Skip to main content

Introduction

  • 418 Accesses

Abstract

Every day, millions of people around the globe express themselves on social media, generating large, complex, and intriguing datasets. Academics, policy makers, pollsters, and firms are rushing to interpret this digital self-expression to answer a wide variety of questions. Our research is an attempt to analyze sentiment in microblogs to learn more about places and the people that occupy them. This book is an attempt to chronicle that work in service of demonstrating to planners and policy makers how and how not to use Big Data to understand sentiment, populations, and places.

Keywords

  • Big Data
  • Sentiment analysis
  • Content analysis
  • Microblogs
  • Twitter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1057/978-1-137-59491-4_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-1-137-59491-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Hardcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.1

References

  • Agichtein, E., Castillo, C., Donato, D., Gionis, A., & Mishne, G. (2008). Finding high-quality content in social media. In Proceedings of the 2008 International Conference on Web Search and Data Mining, ACM, 183–194.

    Google Scholar 

  • Boniwell, I. (2008). Positive psychology in a nutshell: A balanced introduction to the science of optimal functioning. London: Personal Well-Being Centre.

    Google Scholar 

  • Catanese, S., De Meo, P., Ferrara, E., & Fiumara, G. (2010). Analyzing the Facebook friendship graph. arXiv preprint arXiv:1011.5168.

    Google Scholar 

  • Cha, M., Haddadi, H., Benevenuto, F., & Gummadi, K. P. (2010). Measuring user influence in Twitter: The Million Follower Fallacy. In Proceedings of the Fourth Annual AAAI Conference on Weblogs and Social Media, 10–17.

    Google Scholar 

  • Cox, M., & Ellsworth, D. (1997). Application-controlled demand paging for out-of-core visualization. In Proceedings of the 8th Conference on Visualization, IEEE Computer Society Press, 235-ff.

    Google Scholar 

  • Davern, M., Cummins, R., & Stokes, M. (2007). Subjective wellbeing as an affective-cognitive construct. Journal of Happiness Studies, 8(4), 429–449.

    CrossRef  Google Scholar 

  • Diakopoulos, N. A., & Shamma, D. A. (2010). Characterizing debate performance via aggregated twitter sentiment. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM.

    Google Scholar 

  • Diener, E. (2015, March 16). Personal communication.

    Google Scholar 

  • Diener, E., Sapyta, J. J., & Suh, E. (1998). Subjective well-being is essential to well-being. Psychological Inquiry, 9, 33–37.

    CrossRef  Google Scholar 

  • Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. E. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125, 276–302.

    CrossRef  Google Scholar 

  • Ediger, D., Jiang, K., Riedy, J., Bader, D. A., Corley, C., Farber, R., & Reynolds, W. N. (2010). Massive social network analysis: Mining Twitter for social good. 39th International Conference on Parallel Processing, 583593.

    Google Scholar 

  • Francis, L. J. (1999). Happiness is a thing called stable extraversion: A further examination of the relationship between the Oxford Happiness Inventory and Eysenck’s dimensional model of personality and gender. Personality and Individual Differences, 26(1), 5–11.

    CrossRef  Google Scholar 

  • Frias-Martinez, V., & Frias-Martinez, E. (2014). Crowdsourcing land use maps via Twitter. KDD’14, New York.

    Google Scholar 

  • Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1–12.

    Google Scholar 

  • Gokulakrishnan, B., Priyanthan, P., Ragavan, T., Prasath, N., & Perera, A. (2012). Opinion mining and sentiment analysis on a Twitter data stream. The International Conference on Advances in ICT for Emerging Regions—ICTer 2012, 182–188.

    Google Scholar 

  • Goodspeed, R. (2013). The limited usefulness of social media and digital trace data for urban social research, AAAI Technical Report, 2–4.

    Google Scholar 

  • Hansen, D. L., Rotman, D., Bonsignore, E., Milic-Frayling, N., Rodrigues, E. M., Smith, M., & Shneiderman, B. (2009). Do you know the way to SNA?: A process model for analyzing and visualizing social media data (pp. 1–10). College Park: University of Maryland.

