Skip to main content

Introduction: Visualizing Genetics for Public Readers

  • Chapter
  • First Online:
Communicating Genetics
  • 276 Accesses

Abstract

Chapter 1 argues that current literature on science visualization focuses on two stakeholders—scientists and science educators/students—but overlooks the publics. This oversight is especially problematic in the communication of genetics, a discipline that has significant impact on publics’ welfare and quality of life. The chapter advocates a fluid approach to popular science communication, one that departs from both the deficit and the critical approaches. It asserts that popular science genetics images both deliver formal knowledge and function as social–cultural artifacts. To analyze these images, the book draws upon information design and social semiotics theories. These two theories reveal, on the one hand, images’ apparent appearance and affordance in information delivery and, on the other hand, their implied messages, emotions, and value stances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldahmash, A. H., & Abraham, M. R. (2009). Kinetic versus static visuals for facilitating college students’ understanding of organic reaction mechanisms in chemistry. Journal of Chemical Education, 86(12), 1442–1446.

    Article  Google Scholar 

  • Amann, K. & Knorr-Cetina, K. (1990). The fixation of (visual) evidence. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 85–121). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Anker, S., & Nelkin, D. (2004). The molecular gaze: Art in the genetic age. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Anyfandi, G., Koulaidis, V., & Dimopoulos, K. (2014). A socio-semiotic framework for the analysis of exhibits in a science museum. Semiotica, 2014(200), 229–254. doi:10.1515/sem-2014-0001.

    Article  Google Scholar 

  • Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The Journal of Experimental Medicine, 79(2), 137–158.

    Article  Google Scholar 

  • Barthes, R. (1991). Mythologies. New York: Noonday Press.

    Google Scholar 

  • Bazerman, C. (2010). Rhetorical genre studies. In A. S. Bawarshi & M. J. Reiff (Eds.), Genre: An introduction to history, theory, research, and pedagogy (pp. 78–104). West Lafayette, IN: Parlor Press and The WAC Clearinghouse.

    Google Scholar 

  • BBVA Foundation. (2012). BBVA foundation international study on scientific culture: Understanding of science. Retrieved July 21, 2017, from http://w3.grupobbva.com/TLFU/dat/Understandingsciencenotalarga.pdf.

  • Berkenkotter, C., & Huckin, T. (1995). Genre knowledge in disciplinary communication: Cognition/culture/power. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Blum, A. S. (1993). Picturing nature: American nineteenth-century zoological illustration. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Brasseur, L. E. (2003). Visualizing technical information: A cultural critique. Amityville, NY: Baywood.

    Google Scholar 

  • Cambrosio, A., Jacobi, D., & Keating, P. (1993). Ehrlich’s “beautiful pictures” and the controversial beginnings of immunological imagery. Isis, 84(4), 662–699.

    Google Scholar 

  • Chandler, D. (2007). Semiotics: The basics. London: Routledge.

    Google Scholar 

  • Chittleborough, G., & Treagust, D. (2008). Correct interpretation of chemical diagrams requires transforming from one level of representation to another. Research in Science Education, 38(4), 463–482.

    Article  Google Scholar 

  • Christiansen, J. (2013). A defense of artistic license in illustrating scientific concepts for a non-specialist audience. In Communicating Complexity 2013 Conference Proceedings (pp. 49–60). Rome: Edizioni Nuova Cultura-Roma.

    Google Scholar 

  • Condit, C. M. (1999). The meanings of the gene: Public debates about human heredity. Madison: University of Wisconsin Press.

    Google Scholar 

  • Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867.

    Article  Google Scholar 

  • Davidson, J. P. (2008). A history of paleontology illustration. Bloomington: Indiana University Press.

    Google Scholar 

  • Dinolfo, J., Heifferon, B., & Temesvari, L. A. (2007). Seeing cells: Teaching the visual/verbal rhetoric of biology. Journal of Technical Writing and Communication, 37(4), 395–417.

    Article  Google Scholar 

  • Dragga, Sam, & Voss, Dan. (2001). Cruel pies: The inhumanity of technical illustrations. Technical Communication, 48(3), 265–274.

    Google Scholar 

  • Durodié, B. (2003). Limitations of public dialogue in science and the rise of new ‘experts’. Critical Review of International Social and Political Philosophy, 6(4), 82–92.

