Skip to main content

Cognitive Models of Gambling and Problem Gambling

  • Chapter
Problem Gambling

Abstract

Current research paints the picture of problem gambling as a multifaceted phenomenon, for which there is not one single explanation. A wealth of factors are implied in the development and maintenance of problem gambling, including biological mechanisms of rewardprocessing (e.g. Linnet et al., 2010a), cognitive processes of attention (e.g. Brevers et al., 2011), implicit memory (e.g. McCusker & Gettings, 1997), decision-making (e.g. Brevers et al., 2013) and beliefs (e.g. Myrseth et al., 2010), mechanisms underlying mood regulation (Brown et al., 2004) and coping styles (e.g. Gupta et al., 2004). Individual factors are thought to interact with the gambling environment and the larger social, professional and familial environment, adding to the complexity. Integrated models of problem gambling, such as the pathways model of Blaszczynski and Nower (2002), attempt to (re-)establish a holistic view in a research field that resorts to increasingly specific and intricate research designs. The underlying mechanisms and their interactions, however, are still not well understood (Gobet & Schiller, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E. J. & Stout, J. C. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32, 1376–1402.

    Article  Google Scholar 

  • Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.

    Article  Google Scholar 

  • Blaszczynski, A. & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97, 487–499.

    Article  Google Scholar 

  • Bond, N. A. (1974). Basic strategy and expectation in casino Blackjack. Organizational Behavior and Human Performance, 12, 413–428.

    Article  Google Scholar 

  • Brevers, D., Bechara, A., Cleeremans, A. & Noël, X. (2013). Iowa Gambling Task (IGT): Twenty years after — Gambling disorder and IGT. Frontiers in Psychology, 4, 665.

    Article  Google Scholar 

  • Brevers, D., Cleeremans, A., Tibboel, H., Bechara, A., Kornreich, C., Verbanck, P. et al. (2011). Reduced attentional blink for gambling-related stimuli in problem gamblers. Journal of Behavior Therapy and Experimental Psychiatry, 42, 265–269.

    Article  Google Scholar 

  • Brown, S. L., Rodda, S. & Phillips, J. G. (2004). Differences between problem and nonproblem gamblers in subjective arousal and affective valence amongst electronic gaming machine players. Addictive Behaviors, 29, 1863–1867.

    Article  Google Scholar 

  • Busemeyer, J. R. & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.

    Article  Google Scholar 

  • Chan, V. K. (2010). Using neural networks to model the behavior and decisions of gamblers, in particular, cyber-gamblers. Journal of Gambling Studies, 26, 35–52.

    Article  Google Scholar 

  • Chassy, P. & Gobet, F. (2005). A model of emotional influence on memory precessing. In L. Canamero (Ed.), Symposium on agents that want and like: Motivational and emotional roots of cognition and action. AISB 2005 (pp. 21–24). University of Hertfordshire, UK: SSAISB Press.

    Google Scholar 

  • Chiu, Y.-C., Lin, C.-H., Huang, J.-T., Lin, S., Lee, P.-L. & Hsieh, J. C. (2008). Immediate gain is long-term loss: Are there foresighted decision makers in the Iowa Gambling Task? Behavioral and Brain Functions, 4, 13.

    Article  Google Scholar 

  • Chóliz, M. (2010). Experimental analysis of the game in pathological gamblers: Effect of the immediacy of the reward in slot machines. Journal of Gambling Studies, 26, 249–256.

    Article  Google Scholar 

  • Côté, D., Caron, A., Aubert, J., Desrochers, V. & Ladouceur, R. (2003). Near wins prolong gambling on a video lottery terminal. Journal of Gambling Studies, 19, 433–438.

    Article  Google Scholar 

  • Davidson, A., Billings, D., Schaeffer, J. & Szafron, D. (2000). Improved opponent modeling in poker. Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI′2000), Las Vegas, Nevada (pp. 1467–1473). AAAI Press.

    Google Scholar 

  • de Groot, A. D. & Gobet, F. (1996). Perception in memory and chess. Studies in the heuristics of the professional eye. Assen, NL: Van Gorcum.

    Google Scholar 

  • Ekman, P. (1999). Basic emotions. New York: Wiley.

    Book  Google Scholar 

  • Freudenthal, D., Pine, J. M., Aguado-Orea, J. & Gobet, F. (2007). Modelling the developmental patterning of finiteness marking in English, Dutch, German and Spanish using MOSAIC, Cognitive Science, 31, 311–341.

