Skip to main content

Of Birds and Men

  • Chapter
  • First Online:
A Brain for Speech
  • 1498 Accesses

Abstract

Songbird learning has been successfully used as a model for the acquisition of human speech. However, bird brains are very different than mammalian brains, as they do not have a cerebral cortex that is characteristic of mammals. Intense debates have been produced attempting to identify homologies between avian and mammalian brains. Here I propose an evolutionary scenario to account for the diverging morphology in both animal groups. Despite gross anatomical differences, convergence between birds and mammals in network organization is notorious, and cognitive abilities of birds are comparable with those of many mammals. Likewise, the neural system for song acquisition in songbirds has been unveiled in detail, showing a noticeable parallelism with the human speech and language networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.youtube.com/watch?v=BGPGknpq3e0

  2. 2.

    https://www.youtube.com/watch?v=ZE4BT8QSgZk; https://www.youtube.com/watch?v=UDg0AKfM8EY; https://www.youtube.com/watch?v=lcvbgq2SSyc

  3. 3.

    https://www.newscientist.com/article/2100535-genius-crows-tool-bending-behaviour-may-be-natural-to-its-kind/

  4. 4.

    http://www.bbc.co.uk/nature/life/Drongo#p013bxk7

References and Notes

  • Abdel-Mannan O, Cheung AF, Molnár Z (2008) Evolution of cortical neurogenesis. Brain Res Bull 75:398–404

    Article  PubMed  Google Scholar 

  • Aboitiz F (1992) The origin of the mammalian brain as a case of evolutionary irreversibility. Med Hypotheses 38:301–304

    Article  PubMed  Google Scholar 

  • Aboitiz F (1993) Further comments on the evolutionary origin of the mammalian brain. Med Hypotheses 41:409–418

    Article  PubMed  Google Scholar 

  • Aboitiz F (1995) Homology in the evolution of the cerebral hemispheres. The case of reptilian dorsal ventricular ridge and its possible correspondence with mammalian neocortex. J Hirnforsch 36:461–472

    PubMed  Google Scholar 

  • Aboitiz F (2011) Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution. Brain Res Bull 84:125–136

    Article  PubMed  Google Scholar 

  • Aboitiz F, Montiel J (2007a) Origin and evolution of the vertebrate telencephalon, with special reference to the mammalian neocortex. Adv Anat Embryol Cell Biol 193:1–112

    Article  PubMed  Google Scholar 

  • Aboitiz F, Montiel J (2007b) Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 18:311–342

    Article  PubMed  Google Scholar 

  • Aboitiz F, Montiel JF (2012) From tetrapods to primates: conserved developmental mechanisms in diverging ecological adaptations. Prog Brain Res 195:3–24

    Article  PubMed  Google Scholar 

  • Aboitiz F, Montiel JF (2015) Olfaction, navigation, and the origin of isocortex. Front Neurosci 9:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Aboitiz F, Zamorano F (2013) Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Aboitiz F, Morales D, Montiel J (2003) The evolutionary origin of the mammalian isocortex: towards an integrated developmental and functional approach. Behav Brain Sci 26:535–552; discussion 552–585

    Google Scholar 

  • Ahissar E, Knutsen PM (2008). Object localization with whiskers. Biol Cybern 98:449–458

    Article  PubMed  Google Scholar 

  • Ahumada-Galleguillos P, Fernández M, Marin GJ, Letelier JC, Mpodozis J (2015) Anatomical organization of the visual dorsal ventricular ridge in the chick (Gallus gallus): layers and columns in the avian pallium. J Comp Neurol 523:2618–2636

    Article  PubMed  Google Scholar 

  • Alme CB, Miao C, Jezek K, Treves A, Moser EI, Moser MB (2014) Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci U S A 111:18428–18435

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction. Science 208:1095–1108

    Article  PubMed  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    Article  PubMed  Google Scholar 

  • Araki M, Bandi MM, Yazagi-Sugiyama Y (2016) Mind the gap: neural coding of species identity in birdsong prosody. Science 354:1282–1287

