Institutional Context and Growth of New Research Fields. Comparison Between State Universities in Germany and the USA

  • Arlette Jappe
  • Thomas Heinze
Part of the Palgrave Studies in the History of Science and Technology book series (PSHST)


The chapter examines the capabilities of universities to rapidly build up and expand their research capacities in new and emerging scientific fields following major scientific contributions. Based on two Nobel Prize-winning breakthroughs of the 1980s, the chapter investigates how fast scientists in German and US state universities built up research capacity in the 1990s and 2000s. Most importantly, the chapter explores to what extent the institutional framework in which state universities are embedded supported such expansion and renewal. We find that growth in the number of professors, growth in basic funding, a high percentage of professors among all scientific staff, and a high percentage of grant funding among are key factors positively associated with building up and expanding research capacities in new and emerging fields.


Nobel prize Organizational renewal Emerging research fields Institutional environment State universities Germany USA Historical institutionalism 



This chapter is based on research that was supported by the German Federal Ministry for Research and Education (BMBF) grant 01UZ1001. We thank Richard Heidler and Heiko Heiberger for assistance in conducting interviews and retrieving statistical data at the Bavarian Statistical Office. We are very grateful to David Pithan for processing bibliometric data, Joel Fuchs for retrieving valuable additional personnel and funding data at archives at UCLA and UCSB, and at the German Federal Statistical Office, and for cleaning and processing all personnel and funding data. We are also very grateful for comments and suggestions from the participants of the Research Colloquium at the Institute of Sociology, Technical University Berlin (January 14, 2015), the 20th International Conference on Science and Technology Indicators in Lugano (September 2–4, 2015), and the Atlanta Conference on Science and Innovation Policy (September 17–19, 2015) where earlier versions of this chapter were presented.