    Article  Google Scholar 

  • Falk, J. H., Storksdieck, M., & Dierking, L. D. (2007). Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Understanding of Science, 16(4), 455–469. doi:10.1177/0963662506064240.

    Article  Google Scholar 

  • Ford, B. J. (1993). Images of science: A history of scientific illustration. New York: Oxford University Press.

    Google Scholar 

  • Galison, P. (1998). Judgment against objectivity. In C. A. Jones, P. Galison, & A. E. Slaton (Eds.), Picturing science, producing art (pp. 327–359). New York: Routledge.

    Google Scholar 

  • Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 436–445.

    Article  Google Scholar 

  • Glaser, B. G., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine Publishing Company.

    Google Scholar 

  • Grand, A. (2009). Engaging through dialogue: International experiences of Café Scientifique. In R. Holliman, J. Thomas, S. Smidt, E. Scanlon, & E. Whitelegg (Eds.), Practicing science communication in the information age (pp. 209–226). Oxford: Oxford University Press.

    Google Scholar 

  • Goetz, E. T., & Sadoski, M. (1995). Commentary: The perils of seduction: Distracting details or incomprehensible abstractions? Reading Research Quarterly, 30(3), 500–511.

    Article  Google Scholar 

  • Gould, S. J. (1993, October). Dinosaur deconstruction. Discover, 14, 108–113.

    Google Scholar 

  • Hansen, A. (2009). Science, communication and media. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 105–127). Oxford: Oxford University Press.

    Google Scholar 

  • Hardy, C., Harley, B., & Phillips, N. (2004). Discourse analysis and content analysis: Two solitudes. Qualitative Methods, 2(1), 19–22.

    Google Scholar 

  • Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92–102.

    Article  Google Scholar 

  • Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90(3), 414–434.

    Article  Google Scholar 

  • Hildebrand, R. (2004). Alternative images: Anatomical illustration and the conflict between art and science. Interdisciplinary Science Reviews, 29(3), 295–311.

    Google Scholar 

  • Holliman, R., & Jensen, E. (2009). (In)authentic sciences and (im)partial publics: (Re)constructing the science outreach and public engagement agenda. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 35–52). Oxford: Oxford University Press.

    Google Scholar 

  • Holliman, R., Whitelegg, E., Scanlon, E., Smidt, S., & Thomas, J. (2009a). Investigating science communication in the information age: Implications for public engagement and popular media. Oxford: Oxford University Press.

    Google Scholar 

  • Holliman, R., Thomas, J., Smidt, S., Scanlon, E., & Whitelegg, E. (2009b). Practising science communication in the information age: Implications for public engagement and popular media. Oxford: Oxford University Press.

    Google Scholar 

  • Irwin, A., & Michael, M. (2003). Science, social theory & public knowledge. Philadelphia: Open University Press.

    Google Scholar 

  • Irwin, A., & Wynne, B. (Eds.). (2004). Misunderstanding science? The public reconstruction of science and technology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson, C. (2004). Top scientific visualization research problems. Computer Graphics and Applications, IEEE, 24(4), 13–17. doi:10.1109/MCG.2004.20.

    Article  Google Scholar 

  • Kemp, M. (1970). A drawing for the Fabrica; and some thoughts upon the Vesalius muscle-men. Medical History, 14(3), 277–288.

    Google Scholar 

  • Kemp, M. (2000). Visualizations: The nature book of art and science. Oakland: University of California Press.

    Google Scholar 

  • Knorr-Cetina, K., & Amann, K. (1990). Image dissection in natural scientific inquiry. Science, Technology and Human Values, 15(3), 259–283.

    Article  Google Scholar 

  • Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3(3), 185–225.

    Article  Google Scholar 

  • Kosslyn, S. M. (2006). Graph design for the eye and mind. New York: Oxford University Press.

    Book  Google Scholar 

  • Kress, G. R., & Van Leeuwen, T. (2006). Reading images: The grammar of visual design (2nd ed.). London: Routledge.

    Google Scholar 

  • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., … Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645.

    Google Scholar 

  • Laffey, M., & Weldes, J. (2004). Methodological reflections on discourse analysis. Qualitative Methods, 2(1), 28–30.

    Google Scholar 

  • Latour, B. (1986). Visualization and cognition: Thinking with eyes and hands. In H. Kuklick & E. Long (Eds.), Knowledge and society: Studies in the sociology of culture past and present (Vol. 6, pp. 1–40). Greenwich, CT: Jai Press.

