Skip to main content
  • 136 Accesses

Abstract

The previous chapter considered how animals deal with the main stimuli in their environments — that is, objects — to form concepts. In the process, a cognitive system — a whole, new level of evolved regulations — emerges from the regulations of neural activity. As a result, the cognitive system does not deal with the information delivered to it directly from the senses. It goes beyond the information given, to construct a cognitive world that, in turn, becomes an intelligent ‘adviser’ to further neural activities, and even to brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. See review in Pylyshyn Z.W. (2002) ‘Mental imagery: In search of a theory’, Behavioral and Brain Sciences, 25, 157–237.

    Google Scholar 

  2. Fodor, J. (1994) ‘Concepts: A potboiler’, Cognition, 50, p. 95.

    Article  Google Scholar 

  3. Harnad, Stevan (2005) ‘To cognize is to categorize: Cognition is categorisation’, in Lefebvre, C. and Cohen, H. (eds) Handbook of Categorization in Cognitive Science, New York: Elsevier.

    Google Scholar 

  4. Giurfa, M. (2009) Animal Cognition: Nonelemental Learning Beyond Simple Conditioning, Cold Spring Harbor: Cold Spring Harbor Laboratory Press. p. 281.

    Google Scholar 

  5. Hebb, D.O. (1949) The Organization of Behavior, New York: Wiley. p. 14.

    Google Scholar 

  6. Zanone, P-G. and Kostrubiec, V. (2004) ‘Searching for dynamic principles of learning’, in V.K. Jirsa and J.A.S. Kelso (eds) Coordination Dynamics, Issues and Trends, New York: Springer.

    Google Scholar 

  7. For example, Becerikli, Y., Konar, A.F. and Samad, T. (2003) ‘Intelligent optimal control with dynamic neural networks’, Neural Networks, 16, 251–9.

    Article  Google Scholar 

  8. Shiffrin, R.M. (2003) ‘Modelling perception and memory’, Cognitive Science, 27, 341–78.

    Article  Google Scholar 

  9. Nader, K. (2003) ‘Memory traces unbound’, Trends in Neurosciences, 26, p. 70.

    Google Scholar 

  10. Tulving, E. (2002) ‘Episodic memory: From mind to brain’, Annual Review of Psychology, 51, 1–25.

    Article  Google Scholar 

  11. Eysenck, M. (2004) Psychology: An International Perspective, London: Psychology Press.

    Google Scholar 

  12. Elman, J., Bates, E., Karmiloff-Smith, A., Johnson, M., Parisi, D. and Plunkett, K. (1997) Rethinking Innateness: A Connectionist Perspective on Development, Cambridge, Mass: MIT Press. p. 359.

    Google Scholar 

  13. Chomsky, N. (1980) Rules and Representations, Oxford: Blackwell.

    Google Scholar 

  14. Pinker, S. (1997) How the Mind Works, London: Penguin. p. 21.

    Google Scholar 

  15. Pothos, E.M. (2003) ‘The rules versus similarity distinction’, Behavioral and Brain Sciences, 28, p. 26.

    Google Scholar 

  16. Barsch, R. (2002) Consciousness Emerging, Amsterdam: John Benjamins. p. 38.

    Book  Google Scholar 

  17. Eysenck, M.W. and Keane, M.T. (1990) Cognitive Psychology, Hove: Erlbaum. p. 462.

    Google Scholar 

  18. Shepard, R.N. and Metzler, J. (1976) ‘Mental rotation of three-dimensional objects’, Science, 171, 701–703.

    Article  Google Scholar 

  19. MacLennan, B.J. (2004) ‘Natural computation and non-Turing models of computatio’, Theoretical Computer Science, 317, 115–45.

    Article  Google Scholar 

  20. Fodor, J. (2001) The Mind Doesn’t Work That Way: The Scope and Limits of Computational Psychology Cambridge, Mass.: MIT Press.

