Abstract
Current research paints the picture of problem gambling as a multifaceted phenomenon, for which there is not one single explanation. A wealth of factors are implied in the development and maintenance of problem gambling, including biological mechanisms of rewardprocessing (e.g. Linnet et al., 2010a), cognitive processes of attention (e.g. Brevers et al., 2011), implicit memory (e.g. McCusker & Gettings, 1997), decision-making (e.g. Brevers et al., 2013) and beliefs (e.g. Myrseth et al., 2010), mechanisms underlying mood regulation (Brown et al., 2004) and coping styles (e.g. Gupta et al., 2004). Individual factors are thought to interact with the gambling environment and the larger social, professional and familial environment, adding to the complexity. Integrated models of problem gambling, such as the pathways model of Blaszczynski and Nower (2002), attempt to (re-)establish a holistic view in a research field that resorts to increasingly specific and intricate research designs. The underlying mechanisms and their interactions, however, are still not well understood (Gobet & Schiller, 2011).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E. J. & Stout, J. C. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32, 1376–1402.
Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.
Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.
Blaszczynski, A. & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97, 487–499.
Bond, N. A. (1974). Basic strategy and expectation in casino Blackjack. Organizational Behavior and Human Performance, 12, 413–428.
Brevers, D., Bechara, A., Cleeremans, A. & Noël, X. (2013). Iowa Gambling Task (IGT): Twenty years after — Gambling disorder and IGT. Frontiers in Psychology, 4, 665.
Brevers, D., Cleeremans, A., Tibboel, H., Bechara, A., Kornreich, C., Verbanck, P. et al. (2011). Reduced attentional blink for gambling-related stimuli in problem gamblers. Journal of Behavior Therapy and Experimental Psychiatry, 42, 265–269.
Brown, S. L., Rodda, S. & Phillips, J. G. (2004). Differences between problem and nonproblem gamblers in subjective arousal and affective valence amongst electronic gaming machine players. Addictive Behaviors, 29, 1863–1867.
Busemeyer, J. R. & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.
Chan, V. K. (2010). Using neural networks to model the behavior and decisions of gamblers, in particular, cyber-gamblers. Journal of Gambling Studies, 26, 35–52.
Chassy, P. & Gobet, F. (2005). A model of emotional influence on memory precessing. In L. Canamero (Ed.), Symposium on agents that want and like: Motivational and emotional roots of cognition and action. AISB 2005 (pp. 21–24). University of Hertfordshire, UK: SSAISB Press.
Chiu, Y.-C., Lin, C.-H., Huang, J.-T., Lin, S., Lee, P.-L. & Hsieh, J. C. (2008). Immediate gain is long-term loss: Are there foresighted decision makers in the Iowa Gambling Task? Behavioral and Brain Functions, 4, 13.
Chóliz, M. (2010). Experimental analysis of the game in pathological gamblers: Effect of the immediacy of the reward in slot machines. Journal of Gambling Studies, 26, 249–256.
Côté, D., Caron, A., Aubert, J., Desrochers, V. & Ladouceur, R. (2003). Near wins prolong gambling on a video lottery terminal. Journal of Gambling Studies, 19, 433–438.
Davidson, A., Billings, D., Schaeffer, J. & Szafron, D. (2000). Improved opponent modeling in poker. Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI′2000), Las Vegas, Nevada (pp. 1467–1473). AAAI Press.
de Groot, A. D. & Gobet, F. (1996). Perception in memory and chess. Studies in the heuristics of the professional eye. Assen, NL: Van Gorcum.
Ekman, P. (1999). Basic emotions. New York: Wiley.
Freudenthal, D., Pine, J. M., Aguado-Orea, J. & Gobet, F. (2007). Modelling the developmental patterning of finiteness marking in English, Dutch, German and Spanish using MOSAIC, Cognitive Science, 31, 311–341.