    Google Scholar 

  • Latour, B. (1998). How to be iconophilic in art, science, and religion. In C. A. Jones, P. Galison, & A. E. Slaton (Eds.), Picturing science, producing art (pp. 418–440). New York: Routledge.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1979). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Li, M., & Tsai, C. (2013). Game-based learning in science education: A review of relevant research. Journal of Science Education and Technology, 22(6), 877–898. doi:10.1007/s10956-013-9436-x.

    Article  Google Scholar 

  • Lynch, M. (1985). Art and artifact in laboratory science: A study of shop work and shop talk in a research laboratory. London: Routledge & Kegan Paul.

    Google Scholar 

  • Lynch, M. (1990). The externalized retina: Selection and mathematization in the visual documentation of objects in the life sciences. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 153–186). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lynch, M., & Woolgar, S. (1990). Representation in scientific practice. Cambridge, MA.: MIT Press.

    Google Scholar 

  • MacDonald, S. (2004). Authorising science: Public understanding of science in museums. In A. Irwin & B. Wynne (Eds.), Misunderstanding science? The public reconstruction of science and technology (pp. 152–171). Cambridge: Cambridge University Press.

    Google Scholar 

  • Merriam, S. B. (2007). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • McCormick, B. H., DeFanti, T. A., & Brown, M. D. (1987). Visualization in scientific computing. Computer Graphics, 21(6), i–E8.

    Google Scholar 

  • Meisner, R., & Osborne, J. (2009). Engaging with interactive science exhibits: A study of children’s activity and the value of experience for communicating science. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 86–102). Oxford: Oxford University Press.

    Google Scholar 

  • Mellor, F. (2009). Image-music-text of popular science. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 205–220). Oxford: Oxford University Press.

    Google Scholar 

  • Michael, M. (2002). Comprehension, apprehension, prehension: Heterogeneity and the public understanding of science. Science, Technology and Human Values, 27(3), 357–378.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.

    Article  Google Scholar 

  • Miller, C. R. (1984). Genre as social action. Quarterly Journal of Speech, 70(2), 151–167. doi:10.1080/00335638409383686.

    Article  Google Scholar 

  • Miller, D. (1999). Mediating science: Promotional strategies, media coverage, public belief and decision making. In E. Scanlon, E. Whitelegg, & S. Yates (Eds.), Communicating science: Contexts and channels (pp. 206–226). London: Routledge.

    Google Scholar 

  • Miller, J. D. (2004). Public understanding of, and attitudes toward, scientific research: What we know and what we need to know. Public Understanding of Science, 13(3), 273–294.

    Google Scholar 

  • Morgan, D. H., Kristensen, D. M., Mittelman, D., & Lichtarge, O. (2006). ET viewer: An application for predicting and visualizing functional sites in protein structures. Bioinformatics, 22(16), 2049–2050. doi:10.1093/bioinformatics/btl285.

    Article  Google Scholar 

  • National Science Board. (2014). Science and engineering indicators 2014. (No. NSB 14-01). Arlington, VA: National Science Foundation.

    Google Scholar 

  • Neurath, M., & Kinross, R. (2009). The transformer: Principles of making isotype charts. London: Hyphen Press.

    Google Scholar 

  • Nisbet, M. C., & Scheufele, D. A. (2009). What’s next for science communication? Promising directions and lingering distractions. American Journal of Botany, 96(10), 1767–1778. doi:10.3732/ajb.0900041.

    Article  Google Scholar 

  • Northcut, K. (2006). Images as facilitators of public participation in science. Journal of Visual Literacy, 26(1), 1–14.

    Article  Google Scholar 

  • Patrick, M. D., Carter, G., & Wiebe, E. N. (2005). Visual representations of DNA replication: Middle grades students’ perceptions and interpretations. Journal of Science Education and Technology, 14(3), 353–365.

    Article  Google Scholar 

  • Pauwels, L. (2006). Visual cultures of science: Rethinking representational practices in knowledge building and science communication. Lebanon, NH: Dartmouth College.

    Google Scholar 

  • Pintó, R., & Ametller, J. (2002). Students’ difficulties in reading images. Comparing results from four national research groups. International Journal of Science Education, 24(3), 333–341.

    Article  Google Scholar 

  • Pozzer, L., & Roth, W. (2003). Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114.