    Google Scholar 

  • Fum, D. & Stocco, A. (2004). Memory, emotion, and rationality: An ACT-R interpretation for gambling task results. Proceedings of the sixth International Conference on Cognitive Modeling (pp. 106–111). Pittsburgh, PA: Carnegie Mellon University/University of Pittsburgh.

    Google Scholar 

  • Gobet, F. & Lane, P. C. (2010). The CHREST architecture of cognition: The role of perception in general intelligence. In E. Baum, M. Hutter & E. Kitzelmann (Ed.), Proceedings of the Third Conference on Artificial General Intelligence (pp. 7–12). Amsterdam: Atlantis Press.

    Google Scholar 

  • Gobet, F. & Schiller, M. (2011). A manifesto for cognitive models of problem gambling. European Perspectives on Cognitive Sciences — Proceedings of the European Conference on Cognitive Science. Sofia: New Bulgarian University Press.

    Google Scholar 

  • Goudriaan, A. E., Oosterlaan, J., de Beurs, E. & van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23, 137–151.

    Article  Google Scholar 

  • Gray, W. D. (Ed.). (2007). Integrated models of cognitive systems. Oxford: University Press.

    Book  Google Scholar 

  • Griffiths, M. (1994). The role of cognitive bias and skill in fruit machine gambling. British Journal of Psychology, 85, 351–369.

    Article  Google Scholar 

  • Gupta, R., Derevensky, J. & Marget, N. (2004). Coping strategies employed by adolescents with gambling problems. Child and Adolescent Mental Health, 9, 115–120.

    Article  Google Scholar 

  • Harrigan, K. A. & Dixon, M. (2009). PAR Sheets, probabilities, and slot machine play: Implications for problem and non-problem gambling. Journal of Gambling Issues, 23, 81–110.

    Article  Google Scholar 

  • Johansson, U. & Sönströd, C. (2009). Fish or shark — Data mining online poker. In R. Stahlbock, S. F. Crone & S. Lessmann (Ed.), 5th International Conference on Data Mining — DMIN 09, Las Vegas, Nevada, (pp. 97–103).

    Google Scholar 

  • Jones, G., Gobet, F. & Pine, J. M. (2007). Linking working memory and long-term memory: A computational model of the learning of new words. Developmental Science, 10, 853–873.

    Article  Google Scholar 

  • Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.

    Article  Google Scholar 

  • Korb, K. B., Nicholson, A. E. & Jitnah, N. (1999). Bayesian poker. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 343–350). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Ladouceur, R. & Sévigny, S. (2002). Symbols presentation modality as a determinant of gambling behavior. The Journal of Psychology, 136, 443–448.

    Article  Google Scholar 

  • Lane, P. C. R., Cheng, P. C-H. & Gobet, F. (2000). CHREST+: A simulation of how humans learn to solve problems using diagrams. AISB Quarterly, 103, 24–30.

    Google Scholar 

  • Lane, P. C. & Gobet, F. R. (2012a). A theory-driven testing methodology for developing scientific software. Journal of Experimental and Theoretical Artificial Intelligence, 4, 421–456.

    Article  Google Scholar 

  • Lane, P. C. & Gobet, F. (2012b). Using chunks to categorise chess positions. In M. Bramer and M. Petridis (Eds.), Research and Development in Intelligent Systems XXIX: Proceedings of AI-2012, The Thirty-Second SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 93–106). London, UK: Springer-Verlag.

    Chapter  Google Scholar 

  • Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A. & Møller, A. (2010a). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122, 326–333.

    Article  Google Scholar 

  • Linnet, J., Thomsen, K. R., Møller, A. & Callesen, M. B. (2010b). Event frequency, excitement and desire to gamble, among pathological gamblers. International Gambling Studies, 10, 177–188.

    Article  Google Scholar 

  • Linnet, J., Møller, A., Peterson, E., Gjedde, A. & Doudet, D. (2011). Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction, 106, 383–390.

    Article  Google Scholar 

  • Maia, T. V. & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences of the United States of America, 101, 16075–16080.

    Article  Google Scholar 

  • McCusker, C. G. & Gettings, B. (1997). Automaticity of cognitive biases in addictive behaviours: Further evidence with gamblers. British Journal of Clinical Psychology, 36, 543–554.

