M. (2004). A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics, 1 (2), 226–251.

    Article  Google Scholar 

  • Mueller, M. G. and de Haan, P. (2009). How Much Do Incentives Affect Car Purchase? Agent-Based Microsimulation of Consumer Choice of New Cars — Part I: Model Structure, Simulation of Bounded Rationality, and Model Validation. Energy Policy, 37 (3), 1072–82.

    Article  Google Scholar 

  • Newell, A. (1955). The Chess Machine: An Example of Dealing with a Complex Task by Adaptation. Technical Report P-620, The Rand Corporation.

    Book  Google Scholar 

  • Newell, A., Shaw, J. C. and Simon, H. A. (1958). Elements of the Theory of Human Problem Solving. Psychological Review, 65 (3), 151–66.

    Article  Google Scholar 

  • Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Newell, A. and Simon, H. A. (1976). Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM, 19 (3), 113–26.

    Article  Google Scholar 

  • Page, S. E. (2012). Aggregation in Agent-Based Models of Economics. The Knowledge Engineering Review, 27 (2), 151–62.

    Article  Google Scholar 

  • Peirce, C. S. (1997). Pragmatism as a Principle and Method of Right Thinking: The 1903 Harvard Lectures on Pragmatism. Albany: SUNY Press.

    Google Scholar 

  • Raberto, M., Teglio, A. and Cincotti, S. (2008). Integrating Real and Financial Markets in an Agent-Based Economic Model: an Application to Monetary Policy Design. Computational Economics, 32 (1–2), 147–62.

    Article  Google Scholar 

  • Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry, Volume 511. Singapore: World Scientific.

    Google Scholar 

  • Roberts, S. C, Howard, D. and Koza, J. R. (2001). Evolving Modules in Genetic Programming by Subtree Encapsulation. In Genetic Programming, 4th European Conference, EuroGP 2001 Lake Como, Italy, April 18–20, 2001 Proceedings, ed. J. M. Marco, T. P. L. Lanzi, C. R. A. G. Tettamanzi, and W. B. Langdon, 160–75.

    Google Scholar 

  • Schelling, T. C. (1971). Dynamic Models of Segregation. Journal of Mathematical Sociology, 1 (2), 143–86.

    Article  Google Scholar 

  • Schelling, T. C. (1978). Micromotives and Macrobehavior. New York: North.

    Google Scholar 

  • Simon, H. A. (1952). On the Definition of the Causal Relation. The Journal of Philosophy, 49 (16), 517–28.

    Article  Google Scholar 

  • Simon, H. A. (1953). Casual Ordering and Identifiability. In Studies in Econometric Method, ed. W. C. Hood and T. Koopmans. New York: Wiley London: Chapman & Hall.

    Google Scholar 

  • Simon, H. A. (1955a). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69 (1), 99–118.

    Article  Google Scholar 

  • Simon, H. A. (1955b). On a Class of Skew Distribution Functions. Biometrika, 42 (3/4), 425–40.

    Article  Google Scholar 

  • Simon, H. A. (1956). Rational Choice and the Structure of the Environment. Psychological Review, 63 (2), 129–38.

    Article  Google Scholar 

  • Simon, H. A. (1957). Models of Man. New York: Wiley.

    Google Scholar 

  • Simon, H. A. (1959). Theories of Decision-Making in Economics and Behavioral Science. The American Economic Review, 49 (3), 253–83.

    Google Scholar 

  • Simon, H. A. (1962). The Architecture of Complexity. Proceedings of the American Philosophical Society, 106(6), 467–82.

    Google Scholar 

  • Simon, H. A. (1973). Does Scientific Discovery Have a Logic? Philosophy of Science, 40(4), 471–480.

    Article  Google Scholar 

  • Simon, H. A. (1976). From Substantive to Procedural Rationality. In Method and Appraisal in Economics, ed. S. J. Latsis. Cambridge: Cambridge University Press, 129–48.

    Google Scholar 

  • Simon, H. A. (1977). Models of Discovery and Other Topics in the Methods of Science. Dordrecht: Reidel.

    Google Scholar 

  • Simon, H. A. (1979). Rational Decision Making in Business Organization. The American Economic Review, 69 (4), 493–513.

    Google Scholar 

  • Simon, H. A. (1983). Reason in Human Affairs. Oxford: Basil Blackwell.

    Google Scholar 

  • Simon, H. A. (1991). Models of My Life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Simon, H. A. (1995). Near Decomposability and Complexity: How a Mind Resides in a Brain. In The Mind, the Brain, and Complex Adaptive Systems, Volume XXII of Santa Fe Institute Studies in the Sciences of Complexity, ed. H. J. Morowitz and J. L. Singer. Boston: Addison-Wesley.

    Google Scholar 

  • Simon, H. A. (1996a). Machine as Mind. In Machines and Thought — The Legacy of Alan Turing, ed. P. Macmillan and A. Clark. Oxford: Oxford University Press, 1 (5), 81–101.

    Google Scholar 

  • Simon, H. A. (1996b). The Sciences of the Artificial (3rd edn). Cambridge, MA: MIT Press.

    Google Scholar 

  • Simon, H. A. (1998). Discovering Explanation. Minds and Machines, 8 (1), 7–37.

    Article  Google Scholar 

  • Simon, H. A. (2000). Bounded Rationality in Social Science: Today and Tomorrow. Mind & Society, 1 (1), 25–39.

    Article  Google Scholar 

  • Simon, H. A. (2001). Science Seeks Parsimony, Not Simplicity: Searching for Pattern in Phenomena. In Simplicity, Inference and Modelling: Keeping it Sophisticatedly Simple, ed. A. Zellner and H. A. Keuzenkamp. Cambridge: Cambridge University Press.

    Google Scholar 

  • Simon, H. A. (2002). Near Decomposability and the Speed of Evolution. Industrial and Corporate Change, 11 (3), 587–99.

    Article  Google Scholar 

  • Simon, H. A. and Bonini, C. P. (1958). The Size Distribution of Business Firms. The American Economic Review, 607–17.

    Google Scholar 

  • Simon, H. A., Egidi, M. and Marris, R. L. (1992). Economics, Bounded Rationality and the Cognitive Revolution. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Simon, H. A. and Rescher, N. (1966). Cause and Counterfactual. Philosophy of Science, 33 (4), 323–40.

    Article  Google Scholar 

  • Simon, H. A. and Schaeffer, J. (1992). The Game of Chess. In Handbook of Game Theory with Economic Application, Volume 1, ed. R. J. Aumann and S. Hart (). Amsterdam: Elsevier.

    Google Scholar 

  • Stiglitz, J. E. and Gallegati, M. (2011). Heterogeneous Interacting Agent Models for Understanding Monetary Economies. Eastern Economic Journal, 37, 6–12.

    Article  Google Scholar 

  • Velupillai, K. V. (2000). Computable Economics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Velupillai, K. V. (2010a). Computable Foundations for Economics. London: Routledge.

    Google Scholar 

  • Velupillai, K. V. (2010b). Foundations of Boundedly Rational Choice and Satisficing Decisions. Advances in Decision Sciences 2010, 16 pages.

    Google Scholar 

  • Velupillai, K. V. and Kao, Y.-F. (2014). Computable and Computational Complexity Theoretic Bases for Herbert Simon’s Cognitive Behavioral Economics. Cognitive System Research, 29–30, 40–52.

    Article  Google Scholar 

  • Velupillai, K. V. and Zambelli, S. (2011). Computing in Economics. In The Elgar Companion to Recent Economic Methodology, ed. J. Davis and W. Hands. Cheltenham: Edward Elgar.

    Google Scholar 

  • Vinković, D. and Kirman, A. (2006). A Physical Analogue of the Schelling Model. Proceedings of the National Academy of Sciences, 103 (51), 19261–5.

    Article  Google Scholar 

  • von Neumann, J., (completed by Burks, A. W.), 1966). Theory of Self-Reproducing Automata. IEEE Transactions on Neural Networks, 5 (1), 3–14.

    Google Scholar 

  • Vriend, N. J. (1995). Self-organization of Markets: An Example of a Computational Approach. Computational Economics, 8 (3), 205–31.

    Article  Google Scholar 

  • Vriend, N.J. (2002). Was Hayek an ACE? Southern Economic Journal, 68 (4), 811–40.

    Article  Google Scholar 

  • Wolfram, S. (2002). A New Kind of Science, Volume 5. Champaign: Wolfram Media.

    Google Scholar 

  • Zschache, J. (2012). Producing Public Goods in Networks: Some Effects of Social Comparison and Endogenous Network Change. Social Networks, 34 (4), 539–48.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2016 Shu-Heng Chen and Ying-Fang Kao

About this chapter

Cite this chapter

Chen, SH., Kao, YF. (2016). Herbert Simon and Agent-Based Computational Economics. In: Frantz, R., Marsh, L. (eds) Minds, Models and Milieux. Archival Insights into the Evolution of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/9781137442505_7

Download citation

Publish with us

Policies and ethics