Fum, D. & Stocco, A. (2004). Memory, emotion, and rationality: An ACT-R interpretation for gambling task results. Proceedings of the sixth International Conference on Cognitive Modeling (pp. 106–111). Pittsburgh, PA: Carnegie Mellon University/University of Pittsburgh.
Gobet, F. & Lane, P. C. (2010). The CHREST architecture of cognition: The role of perception in general intelligence. In E. Baum, M. Hutter & E. Kitzelmann (Ed.), Proceedings of the Third Conference on Artificial General Intelligence (pp. 7–12). Amsterdam: Atlantis Press.
Gobet, F. & Schiller, M. (2011). A manifesto for cognitive models of problem gambling. European Perspectives on Cognitive Sciences — Proceedings of the European Conference on Cognitive Science. Sofia: New Bulgarian University Press.
Goudriaan, A. E., Oosterlaan, J., de Beurs, E. & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23, 137–151.
Gray, W. D. (Ed.). (2007). Integrated models of cognitive systems. Oxford: University Press.
Griffiths, M. (1994). The role of cognitive bias and skill in fruit machine gambling. British Journal of Psychology, 85, 351–369.
Gupta, R., Derevensky, J. & Marget, N. (2004). Coping strategies employed by adolescents with gambling problems. Child and Adolescent Mental Health, 9, 115–120.
Harrigan, K. A. & Dixon, M. (2009). PAR Sheets, probabilities, and slot machine play: Implications for problem and non-problem gambling. Journal of Gambling Issues, 23, 81–110.
Johansson, U. & Sönströd, C. (2009). Fish or shark — Data mining online poker. In R. Stahlbock, S. F. Crone & S. Lessmann (Ed.), 5th International Conference on Data Mining — DMIN 09, Las Vegas, Nevada, (pp. 97–103).
Jones, G., Gobet, F. & Pine, J. M. (2007). Linking working memory and long-term memory: A computational model of the learning of new words. Developmental Science, 10, 853–873.
Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.
Korb, K. B., Nicholson, A. E. & Jitnah, N. (1999). Bayesian poker. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 343–350). San Francisco, CA: Morgan Kaufmann.
Ladouceur, R. & Sévigny, S. (2002). Symbols presentation modality as a determinant of gambling behavior. The Journal of Psychology, 136, 443–448.
Lane, P. C. R., Cheng, P. C-H. & Gobet, F. (2000). CHREST+: A simulation of how humans learn to solve problems using diagrams. AISB Quarterly, 103, 24–30.
Lane, P. C. & Gobet, F. R. (2012a). A theory-driven testing methodology for developing scientific software. Journal of Experimental and Theoretical Artificial Intelligence, 4, 421–456.
Lane, P. C. & Gobet, F. (2012b). Using chunks to categorise chess positions. In M. Bramer and M. Petridis (Eds.), Research and Development in Intelligent Systems XXIX: Proceedings of AI-2012, The Thirty-Second SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 93–106). London, UK: Springer-Verlag.
Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A. & Møller, A. (2010a). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122, 326–333.
Linnet, J., Thomsen, K. R., Møller, A. & Callesen, M. B. (2010b). Event frequency, excitement and desire to gamble, among pathological gamblers. International Gambling Studies, 10, 177–188.
Linnet, J., Møller, A., Peterson, E., Gjedde, A. & Doudet, D. (2011). Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction, 106, 383–390.
Maia, T. V. & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences of the United States of America, 101, 16075–16080.
McCusker, C. G. & Gettings, B. (1997). Automaticity of cognitive biases in addictive behaviours: Further evidence with gamblers. British Journal of Clinical Psychology, 36, 543–554.
Michalczuk, R., Bowden Jones, H., Verdejo-García, A. & Clark, L. (2011). Impulsivity and cognitive distortions in pathological gamblers attending the UK National Problem Gambling Clinic: A preliminary report. Psychological Medicine, 41, 2625–2635.
