Abstract
In this chapter, we introduce the concept of sentiment analysis as a way to study the prevalence of positive or negative sentiments in expressed attitudes and opinions. We review the ways researchers broadly have used sentiment analyses of Twitter data and other digital data and the established benefits and limits of this method for urban social science research. We then discuss how Twitter data and other similar forms of social media data have been applied in a wide variety of urban planning issues and projects across the globe.
Keywords
- Social listening
- Social media
- Microblogging
This is a preview of subscription content, access via your institution.
Buying options
References
Antonelli, F., Azzi, M., Balduini, M., Ciuccarelli, P., Valle, E. D., & Larcher, R. (2014, May). City sensing: Visualising mobile and social data about a city scale event. In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, ACM, 337–338.
Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas, T., & Confalonieri, C. (2013). Social listening of city scale events using the streaming linked data framework. In The semantic web–ISWC 2013 (pp. 1–16). Berlin/Heidelberg: Springer.
Ben-Harush, O., Carroll, J.-A., & Marsh, B. (2012). Using mobile social media and GIS in health and place research. Continuum, 26(5), 715–730.
Bertrand, K. Z., Bialik, M., Virdee, K., Gros, A., & Bar-Yam, Y. (2013, August 20). Sentiment in New York City: A high resolution spatial and temporal view. arXiv:1308.5010.
Bliss, C. A., Kloumann, I. M., Harris, K. D., Danforth, C. M., & Dodds, P. S. (2012). Twitter reciprocal reply networks exhibit assortativity with respect to happiness. Journal of Computational Science, 3(5), 388–397.
Bollen, J., Mao, H., & Pepe, A. (2011a). Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, 450–453.
Bollen, J., Gonçalves, B., Ruan, G., & Mao, H. (2011b). Happiness is assortative in online social networks. Artificial Life, 17(3), 237–251.
Cheng, Z., Caverlee, J., Lee, K., & Sui, D. Z. (2011). Exploring millions of footprints in location sharing services. ICWSM, Barcelona, Spain, 17 to 21 July 2011, pp. 81–88.
Cranshaw, J., Schwartz, R., Hong, J., & Sadeh, N. (2012). The livehoods project: Utilizing social media to understand the dynamics of a city. Sixth International AAAI Conference on Weblogs and Social Media, 58–65.
Cui, A., Zhang, M., Liu, Y., & Ma, S. (2011). Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis. 7th Asia Information Retrieval Societies Conference, AIRS.
Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., & Danforth, C. M. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PloS One, 6(12), e26752. doi:10.1371/journal.pone.0026752.
Eichstaedt, J. C., et al. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science, 26(2), 159–169.
Evans-Cowley, J., & Hollander, J. (2010). The new generation of public participation: Internet-based participation tools. Planning, Practice & Research., 25(3), 397–408.
Frias-Martinez, V., Soto, V., Hohwald, H., & Frias-Martinez, E. (2013). Sensing urban land use with Twitter activity. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.878&rep=rep1&type=pdf
Fujisaka, T., Lee, R., & Sumiya, K. (2010). Exploring urban characteristics using movement history of mass mobile microbloggers. In Proceedings of the Eleventh Workshop on Mobile Computing Systems & Applications, ACM.
Gao, Q., Abel, F., Houben, G. J., & Yu, Y. (2012). A comparative study of users’ microblogging behavior on Sina Weibo and Twitter. In User modeling, adaptation, and personalization (pp. 88–101). Berlin/Heidelberg: Springer.
Gayo-Avello, D. (2011). Limits of electoral predictions using Twitter. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, AAAI, 490–493.
Gayo-Avello, D. (2012). I wanted to predict elections with Twitter and all I got was this Lousy Paper—A balanced survey on election prediction using Twitter data. arXiv:1204.6441.
Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-scale sentiment analysis for news and blogs. ICWSM, 7, 21.
Gordon, J. (2013). Comparative geospatial analysis of Twitter sentiment data during the 2008 and 2012 US Presidential elections. Eugene: University of Oregon.
Hale, S. A. (2014). Global connectivity and multilinguals in the Twitter network. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 833–842.
Jungherr, A., Jürgens, P., & Schoen, H. (2012). Why the Pirate Party won the German election of 2009 or the trouble with predictions: A response to Tumasjan, A., Sprenger, T. O., Sander, P. G., & Welpe, I. M. ‘Predicting elections with Twitter: What 140 characters reveal about political sentiment. Social Science Computer Review, 30, 229–234.