  1. Aldersey-Williams, Hugh. 1995. The most beautiful molecule: An adventure in chemistry. London: Aurum Press.Google Scholar
  2. Ash, Mitchell G. 1997. Mythos Humboldt: Vergangenheit und Zukunft der deutschen Universitäten. Wien: Böhlau.Google Scholar
  3. Baggot, Jim. 1994. Perfect symmetry: The accidental discovery of buckminsterfullerene. Oxford: Oxford University Press.Google Scholar
  4. Bai, Chunli. 2000. Scanning tunneling microscopy and its applications. New York: Springer.Google Scholar
  5. Baum, Rudy M. 1990. Ideas on soot formation spark controversy. Chemical and Engineering News 68: 30–32.Google Scholar
  6. Ben-David, Joseph. 1971. The scientist’s role in society. Chicago: University of Chicago Press.Google Scholar
  7. Binnig, Gerd, and Heinrich Rohrer. 1982. Scanning tunneling microscopy. Surface Science 126: 336–344.Google Scholar
  8. Chen, C. Julian. 1993. Introduction to scanning tunneling microscopy. New York: Oxford University Press.Google Scholar
  9. Choi, Hyungsub, and Cyrus C.M. Mody. 2009. The long history of molecular electronics: Microelectronics origins of nanotechnology. Social Studies of Science 39: 11–50.CrossRefGoogle Scholar
  10. Clark, Burton R. 1998. Creating entrepreneurial universities: Organizational pathways of transformation. New York: Pergamon Press.Google Scholar
  11. Cole, Jonathan R. 2009. The Great American University. New York: Public Affairs.Google Scholar
  12. Enders, Jürgen. 1996. Die wissenschaftlichen Mitarbeiter: Ausbildung, Beschäftigung und Karriere der Nachwuchswissenschaftler und Mittelbauangehörigen an den Universitäten. Frankfurt/New York: Campus Verlag.Google Scholar
  13. Fleming, Lee, Santiago Mingo, and David Chen. 2007. Collaborative brokerage, generative creativity, and creative success. Administrative Science Quarterly 52: 443–475.Google Scholar
  14. Frank, David John, and Jay Gabler. 2006. Reconstructing the university: Worldwide shifts in academia in the 20th century. Stanford: Stanford University Press.Google Scholar
  15. Gaston, Jerry. 1973. Originality and competition in science. Chicago: Chicago University Press.Google Scholar
  16. Hage, Jerald, and Jonathon Mote. 2008. Transformational organizations and institutional change: The case of the Institut Pasteur and French science. Socio-Economic Review 6: 313–336.CrossRefGoogle Scholar
  17. Haller, Max, Birgit Wohinz, and Margot Wohinz. 2002. Österreichs Nobelpreisträger und Wissenschaftler im historischen und internationalen Vergleich. Wien: Passagen Verlag.Google Scholar
  18. Heinze, Thomas. 2013. Creative accomplishments in science: Definition, theoretical considerations, examples from science history, and bibliometric findings. Scientometrics 95: 927–940.CrossRefGoogle Scholar
  19. Heinze, Thomas, and Georg Krücken. 2012. Institutionelle Erneuerungsfähigkeit der Forschung. Wiesbaden: Springer VS.CrossRefGoogle Scholar
  20. Heinze, Thomas, Philip Shapira, Juan D. Rogers, and Jacqueline M. Senker. 2009. Organizational and institutional influences on creativity in scientific research. Research Policy 38: 610–623.CrossRefGoogle Scholar
  21. Heinze, Thomas, Richard Heidler, Heiko Heiberger, and Jan Riebling. 2013. New patterns of scientific growth? How research expanded after the invention of scanning tunneling microscopy and the discovery of Buckminsterfullerenes. Journal of the American Society for Information Science and Technology 64: 829–843.CrossRefGoogle Scholar
  22. Hessenbruch, Arne. 2004. Nanotechnology and the negotiation of novelty. In Discovering the nanoscale, ed. Davis Baird, Alfred Nordmann, and Joachim Schummer, 135–144. Amsterdam: IOS Press.Google Scholar
  23. Hollingsworth, J. Rogers. 2004. Institutionalizing excellence in biomedical research: The case of The Rockefeller University. In Creating a tradition, ed. D.H. Stapleton, 17–63. New York: Rockefeller University Press.Google Scholar
  24. Hollingsworth, J. Rogers. 2006. A path-dependent perspective on institutional and organizational factors shaping major scientific discoveries. In Innovation, science, and institutional change, ed. Jerald Hage and Marius Meeus, 423–442. Oxford: Oxford University Press.Google Scholar
  25. Krätschmer, W., L.D. Lamb, K. Fostiropoulos, and D.R. Huffman. 1990. Solid C60: A new form of carbon. Nature 347: 345.CrossRefGoogle Scholar
  26. Kreckel, Reinhard. 2008. Zwischen Promotion und Professur: Das wissenschaftliche Personal in Deutschland im Vergleich mit Frankreich, Großbritannien, USA, Schweden, den Niederlanden, Osterreich und der Schweiz. Leipzig: Akademische Verlagsanstalt.Google Scholar