    Article  PubMed  Google Scholar 

  • Beckers GJ, Berwick RC, Bolhuis JJ (2014) Comparative analyses of speech and language converge on birds. Behav Brain Sci 37:547–548

    Article  PubMed  Google Scholar 

  • Belgard TG, Montiel JF, Wang WZ, García-Moreno F, Margulies EH, Ponting CP, Molnár Z (2013) Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. Proc Natl Acad Sci U S A 110:13150–13155

    Article  PubMed  PubMed Central  Google Scholar 

  • Berwick RC, Okanoya K, Beckers GJ, Bolhuis JJ (2011) Songs to syntax: the linguistics of birdsong. Trends Cogn Sci 15:113–121

    Article  PubMed  Google Scholar 

  • Berwick RC, Beckers GJ, Okanoya K, Bolhuis JJ (2012) A bird’s eye view of human language evolution. Front Evol Neurosci 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolhuis JJ, Gahr M (2006) Neural mechanisms of birdsong memory. Nat Rev Neurosci 7:347–357

    Article  PubMed  Google Scholar 

  • Bolhuis JJ, Okanoya K, Scharff C (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 11:747–759

    Article  PubMed  Google Scholar 

  • Bonatti LL, Peña M, Nespor M, Mehler J (2005) Linguistic constraints on statistical computations: the role of consonants and vowels in continuous speech processing. Psychol Sci 16:451–459

    Article  PubMed  Google Scholar 

  • Borst A, Helmstaedter M (2015) Common circuit design in fly and mammalian motion vision. Nat Neurosci 18:1067–1076

    Article  PubMed  Google Scholar 

  • Bosman CA, Aboitiz F (2015) Functional constraints in the evolution of brain circuits. Front Neurosci 9:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowling DL, Fitch WT. (2015) Do animal communication systems have phonemes? Trends Cog Sci 19:555–557

    Article  Google Scholar 

  • Bregman MR, Patel AD, Gentner TQ (2016) Songbirds use spectral shape, not pitch, for sound pattern recognition. Proc Natl Acad Sci U S A 113:1666–1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce LL, Neary TJ (1995) The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234

    Article  PubMed  Google Scholar 

  • Brusatte SL (2016) How some birds survived when all other dinosaurs died. Curr Biol 26:R415–R417

    Article  PubMed  Google Scholar 

  • Brusatte S, Luo ZX (2016) Ascent of the mammals. Sci Amer 6:28–35

    Article  Google Scholar 

  • Brusatte SL, Butler RJ, Barrett PM, Carrano MT, Evans DC, Lloyd GT, Mannion PD, Norell MA, Peppe DJ, Upchurch P, Williamson TE (2015a) The extinction of the dinosaurs. Biol Rev Camb Philos Soc 90:628–642

    Article  PubMed  Google Scholar 

  • Brusatte SL, O’Connor JK, Jarvis ED (2015b) The origin and diversification of birds. Curr Biol 25:R888–R898

    Article  PubMed  Google Scholar 

  • Bugnyar T, Kotrschal K (2004) Leading a conspecific away from food in ravens (Corvus corax)? Anim Cogn 7:69–76

    Article  PubMed  Google Scholar 

  • Burgess SD, Bowring SA (2015) High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci Adv 1:e1500470

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler AB, Reiner A, Karten HJ (2011) Evolution of the amniote pallium and the origins of mammalian neocortex. Ann N Y Acad Sci 1225:14–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Socorro A, Hernandez-Acosta NC, Gonzalez-Gomez M, Meyer G (2007) Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res 1132:59–70

    Article  PubMed  Google Scholar 

  • Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA (2014) The cortical hem regulates the size and patterning of neocortex. Development 41:2855–2865

    Article  Google Scholar 

  • Chakraborty M, Jarvis ED (2015) Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 370:1684

    Article  Google Scholar 

  • Chappell J, Kacelnik A (2002) Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). Anim Cogn 5:71–78