Molde, H., Pallesen, S., Sætrevik, B., Hammerborg, D. K., Laberg, J. C. & Johnsen, B.-H. (2010). Attentional biases among pathological gamblers. International Gambling Studies, 10, 45–59.
Myrseth, H., Brunborg, G. S. & Eidem, M. (2010). Differences in cognitive distortions between pathological and non-pathological gamblers with preferences for chance or skill games. Journal of Gambling Studies, 26, 561–569.
Pasquali, A., Timmermans, B. & Cleeremans, A. (2010). Know thyself: Metacognitive networks and measures of consciousness. Cognition, 117, 182–190.
Persaud, N., McLeod, P. & Cowey, A. (2007). Post-decision wagering objectively measures awareness. Nature neuroscience, 10, 257–261.
Plutchik, R. (1980). Emotion: A psychoevolutionary synthesis. New York: Harper & Row.
Polk, T. & Seifert, C. (Eds.). (2002). Cognitive modeling. Cambridge, MA: MIT Press.
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.
Schiller, M., & Gobet, F. (2012). A comparison between cognitive and AI models of blackjack strategy learning. KI 2012: 35th German Conference on Artificial Intelligence. Lecture Notes in Computer Science, Vol. 7526 (pp. 143–155). London, UK: Springer-Verlag.
Sharpe, L. (2002). A reformulated cognitive-behavioral model of problem gambling: A biopsychosocial perspective. Clinical Psychology Review, 22, 1–25.
Simon, H. A. & Chase, W. G. (1973). Skill in chess. American Scientist, 61, 394–403.
Steingroever, H., Wetzels, R., Horstmann, A., Neumann, J. & Wagenmakers, E. J. (2012). Performance of healthy participants on the Iowa gambling task. Psychological Assessment, 25, 180–193.
Stocco, A., Fum, D. & Zalla, T. (2005). Revising the role of somatic markers in the Gambling Task: A computational account for neuropsychological impairments. In B. Bara, L. Barsalou & M. Bucciarelli (Ed.), Proceedings of the 27th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.
Thorp, E. O. (1962). Beat the dealer: A winning strategy for the game of twenty-one. New York: Blaisdell Pub. Co.
Verdejo-García, A., Lawrence, A. J. & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32, 777–810.
Wagenaar, W. A. (1988). Paradoxes of gambling behaviour. Hillsdale, NJ: Erlbaum.
Walker, M. B., Sturevska, S. & Turpie, D. (2000). The quality of play in Australian casinos. In O. Vancura, J. A. Cornelius & W. R. Eadington (Eds.), Finding the edge: Mathematical analysis of casino games (pp. 151–160). Reno, NV: Institute for the Study of Gambling and Commercial Gaming, University of Nevada.
Weatherly, J. N., Sauter, J. M. & King, B. M. (2004). The “big win” and resistance to extinction when gambling. The Journal of Psychology, 138, 495–504.
Wetzels, R., Vandekerckhove, J., Tuerlinckx, F. & Wagenmakers, E.-J. (2010). Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task. Journal of Mathematical Psychology, 54, 14–27.
Yechiam, E., Busemeyer, J. R., Stout, J. C. & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decision-making deficits. Psychological Science, 16, 973–978.
Editor information
Editors and Affiliations
Copyright information
© 2014 Marvin R. G. Schiller and Fernand R. Gobet
About this chapter
Cite this chapter
Schiller, M.R.G., Gobet, F.R. (2014). Cognitive Models of Gambling and Problem Gambling. In: Gobet, F., Schiller, M. (eds) Problem Gambling. Palgrave Macmillan, London. https://doi.org/10.1057/9781137272423_4
Download citation
DOI: https://doi.org/10.1057/9781137272423_4
Publisher Name: Palgrave Macmillan, London
Print ISBN: 978-1-349-44486-1
Online ISBN: 978-1-137-27242-3
eBook Packages: Palgrave Social Sciences CollectionSocial Sciences (R0)