  27. Kroto, H.W., J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. 1985. C-60: Buckminsterfullerene. Nature 318: 162–163.CrossRefGoogle Scholar
  28. Krücken, Georg, Anna Kosmützky, and Mark Torka. 2007. Towards a multiversity? Universities between global trends and national traditions. Bielefeld: Transcript.Google Scholar
  29. Laudel, Grit, and Jochen Gläser. 2014. Beyond breakthrough research: Epistemic properties of research and their consequences for research funding. Research Policy 43: 1204–1216.CrossRefGoogle Scholar
  30. Lenoir, Tim. 1997. Instituting science: The cultural production of scientific disciplines. Stanford: Stanford University Press.Google Scholar
  31. Long, J. Scott, and Robert McGinnis. 1981. Organizational context and scientific productivity. American Sociological Review 46: 422–442.CrossRefGoogle Scholar
  32. Mahoney, James, and Kathleen Thelen. 2010. A theory of gradual institutional change. In Explaining institutional change: Ambiguity, agency, and power, ed. James Mahoney and Kathleen Thelen, 1–37. Cambridge: Cambridge University Press.Google Scholar
  33. March, James G. 1991. Exploration and exploitation in organizational learning. Organization Science 2: 71–87.CrossRefGoogle Scholar
  34. Merton, Robert K., and Elinor G. Barber. 2004. The travels and adventures of serendipity: A study in sociological semantics and the sociology of science. Princeton: Princeton University Press.Google Scholar
  35. Mody, Cyrus C.M. 2011. Instrumental community: Probe microscopy and the path to nanotechnology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  36. Mulkay, Michael J. 1972. Conformity and innovation in science. The Sociological Review 18: 5–23.CrossRefGoogle Scholar
  37. Mulkay, Michael J. 1975. Three models of scientific development. The Sociological Review 23: 509–526.CrossRefGoogle Scholar
  38. Münch, Richard. 2007. Die akademische Elite. Zur sozialen Konstruktion wissenschaftlicher Exzellenz. Frankfurt am Main: Suhrkamp.Google Scholar
  39. Polanyi, Michael. 1969. Knowing and being. With an Introduction by Marjorie Grene. Chicago: Chicago University Press.Google Scholar
  40. Powell, Walter W., Douglas R. White, Kenneth W. Koput, and Jason Owen‐Smith. 2005. Network dynamics and field evolution: The growth of interorganizational collaboration in the life sciences. American Journal of Sociology 110: 1132–1205.CrossRefGoogle Scholar
  41. Rogers, Everett M. 2003. Diffusion of innovations. New York: Free Press.Google Scholar
  42. Schuster, Jack H., and Martin J. Finkelstein. 2006. The American faculty: The restructuring of academic work and careers. Baltimore: Johns Hopkins University.Google Scholar
  43. Servos, John W. 1990. Physical chemistry from Ostwald to Pauling: The making of a science in America. Princeton: Princeton University Press.Google Scholar
  44. Stichweh, Rudolf. 1993. Wissenschaft, Universität, Professionen: Soziologische Analysen. Frankfurt am Main: Suhrkamp.Google Scholar
  45. Streeck, Wolfgang, and Kathleen Thelen. 2005. Introduction. In Beyond continuity. Institutional change in advanced political economies, ed. Wolfgang Streeck and Kathleen Thelen, 1–39. Oxford: Oxford University Press.Google Scholar
  46. Teichler, Ulrich. 2007. Higher education systems. Rotterdam/Taipeh: Sense Publishers.Google Scholar
  47. Thelen, Kathleen. 2003. How institutions evolve. Insights from comparative historical analysis. In Comparative historical analysis in the social sciences, ed. James Mahoney and Dietrich Rueschemeyer, 208–240. New York: Cambridge University Press.CrossRefGoogle Scholar
  48. Weingart, Peter. 2003. Wissenschaftssoziologie. Bielefeld: Transkript.CrossRefGoogle Scholar
  49. Whitley, Richard. 2000. The intellectual and social organization of the science, 2nd ed. Oxford: Oxford University Press.Google Scholar
  50. Wilson, Duncan. 2008. Reconfiguring biological sciences in the late twentieth century: A study of the University of Manchester. Manchester: University of Manchester.Google Scholar
  51. Youtie, Jan, Juan Rogers, Thomas Heinze, Philip Shapira, and Li Tang. 2013. Career-based influences on scientific recognition in the United States and Europe: Longitudinal evidence from curriculum vitae data. Research Policy 42: 1341–1355.CrossRefGoogle Scholar
  52. Zuckerman, Harriet. 1977. Scientific elite: Nobel laureates in the United States. New York: Free Press.Google Scholar
  53. Zuckerman, Harriet. 1993. Die Werdegänge von Nobelpreisträgernn. In Generations- dynamik in der Forschung. ed. Karl Ulrich Mayer, 59–79. Frankfurt am Main: Campus.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Science and Technology Studies (IZWT)University of WuppertalWuppertalGermany

Personalised recommendations