    Google Scholar 

  21. Eysenck, M.W. (2004) Psychology: An International Perspective, Hove: Psychology Press.

    Google Scholar 

  22. Richardson, K. (2002) ‘What IQ tests test’, Theory and Psychology, 12, 283–314.

    Article  Google Scholar 

  23. P.A. Frensch and J. Funke (eds) (2005), Complex problem solving: The European Perspective, Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  24. Ciszac, M., Montina, A. and Arecchi, F.T. (2009) ‘Control of transient synchronization with external stimuli’, Chaos, 19, 015104.

    Article  Google Scholar 

  25. Manrubia, S.C., Mikhailov, A.S. and Zanette, D.H. (2004) Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems, Singapore: World Scientific.

    Google Scholar 

  26. Kaneko, K. and Tsuda, I. (2001) Complex Systems: Chaos and Beyond, Berlin: Springer.

    Book  Google Scholar 

  27. Levine, D.S. (2009) ‘How does the brain create, change, and selectively override its rules of conduct?’, in Perlovky, L.I. and Kozma, R. (eds) Neurodynamics of Cognition and Comsciousness, New York: Springer.

    Google Scholar 

  28. Phelps, E.A. and LeDoux, J.E. (2005) ‘Contributions of the amygdala to emotion processing: From animal models to human behavior’, Neuron, 48, 175–187.

    Article  Google Scholar 

  29. Vuilleumier, P. and Huang, Y-M. (2009) ‘Emotional attention: Uncovering the mechanisms of affective biases in perception’, Current Directions in Psychological Science, 18, 148–52.

    Article  Google Scholar 

  30. Desmurget, M., Epstein, C.M., et al. (1999) ‘Role of the posterior parietal cortex in updating reaching movements to a visual target’, Nature Neuroscience, 2, 563.

    Article  Google Scholar 

  31. Pessoa, L. (2008) ‘On the relation between emption and cognition’, Nature Reviews: Neuroscience, 9, 148–55.

    Article  Google Scholar 

  32. Damaraju E, Huang Y.M., Barrett L.F. and Pessoa, L. (2009) ‘Affective learning enhances activity and functional connectivity in early visual cortex’, Neuropsychologia, 47, 2480–7.

    Article  Google Scholar 

  33. Roesch, M.R. and Olson, C.R. (2004) ‘Neuronal activity related to reward value and motivation in primate frontal cortex’, Science, 304, 15–18.

    Article  Google Scholar 

  34. Guastello, S.J. (2006) ‘Motor control research requires nonlinear dynamics’, American Psychologist, 61, 77–8.

    Article  Google Scholar 

  35. Piaget, J. (1988) ‘Piaget’s theory’, in K. Richardson and S. Sheldon (eds) Cognitive Development to Adolescence, Hove: Erlbaum. p. 11.

    Google Scholar 

  36. Piaget, J. (1971) Structuralism, London: Routledge and Kegan Paul.

    Google Scholar 

  37. Doré, F.Y. and Dumas, C. (1987) ‘Psychology of animal cognition: Piagetian studies’, Psychological Bulletin, 102, 219–33.

    Article  Google Scholar 

  38. Wynne, C. (2006) Do Animals Think? Princeton: Princeton University Press.

    Google Scholar 

  39. Tsuda, I. (2001) ‘Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems’, Behavioral and Brain Sciences, 24, 793–810.

    Article  Google Scholar 

  40. Kaneko, K. and Tsuda, I. (2003) ‘Chaotic itinerancy’, Chaos, 13, 926–36.

    Article  Google Scholar 

  41. Siri, B., Quoy, M. et al. (2007) ‘Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons’, Journal of Physiology-Paris, 10, 136–48.

    Article  Google Scholar 

  42. Kaneko, K. (1990) ‘Clustering, coding, hierarchical ordering and control in a network of chaotic elements’, Physica, 41, 137–72.

    Google Scholar 

  43. Anderson, J.A. and Sutton, J.P. (1995) ‘A network of networks: Computation and neurobiology’, World Congress on Neural Networks, 1, 561–8.

