Skip to main content

On Formal and Informal Provability

  • Chapter
New Waves in Philosophy of Mathematics

Part of the book series: New Waves in Philosophy ((NWIP))

Abstract

This article is a philosophical study of mathematical proof and provability. In contrast with the prevailing tradition in philosophy of mathematics, we will not so much focus on “proof” in the sense of proof theory but rather on “proof” in its original intuitive meaning in mathematical practice, that is, understood as “a sequence of thoughts convincing a sound mind” as Gödel (1953, p. 341) expressed it. Call provability in the former sense formal provability and provability in the latter sense informal provability.Soour aim is to investigate informal provability, both conceptually and extensionally. However, our main method of doing so will be, on the one hand, to demarcate informal provability from formal provability, and on the other hand, to study informal provability by formal means. Moreover, the whole investigation will be carried out in a somewhat restricted setting: our primary focus will be on informal provability in pure mathematics rather than in applied mathematics, and within pure mathematics we will concentrate just on informal provability in the more mundane areas of mathematics, such as number theory and analysis, rather than in the more foundational areas.1 Furthermore, we will only deal with informal proofs as far as their justificatory role in mathematics is concerned, disregarding other roles that proofs can have (see Auslander (2008) on other roles; see Detlefsen (2008) for a general discussion on the significance of proofs in mathematics and of a variety of different methods of proof).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artemov, S., “Explicit provability and constructive semantics”, Bulletin of Symbolic Logic 7 (2001), 1–36.

    Article  Google Scholar 

  • Auslander, J., “On the roles of proof in mathematics”, in: B. Gold, and R. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy, Spectrum, The Mathematical Association of America, 2008, 61–77.

    Google Scholar 

  • Avigad, J., “Mathematical method and proof”, Synthese 153 (2006), 105–159.

    Article  Google Scholar 

  • Avigad, J., E. Dean, and J. Mumma, “A formal system for Euclid’s Elements”, unpublished draft.

    Google Scholar 

  • Azzouni, J., Tracking Reason. Proof, Consequence, and Truth, Oxford: Oxford University Press, 2006.

    Book  Google Scholar 

  • Barsalou, L.W., “Perceptual symbol systems”, Behavioral and Brain Sciences 22 (1999), 577–660.

    Google Scholar 

  • Beklemishev, L.D. and A. Visser, “Problems in the logic of provability”, in: D. Gabbay et al. (eds.), Mathematical Problems from Applied Logics. New Logics for the XXIst Century, International Mathematical Series Vol. 4, New York: Springer, 2005.

    Google Scholar 

  • Benacerraf, P., “God, the devil, and Gödel”, The Monist 51 (1967), 9–32.

    Article  Google Scholar 

  • Boolos, G., The Logic of Provability, Cambridge: Cambridge University Press, 1993.

    Google Scholar 

  • Bundy, A., M. Jamnik, and A. Fugard, “What is a proof?” Philosophical Transactions of Royal Society A 363 (2005), 2377–2391.

    Article  Google Scholar 

  • Burgess, J., “Proofs about proofs”, in: Detlefsen, M. (ed.), Proof, Logic and Formalization, London: Routledge, 1992, 8–23.

    Google Scholar 

  • Carlson, T.J., “Epistemic arithmetic and a conjecture of Reinhardt”, Abstracts of papers presented to the Americam Mathematical Society 5 (1984), 200.

    Google Scholar 

  • Carlson, T.J., “Knowledge, machines, and the consistency of Reinhardt’s strong mechanistic thesis”, Annals of Pure and Applied Logic 105 (2000), 51–82.

    Article  Google Scholar 

  • Cohen, P.J., “Skolem and pessimism about proof in mathematics”, Philosophical Transactions of Royal Society A 363 (2005), 2407–2418.

    Article  Google Scholar 

  • Detlefsen, M. (ed.), Proof, Logic and Formalization, London: Routledge, 1992.

    Google Scholar 

  • Detlefsen, M., “Proof: Its nature and significance”, in: Gold, B. and R. Simons (eds.), Proofand Other Dilemmas: Mathematics and Philosophy, Spectrum, The Mathematical Association of America, 2008, 3–32.

    Google Scholar 

  • Etchemendy, J., The Concept of Logical Consequence, Stanford: CSLI Publications, 1999.

    Google Scholar 

  • Feferman, S., “Transfinite recursive progressions of axiomatic theories”, Journal of Symbolic Logic 27 (1962), 259–316.

    Article  Google Scholar 

  • Feferman, S., “What does logic have to tell us about mathematical proofs?”, The Mathematical Intelligencer 2 (1979), 20–24. Reprinted with minor changes in: S. Feferman, In the Light of Logic, Oxford: Oxford University Press, 1998, 177–186.

    Google Scholar 

  • Feferman, S., “What rests on what? The proof-theoretic analysis of mathematics”, in: J. Czermak (ed.), Philosophie der Mathematik, Volume I, Akten des 15. internationalen Wittgenstein Symposiums, Vienna: Hölder-Pichler-Tempsky, 1993, 147–171. Reprinted with minor changes in: S. Feferman, In the Light of Logic, Oxford: Oxford University Press, 1998, 187–208.