    Article  Google Scholar 

  • Michalczuk, R., Bowden Jones, H., Verdejo-García, A. & Clark, L. (2011). Impulsivity and cognitive distortions in pathological gamblers attending the UK National Problem Gambling Clinic: A preliminary report. Psychological Medicine, 41, 2625–2635.

    Article  Google Scholar 

  • Molde, H., Pallesen, S., Sætrevik, B., Hammerborg, D. K., Laberg, J. C. & Johnsen, B.-H. (2010). Attentional biases among pathological gamblers. International Gambling Studies, 10, 45–59.

    Article  Google Scholar 

  • Myrseth, H., Brunborg, G. S. & Eidem, M. (2010). Differences in cognitive distortions between pathological and non-pathological gamblers with preferences for chance or skill games. Journal of Gambling Studies, 26, 561–569.

    Article  Google Scholar 

  • Pasquali, A., Timmermans, B. & Cleeremans, A. (2010). Know thyself: Metacognitive networks and measures of consciousness. Cognition, 117, 182–190.

    Article  Google Scholar 

  • Persaud, N., McLeod, P. & Cowey, A. (2007). Post-decision wagering objectively measures awareness. Nature neuroscience, 10, 257–261.

    Article  Google Scholar 

  • Plutchik, R. (1980). Emotion: A psychoevolutionary synthesis. New York: Harper & Row.

    Google Scholar 

  • Polk, T. & Seifert, C. (Eds.). (2002). Cognitive modeling. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Schiller, M., & Gobet, F. (2012). A comparison between cognitive and AI models of blackjack strategy learning. KI 2012: 35th German Conference on Artificial Intelligence. Lecture Notes in Computer Science, Vol. 7526 (pp. 143–155). London, UK: Springer-Verlag.

    Chapter  Google Scholar 

  • Sharpe, L. (2002). A reformulated cognitive-behavioral model of problem gambling: A biopsychosocial perspective. Clinical Psychology Review, 22, 1–25.

    Article  Google Scholar 

  • Simon, H. A. & Chase, W. G. (1973). Skill in chess. American Scientist, 61, 394–403.

    Google Scholar 

  • Steingroever, H., Wetzels, R., Horstmann, A., Neumann, J. & Wagenmakers, E. J. (2012). Performance of healthy participants on the Iowa gambling task. Psychological Assessment, 25, 180–193.

    Article  Google Scholar 

  • Stocco, A., Fum, D. & Zalla, T. (2005). Revising the role of somatic markers in the Gambling Task: A computational account for neuropsychological impairments. In B. Bara, L. Barsalou & M. Bucciarelli (Ed.), Proceedings of the 27th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Thorp, E. O. (1962). Beat the dealer: A winning strategy for the game of twenty-one. New York: Blaisdell Pub. Co.

    Google Scholar 

  • Verdejo-García, A., Lawrence, A. J. & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32, 777–810.

    Article  Google Scholar 

  • Wagenaar, W. A. (1988). Paradoxes of gambling behaviour. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Walker, M. B., Sturevska, S. & Turpie, D. (2000). The quality of play in Australian casinos. In O. Vancura, J. A. Cornelius & W. R. Eadington (Eds.), Finding the edge: Mathematical analysis of casino games (pp. 151–160). Reno, NV: Institute for the Study of Gambling and Commercial Gaming, University of Nevada.

    Google Scholar 

  • Weatherly, J. N., Sauter, J. M. & King, B. M. (2004). The “big win” and resistance to extinction when gambling. The Journal of Psychology, 138, 495–504.

    Article  Google Scholar 

  • Wetzels, R., Vandekerckhove, J., Tuerlinckx, F. & Wagenmakers, E.-J. (2010). Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task. Journal of Mathematical Psychology, 54, 14–27.

    Article  Google Scholar 

  • Yechiam, E., Busemeyer, J. R., Stout, J. C. & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decision-making deficits. Psychological Science, 16, 973–978.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2014 Marvin R. G. Schiller and Fernand R. Gobet

About this chapter

Cite this chapter

Schiller, M.R.G., Gobet, F.R. (2014). Cognitive Models of Gambling and Problem Gambling. In: Gobet, F., Schiller, M. (eds) Problem Gambling. Palgrave Macmillan, London. https://doi.org/10.1057/9781137272423_4

Download citation

Publish with us

Policies and ethics