    Google Scholar 

  • Hinchcliffe, D., & Kim, P. (2012). Social business by design: Transformative social media strategies for the connected company. Wiley.

    Google Scholar 

  • Kim, J., & Lee, J.-E. R. (2011). The Facebook paths to happiness: Effects of the number of Facebook friends and self-presentation on subjective well-being. Cyberpsychology, Behavior and Social Networking, 14(6), 359–364.

    CrossRef  Google Scholar 

  • Mahmud, J., Nichols, J., & Drews, C. (2012). Where is this tweet from? Inferring home locations of Twitter users. In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media, 511514.

    Google Scholar 

  • Martineau, J., & Finin, T. (2009). Delta TFIDF: An improved feature space for sentiment analysis. In Proceedings of the Third International ICWSM Conference, 258–261.

    Google Scholar 

  • Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Boston: Eamon Dolan/Houghton Mifflin Harcourt.

    Google Scholar 

  • McCrae, R. R., & Terracciano, A. (2005). Universal features of personality traits from the observer’s perspective: Data from 50 cultures. Personality Processes and Individual Differences, 88(3), 547–561.

    Google Scholar 

  • Merchant, R. M., Elmer, S., & Lurie, N. (2011). Integrating social media into emergency-preparedness efforts. New England Journal of Medicine, 365(4), 289–291.

    CrossRef  Google Scholar 

  • Namata, G. M., Sharara, H., & Getoor, L. (2010). A survey of link mining tasks for analyzing noisy and incomplete networks. Springer.

    Google Scholar 

  • Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing (pp. 70–77). New York: ACM.

    Google Scholar 

  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval., 2(1–2), 1–90.

    CrossRef  Google Scholar 

  • Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. EMNLP, 79–86.

    Google Scholar 

  • Prabowo, R., & Thelwall, M. (2009). Sentiment analysis: A combined approach. Journal of Informetrics, 3(1), 143–157.

    CrossRef  Google Scholar 

  • Rappaport, S. D. (2011). Listen first!: Turning social media conversations into business advantage. New York: Wiley.

    Google Scholar 

  • Ryff, C. D., & Singer, B. H. (2008). Know thyself and become what you are: Aeudaimonic approach to psychological well-being. Journal of Happiness Studies, 9(1), 13–39.

    CrossRef  Google Scholar 

  • Schimmack, U., Diener, E., & Oishi, S. (2002). Life-satisfaction is a momentary judgment and a stable personality characteristic: The use of chronically accessible and stable sources. Journal of Personality, 70, 345–384.

    CrossRef  Google Scholar 

  • Schimmack, U., Radhakrishnan, P., Oishi, S., Dzokoto, V., & Ahadi, S. (2002). Culture, personality, and subjective well-being: Integrating process models of life satisfaction. Personality Processes and Individual Differences, 82(4), 582–593.

    Google Scholar 

  • Schweitzer, L. (2014). Planning and social media: A case study of public transit and stigma on Twitter. Journal of the American Planning Association, 80(3), 218–238.

    CrossRef  Google Scholar 

  • Servi, L., & Elson, S. B. (2012). A Mathematical approach to identifying and forecasting shifts in the mood of social media users. The MITRE Corporation, 27-1–27-16.

    Google Scholar 

  • Sheldon, K. M., & Kasser, T. (2001). Getting older, getting better: Personal strivings and psychological maturity across the lifespan. Developmental Psychology, 37, 491–501.

    CrossRef  Google Scholar 

  • Soldz, S., & Vaillant, G. E. (1999). The Big five personality traits and the life course: A 45-year longitudinal study. Journal of Research in Personality, 33, 208–232.

    CrossRef  Google Scholar 

  • Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307.

    CrossRef  Google Scholar 

  • Tang, L., & Liu, H. (2010). Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery, 2(1), 1–137.

    CrossRef  Google Scholar 

  • Wilson, T., Wiebe, J., & Hoffmann, P. (2009). Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis. Computation Linguistics, 35(3), 400–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Hollander, J.B., Graves, E., Renski, H., Foster-Karim, C., Wiley, A., Das, D. (2016). Introduction. In: Urban Social Listening. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-59491-4_1

Download citation