    Google Scholar 

  • Feferman, S., “Mathematical intuition vs. mathematical monsters”, Synthese 125 (2000), 317–332.

    Article  Google Scholar 

  • Feferman, S., “Are there absolutely unsolvable problems? Gödel’s dichotomy”, Philosophia Mathematica 14 (2006a), 134–152.

    Article  Google Scholar 

  • Feferman, S., “Open-ended schematic axiom systems”, lecture at the ASL Annual Meeting 2005, Stanford. Abstract in Bulletin of Symbolic Logic 12 (2006b), 145.

    Google Scholar 

  • Flagg, R., “Church’s thesis is consistent with Epistemic Arithmetic”, in: Shapiro, S. (ed.), Intensional Mathematics: Elsevier, 1985b, 121–172.

    Google Scholar 

  • Giaquinto, M., Visual Thinkingin Mathematics, Oxford: Oxford UniversityPress, 2007.

    Book  Google Scholar 

  • Gödel, K., “Eine Interpretation des intuitionistischen Aussagenkalüls”, Ergebnisse eines Mathematischen Kolloquiums, 4 (1933), 39–40. Translated as “An interpretation of the intuitionistic propositional calculus”, in: S. Feferman et al. (eds.), Kurt Gödel Collected Works, Vol. I, Oxford: Oxford University Press, 1986, 300–302.

    Google Scholar 

  • Gödel, K., “Russell’s mathematical logic”, 1944, in: S. Feferman et al. (eds.), Kurt Gödel Collected Works, Vol. II, Oxford: Oxford University Press, 1990, 119–141.

    Google Scholar 

  • Gödel, K., “Some basic theorems on the foundations of mathematics and their implications”, 1951, in: S. Feferman et al. (eds.), Kurt Gödel Collected Works, Vol. III, Oxford: Oxford University Press, 1995, 304–332.

    Google Scholar 

  • Gödel, K., “Is mathematics syntax of language?”, 1953, in: S. Feferman et al. (eds.), Kurt Gödel Collected Works, Vol. III, Oxford: Oxford University Press, 1995, 334–364.

    Google Scholar 

  • Gold, B. and R. Simons (eds.), Proofand Other Dilemmas: Mathematics and Philosophy, Spectrum, The Mathematical Association of America, 2008.

    Google Scholar 

  • Halbach, V., H. Leitgeb, and P. Welch, “Possible worlds semantics for modal notions conceived as predicates”, Journal of Philosophical Logic 32 (2003), 179–223.

    Article  Google Scholar 

  • Heylen, J., “Carnapian Modal and Epistemic Arithmetic”, in: M. Carrara and V. Morato (eds.), Language, Knowledge, and Metaphysics. Selected Papers from the First SIFA Graduate Conference, London: College Publications, 2009, 97–121.

    Google Scholar 

  • Horsten, L., “In defense of epistemic arithmetic”, Synthese 116 (1998), 1–25.

    Article  Google Scholar 

  • Horsten, L., “Models for the logic of possible proofs”, Pacific Philosophical Quarterly 81 (2000), 49–66.

    Article  Google Scholar 

  • Horsten, L., “Canonical naming systems”, Minds and Machines 15 (2005a), 229–257.

    Article  Google Scholar 

  • Horsten, L., “Remarks about the content and extension of the notion of provability”, Logique et Analyse 189–192 (2005b), 15–32.

    Google Scholar 

  • Horsten, L., “An argument concerning the unknowable”, forthcoming in Analysis (2009).

    Google Scholar 

  • Horsten, L. and H. Leitgeb, “Church’s thesis and absolute undecidability”, unpublished draft.

    Google Scholar 

  • Koellner, P., “On the question of absolute undecidability”, Philosophia Mathematica 14 (2006), 153–188.

    Article  Google Scholar 

  • Koellner, P., “Truth in mathematics: The question of pluralism”, this volume.

    Google Scholar 

  • Kreisel, G., “Informal rigour and completeness proofs”, in: I. Lakatos (ed.), Problems in the Philosophy of Mathematics, Amsterdam: North-Holland, 1967, 138–171.

    Chapter  Google Scholar 

  • Lakatos, I., Proofs and Refutations, New York: Cambridge University Press, 1976.

    Book  Google Scholar 

  • Leitgeb, H., “What truth depends on”, Journal of Philosophical Logic 34 (2005), 155–192.

    Article  Google Scholar 

  • Leitgeb, H., “Towards a logic of type-free modality and truth”, in: C. Dimitracopoulos et al. (eds.), Logic Colloquium 05, Lecture Notes in Logic, Cambridge University Press, 2008, 68–84.

    Google Scholar 

  • Löwe, B., “Visualization of ordinals”, in: T. Müller and A. Newen (eds.), Logik, Begriffe, Prinzipien des Handelns, Paderborn: Mentis Verlag, 2007, 64–80.