    Article  Google Scholar 

  • Pozzer-Ardenghi, L., & Roth, W. (2004). Making sense of photographs. Science Education, 89(2), 219–241.

    Article  Google Scholar 

  • Priest, S. H. (2006). The public opinion climate for gene technologies in Canada and the United States: Competing voices, contrasting frames. Public Understanding of Science, 15(1), 55–71. doi:10.1177/0963662506052889.

    Article  Google Scholar 

  • Priest, S. H. (2009). Reinterpreting the audiences for media messages about science. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 223–236). Oxford: Oxford University Press.

    Google Scholar 

  • Rhyne, T. (2003). Does the difference between information and scientific visualization really matter? Computer Graphics and Applications, IEEE, 23(3), 6–8. doi:10.1109/MCG.2003.1198256.

    Article  Google Scholar 

  • Roth, W., Pozzer-Ardenghi, L., & Han, J. Y. (2005). Critical graphicacy: Understanding visual representation practices in school science. Dordrecht: Springer.

    Google Scholar 

  • Rundgren, C., & Tibell, L. A. E. (2009). Critical features of visualizations of transport through the cell membrane: An empirical study of upper secondary and tertiary students’ meaning-making of a still image and an animation. International Journal of Science and Mathematics Education, 8(2), 223–246.

    Article  Google Scholar 

  • Schraw, G. (1998). Processing and recall differences among seductive details. Journal of Educational Psychology, 90(1), 3–12.

    Article  Google Scholar 

  • Schraw, G., Flowerday, T., & Lehman, S. (2001). Increasing situational interest in the classroom. Educational Psychology Review, 13(3), 211–224. doi:10.1023/A:1016619705184.

    Article  Google Scholar 

  • Scientific American Media Kit. (2016). Retrieved February 24, 2016, from https://www.scientificamerican.com/mediakit/.

  • Society for Science & the Public. (2016). Science News. Retrieved February 24, 2016, from https://www.societyforscience.org/science-news.

  • Stilgoe, J., & Wilsdon, J. (2009). The new politics of public engagement with science. In R. Holliman, E. Whitelegg, E. Scanlon, S. Smidt, & J. Thomas (Eds.), Investigating science communication in the information age (pp. 18–34). Oxford: Oxford University Press.

    Google Scholar 

  • Stylianidou, F., Ormerod, F., & Ogborn, J. (2002). Analysis of science textbook pictures about energy and pupils’ readings of them. International Journal of Science Education, 24(3), 257–283.

    Article  Google Scholar 

  • Thomas, J. (2009). Controversy and consensus. In R. Holliman, J. Thomas, S. Smidt, E. Scanlon, & E. Whitelegg (Eds.), Practicing science communication in the information age (pp. 131–148). Oxford: Oxford University Press.

    Google Scholar 

  • Trumbo, J. (2000). Seeing science research opportunities in the visual communication of science. Science Communication, 21(4), 379–391.

    Article  Google Scholar 

  • Tufte, E. R. (1997). Visual explanation: Images and quantities, evidence and narrative. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Tufte, E. R. (2001). The visual display of quantitative information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • van Dijck, J. (1998). Imagenation: Popular images of genetics. New York: New York University Press.

    Book  Google Scholar 

  • van Dijck, J. (2003). After the “Two cultures”: Toward a “(multi)cultural” practice of science communication. Science Communication, 25, 177–190.

    Article  Google Scholar 

  • Walter, T., David, W. S., Baldock, R., Mark, E. B., Anne, E. C., Duce, S., …Hériché, J. (2010). Visualization of image data from cells to organisms. Nature Methods, 7(3), S26–S55.

    Article  Google Scholar 

  • Ware, C. (2012). Information visualization: Perception for design (3rd ed.). Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  • Wickman, C. (2013). Observing inscriptions at work: Visualization and text production in experimental physics research. Technical Communication Quarterly, 22(2), 150–171.

    Article  Google Scholar 

  • Wynne, B. (2004). Misunderstood misunderstandings: Social identities and public uptake of science. In A. Irwin & B. Wynne (Eds.), Misunderstanding science? The public reconstruction of science and technology (pp. 19–46). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Yu .

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yu, H. (2017). Introduction: Visualizing Genetics for Public Readers. In: Communicating Genetics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-58779-4_1

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-58779-4_1

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-58778-7

  • Online ISBN: 978-1-137-58779-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics