Skip to main content
  • 220 Accesses

Abstract

The standard Zermelo-Fraenkel axioms of set theory lay out conditions of identity of sets, then methods of forming new sets from old – via unions, power sets and the like. When those methods are fed finite sets they yield finite sets and when they are fed infinite sets they (can) yield infinite sets. But there is no way to build an infinite set from finitely many finite sets. The ZF axioms cope with that limitation by adding a bald ‘Axiom of Infinity’, which states ‘there is an infinite set’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Bibliography

  1. S. Feferman, Why a little goes a long way: logical foundations of scientifically applicable mathematics, in D. Hull, M. Forbes and K. Okruhlik, eds, Philosophy of Science Association 1992 (Philosophy of Science Association, East Lansing, MI, 1992), vol. 2, 442–455.

    Google Scholar 

  2. D. Goldberg, What every computer scientist should know about floatingpoint arithmetic, ACM Computing Surveys (CSUR) 23 (1) (1991), 5–48.

    Article  Google Scholar 

  3. M.L. Abell and J.P. Braselton, Maple by Example (3rd edn, Elsevier, Boston, 2005).

    Google Scholar 

  4. D. Mackenzie, The automation of proof: a historical and sociological exploration, IEEE Annals of the History of Computing 17 (3) (1995), 7–29.

    Article  Google Scholar 

  5. J.G. Kemeny, J.L. Snell and G.L. Thompson, Introduction to Finite Mathematics (Prentice-Hall, Englewood Cliffs, NJ, 1957).

    Google Scholar 

  6. J. Franklin, Achievements and fallacies in Hume’s account of infinite divisibility, Hume Studies 20 (1994), 85–101.

    Google Scholar 

  7. G. Nerlich, The Shape of Space (2nd edn, Cambridge University Press, Cambridge, 1994).

    Book  Google Scholar 

  8. E. Schrödinger, Science and Humanism: Physics in Our Time (Cambridge University Press, Cambridge, 1951), 40.

    Google Scholar 

  9. D.J. Griffiths, Introduction to Quantum Mechanics (2nd edn, Pearson Prentice Hall, Upper Saddle River, NJ, 2005).

    Google Scholar 

  10. D. Meschini, M. Lehto and J Piilonen, Geometry, pregeometry and beyond, Studies in History and Philosophy of Modern Physics 36 (2005), 435–464.

    Article  Google Scholar 

  11. S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, IL, 2002).

    Google Scholar 

  12. H.H. Goldstine, The Computer: From Pascal to von Neumann (Princeton University Press, Princeton, NJ, 1972).

    Google Scholar 

  13. A.W. Moore, The Infinite (Routledge, London, 1990).

    Book  Google Scholar 

  14. J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, in J. Barwise, ed., Handbook for Mathematical Logic (North Holland, Amsterdam, 1977), 1133–1142.

    Chapter  Google Scholar 

  15. K. Gödel, What is Cantor’s Continuum Problem?, American Mathematical Monthly 54 (1947), 515–525.

    Article  Google Scholar 

  16. W. Charlton, Aristotle’s potential infinities, in L. Judson, ed., Aristotle’s Physics: A Collection of Essays (Oxford University Press, Oxford, 1991), 129–149.

    Google Scholar 

  17. G.R. Oppy, Philosophical Perspectives on Infinity (Cambridge University Press, Cambridge, 2006), 232.

    Book  Google Scholar 

  18. Gregory of Rimini, Medieval Philosophy and Theology 7 (1998), 89–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2014 James Franklin

About this chapter

Cite this chapter

Franklin, J. (2014). Infinity. In: An Aristotelian Realist Philosophy of Mathematics. Palgrave Macmillan, London. https://doi.org/10.1057/9781137400734_9

Download citation

Publish with us

Policies and ethics