    Google Scholar 

  • Maddy, P., Realism in Mathematics, Oxford: Clarendon Press, 1990.

    Google Scholar 

  • Maddy, P., Naturalism in Mathematics, Oxford: Clarendon Press, 1997.

    Google Scholar 

  • Manders, K., “The Euclidean diagram”, unpublished draft, 1995.

    Google Scholar 

  • Mayo-Wilson, C., “Formalization and justification”, unpublished draft.

    Google Scholar 

  • McGee, V., “How we learn mathematical language”, Philosophical Review 106 (1997), 35–68.

    Article  Google Scholar 

  • Mendelson, E., “Second thoughts about Church’s thesis and mathematical proofs”, Journal of Philosophy 87 (1990), 225–233.

    Article  Google Scholar 

  • Montague, R., “Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability”, Acta Philosophica Fennica 16 (1963), 153–167.

    Google Scholar 

  • Mumma, J., Intuition Formalized: Ancient and Modern Methods of Proof in Elementary Geometry, PhD Thesis, Carnegie Mellon University, 2006.

    Google Scholar 

  • Myhill, J., “Some remarks on the notion of proof”, Journal of Philosophy 57 (1960), 461–471.

    Article  Google Scholar 

  • Parsons, C., “Mathematical intuition”, Proceedings of the Aristotelian Society 80 (1979–80), 145–168.

    Google Scholar 

  • Parsons, C., “On some difficulties concerning intuition and intuitive knowledge”, Mind 102 (1993), 233–246.

    Article  Google Scholar 

  • Rav, Y., “Why do we prove theorems?”, Philosophia Mathematica 7 (1999), 5–41.

    Google Scholar 

  • Rav, Y., “A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices”, Philosophia Mathematica 15 (2007), 291–320.

    Article  Google Scholar 

  • Reinhardt, W.N., “Epistemic theories and the interpretation of Gödel’s incompleteness theorems”, Journal of Philosophical Logic 15 (1986), 427–474.

    Google Scholar 

  • Resnik, M., Mathematics as a Science of Patterns, Oxford: Oxford University Press, 1997.

    Google Scholar 

  • Robinson, J.A., “Informal rigor and mathematical understanding”, in: G. Gottlob et al. (eds.), Computational Logic and Proof Theory, Lecture Notes in Computer Science 1289, Berlin: Springer, 1997, 54–64.

    Chapter  Google Scholar 

  • Shapiro, S., “Epistemic and Intuitionistic Arithmetic”, in: S. Shapiro (ed.), 1985, 11–46.

    Google Scholar 

  • Shapiro, S. (ed.), Intensional Mathematics, Amsterdam: Elsevier, 1985.

    Google Scholar 

  • Shapiro, S., Philosophy of Mathematics: Structure and Ontology, New York: Oxford University Press, 1997.

    Google Scholar 

  • Shapiro, S., “Incompleteness, mechanism, and optimism”, Bulletin of Symbolic Logic 4 (1998), 273–302.

    Article  Google Scholar 

  • Shapiro, S., “We hold these truths to be self-evident: But what do we mean by that?”, unpublished draft.

    Google Scholar 

  • Skyrms, B., “An immaculate conception of modality or how to confuse use and mention”, Journal of Philosophy 75 (1978), 368–387.

    Article  Google Scholar 

  • Solovay, R.M., “Provability interpretations of modal logic”, Israel Journal of Mathematics 25 (1976), 87–304.

    Article  Google Scholar 

  • Statman, R., Structural Complexity of Proofs, PhD Thesis, Stanford University, 1974.

    Google Scholar 

  • Suppes, P., “Psychological nature of verification of informal mathematical proofs”, in: S. Artemov et al. (eds.), We Will Show Them: Essays in Honour of Dov Gabbay,Vol. 2, College Publications, 2005, 693–712.

    Google Scholar 

  • Tarski, A., “What are logical notions?”, History and Philosophy of Logic 7 (1986), 143–154.

    Article  Google Scholar 

  • Tieszen, R., “What is a Proof?”, in: M. Detlefsen (ed.), Proof, Logic and Forumalization, London: Routledge, 1992, 57–76.

    Google Scholar 

  • Väänänen, J., “Second-order logic and foundation of mathematics”, The Bulletin of Symbolic Logic 7 (2001), 504–520.

    Article  Google Scholar 

  • Williamson, T., Knowledge and Its Limits, Oxford: Oxford University Press, 2000.

    Google Scholar 

  • Zach, R., “The practice of finitism. Epsilon calculus and consistency proofs in Hilbert’s Program”, Synthese 137 (2003), 211–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2009 Hannes Leitgeb

About this chapter

Cite this chapter

Leitgeb, H. (2009). On Formal and Informal Provability. In: Bueno, O., Linnebo, Ø. (eds) New Waves in Philosophy of Mathematics. New Waves in Philosophy. Palgrave Macmillan, London. https://doi.org/10.1057/9780230245198_13

Download citation

Publish with us

Policies and ethics