Liu, B. (2012). Sentiment analysis and opinion mining. San Rafael: Morgan & Claypool Publishers.
Lovelace, R., Malleson, N., Harland, K., & Birkin, M. (2014). Geotagged tweets to inform a spatial interaction model: A case study of museums. Leeds: School of Geography, University of Leeds.
MacEachren, A. M., et al. (2011). Geo-twitter analytics: Applications in crisis management. 25th International Cartographic Conference.
Magdy, A., Ghanem, T. M., Musleh, M., & Mokbel, M. F. (2014). Exploting geo-tagged tweets to understand local language diversity. Proceedings of Workshop on Managing and Mining Enriched Geo-Spatial Data, ACM. 2.
Mearns, G., Simmonds, R., Richardson, R., Turner, M., Watson, P., & Missier, P. (2014). Tweet my street: A cross-disciplinary collaboration for the analysis of local Twitter data. Future Internet, 6(2), 378–396.
Metaxas, P. T., & Mustafaraj, E. (2012). Social media and the elections. Policy Forum, 338, 472–473.
Mitchell, L., Harris, K. D., Frank, M. R., Dodds, P. S., & Danforth, C. M. (2013). The Geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place. PloS One, 8(5), e64417.
Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., & Vespignani, A. (2013). The Twitter of Babel: Mapping world languages through microblogging platforms. PloS One. doi:10.1371/journal.pone.0061981.
O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11, 122–129.
Poblete, B., Garcia, R., Mendoza, M., & Jaimes, A. (2011). Do all birds tweet the same? Characterizing Twitter around the world. In Proceedings of the 20th ACM international conference on information and knowledge management, ACM, 1025–1030.
Quercia, D., Ellis, J., Capra, L., & Crowcroft, J. (2012). Tracking gross community happiness from tweets. 15th ACM Conference on Computer Supported Cooperative Work (CSCW). Seattle.
Sakaki, T., Okazaki, M., & Matsuo, Y. (2010, April 26–30). Earthquake shakes Twitter users: Real-time event detection by social sensors. WWW2010, Raleigh.
Sang, E. T. K., & Bos, J. (2012). Predicting the 2011 Dutch senate election results with Twitter. In Proceedings of the Workshop on Semantic Analysis in Social Media, 53–60.
Schroeter, R., & Houghton, K. (2011). Neo-planning: Location-based social media to engage Australia’s new digital locals. Proceedings of Planning Institute of Australia National Conference 2011. Planning Institute of Australia.
Schweitzer, L. (2014). Planning and social media: A case study of public transit and stigma on Twitter. Journal of the American Planning Association, 80(3), 218–238.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, AAAI, 178–184.
Wakamiya, S., Lee, R., & Sumiya, K. (2011). Crowd-based urban characterization: Extracting crowd behavioral patterns in urban areas from twitter. In Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks, ACM.
Wilkinson, D., & Thelwall, M. (2012). Trending Twitter topics in English: An international comparison. Journal of the American Society for Information Science and Technology, 63(8), 1631–1646.
Zhang, X., Fuehres, H., & Gloor, P. A. (2011a). Predicting stock market indicators through Twitter: ‘I hope it is not as bad as I fear. Procedia – Social and Behavioral Sciences, 26, 55–62.
Zhang, X., Fuehres, H., & Gloor, P. A. (2011b). Predicting asset value through Twitter Buzz. In J. Altmann et al. (Eds.), Advances in collective intelligence 2011, AISC 113, 23–34.
Author information
Authors and Affiliations
Copyright information
© 2016 The Author(s)
About this chapter
Cite this chapter
Hollander, J.B., Graves, E., Renski, H., Foster-Karim, C., Wiley, A., Das, D. (2016). A (Short) History of Social Media Sentiment Analysis. In: Urban Social Listening. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-59491-4_2
Download citation
DOI: https://doi.org/10.1057/978-1-137-59491-4_2
Published:
Publisher Name: Palgrave Macmillan, London
Print ISBN: 978-1-137-59490-7
Online ISBN: 978-1-137-59491-4
eBook Packages: Literature, Cultural and Media StudiesLiterature, Cultural and Media Studies (R0)