    Google Scholar 

  44. Sutton, J.P. (1997) ‘Network hierarchies in neural organization, development and pathology’, in Lumsden, C.L., Brandts, W.A. and Trainor, L.E.H. (eds) Physical Theory in Biology, Singapore: World Scientific.

    Google Scholar 

  45. Friston, K. and Kiebel, S. (2009) ‘Cortical circuits for perceptual inference’, Neural Networks, 22, 1093–1104.

    Google Scholar 

  46. Friston, K. and Kiebel, S. (2009) ‘Attractors in song’, New Mathematics and Natural Computation, 5, 83–114.

    Article  Google Scholar 

  47. Bressler, S.L. and Kelso, J.A.S. (2001) ‘Cortical coordination dynamics and cognition’, Trends in Cognitive Science, 5, 26–36.

    Article  Google Scholar 

  48. Tuller, B. (2007) ‘Categorization and learning in speech perception as dynamical processe’, in Riley, M.A and Van Orden, G. (eds) Tutorials in Contemporary Nonlinear Methods for the Bahavioral Sciences, Washington D.C.: National Science Foundation. p. 392.

    Google Scholar 

  49. Thelen, E. and Smith, L.B. (1994) A Dynamic Systems Approach to the Development of Cognition and Action, Cambridge, MA: MIT Press.

    Google Scholar 

  50. see, for example, Kotrschal K, van Staaden, M.J. and Huber, R. (1998) ‘Fish brains: evolution and functional relationships’, Review of Fish Biology and Fisheries, 8, 373–408.

    Article  Google Scholar 

  51. Watson, R. (2009) Selectivity for conspecific vocalizations within the primate insular cortex, Journal of Neuroscience, 29, 6769–70.

    Article  Google Scholar 

  52. Clark, A. and Chalmers, D. (1998) ‘The extended mind’, Analysis, 58, 7–19.

    Article  Google Scholar 

  53. Menary, R. (2007) Cognitive Integration: Mind and Cognition Unbounded, London: Palgrave Macmillan.

    Book  Google Scholar 

  54. Spivey, M., Richardson, D. and Fitneva, S. (2004). ‘Thinking outside the brain: Spatial indices to linguistic and visual information’, in Henderson, J. and Ferreira, F. (eds), The Interface of Vision Language and Action, New York: Psychology Press. pp. 161–2.

    Google Scholar 

  55. Pincus, D. (2009) ‘Fractal thoughts on fractal brains’.

    Google Scholar 

  56. Stein, L.A. (1999) ‘Challenging the computational metaphor: Implications for how we think’, Cybnernetics and Systems, 30, pp. 6–7.

    Google Scholar 

  57. Freeman, W.J. (1999) ‘Noise-induced first-order phase transitions in chaotic brain activity’, International Journal of Bifurcation and Chaos, 9, p. 2218.

    Article  Google Scholar 

  58. Fitch, R.H., Miller, S. and Tallal, P. (1997). Neurobiology of speech perception, Annual Review of Neuroscience, 20, 33153.

    Article  Google Scholar 

  59. Chartier, S., Renaud, P. and Boukadoum, M. (2008) ‘A nonlinear dynamic artificial neural network model of memory’, New Ideas in Psychology, 26, 252–77.

    Article  Google Scholar 

  60. Bartlett, F.C. (1958) Thinking: An Experimental and Social Study, p. 200.

    Google Scholar 

  61. Velichkovsky, B.M. (2007) Towards an Evolutionary Framework for Human Cognitive Neuroscience, Cambridge, MA: MIT Press. p. 3.

    Google Scholar 

  62. Sabelli, H and Abouzeid, A. (2003) ‘Definition and empirical characterization of creative processes’, Nonlinear Dynamics, Psychology, and Life Sciences, 7, 35–48.

    Article  Google Scholar 

Download references

Authors

Copyright information

© 2010 Ken Richardson

About this chapter

Cite this chapter

Richardson, K. (2010). Cognitive Functions. In: The Evolution of Intelligent Systems. Palgrave Macmillan, London. https://doi.org/10.1057/9780230299245_8

Download citation

Publish with us

Policies and ethics