    Article  PubMed  Google Scholar 

  • Chen CC, Winkler CM, Pfenning AR, Jarvis ED (2013) Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities. J Comp Neurol 521:3666–3701

    Article  PubMed  Google Scholar 

  • Cheung AF, Kondo S, Abdel-Mannan O, Chodroff RA, Sirey TM, Bluy LE, Webber N, DeProto J, Karlen SJ, Krubitzer L, Stolp HB, Saunders NR, Molnár Z (2010) The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb Cortex 2:1071–1081

    Article  Google Scholar 

  • Clayton N, Emery N (2005) Corvid cognition. Curr Biol 15:R80–R81

    Article  PubMed  Google Scholar 

  • Clayton NS, Emery NJ (2015) Avian models of human cognitive neuroscience: a proposal. Neuron 86:1330–1342

    Article  PubMed  Google Scholar 

  • Cloudsley-Thompson J (2001) Multiple factors in the reptile extinctions of the Cretaceous period. Biologist 48:177–181

    PubMed  Google Scholar 

  • Dally JM, Emery NJ, Clayton NS (2006) Food-caching western scrub-jays keep track of who was watching when. Science 312:1662–1665

    Article  PubMed  Google Scholar 

  • DeBeer G (1971) Homology, an Unsolved Problem. Oxford University Press, Glasgow

    Google Scholar 

  • de Frutos CA, Bouvier G, Arai Y, Thion MS, Lokmane L, Keita M, Garcia-Dominguez M, Charnay P, Hirata T, Riethmacher D, Grove EA, Tissir F, Casado M, Pierani A, Garel S (2016) Reallocation of olfactory Cajal-Retzius cells shapes neocortex architecture. Neuron 92:435–448

    Article  PubMed  Google Scholar 

  • Deschênes M, Moore J, Kleinfeld D (2012) Sniffing and whisking in rodents. Curr Opin Neurobiol 22:243–250

    Article  PubMed  Google Scholar 

  • Dickerson BC, Eichenbaum H (2010) The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 35:86–104

    Article  PubMed  Google Scholar 

  • Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci U S A 109:16974–16979

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H (1998) Using olfaction to study memory. Ann N Y Acad Sci 855:657–669

    Article  PubMed  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    Article  PubMed  Google Scholar 

  • Eichenbaum H (2010) Memory systems. Wiley Interdiscip Rev Cogn Sci 1:478–490

    PubMed  Google Scholar 

  • Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15:732–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    Article  PubMed  Google Scholar 

  • Emery NJ, Clayton NS (2009) Tool use and physical cognition in birds and mammals. Curr Opin Neurobiol 19:27–33

    Article  PubMed  Google Scholar 

  • Engesser S, Crane JM, Savage JL, Russell AF, Townsend SW (2015) Experimental evidence for phonemic contrasts in a nonhuman vocal system. PLoS Biol 13:e1002171

    Article  PubMed  PubMed Central  Google Scholar 

  • Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 3:e1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitch WT (2009) Musical protolanguage: Darwin’s theory of language evolution revisited. http://languagelog.ldc.upenn.edu/nll/?p=1136

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    Article  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–317

    Article  PubMed  Google Scholar 

  • Gentner TQ, Fenn KM, Margoliash D, Nusbaum HC (2006) Recursive syntactic pattern learning by songbirds. Nature 440:1204–1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71:690–709

    Article  PubMed  Google Scholar 

  • Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA (2013) The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 280:20130508

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant RA, Haidarliu S, Kennerley NJ, Prescott TJ (2013) The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica. J Exp Biol 216:3483–3494

    Article  PubMed  Google Scholar 

  • Grion N, Akrami A, Zuo Y, Stella F, Diamond ME (2016) Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS Biol 14:e1002384

    Article  PubMed  PubMed Central  Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325

    PubMed  Google Scholar 

  • Güntürkün O (2005) The avian “prefrontal cortex” and cognition. Curr Opin Neurobiol 15:686–693

    Article  PubMed  Google Scholar 

  • Güntürkün O (2012) The convergent evolution of neural substrates for cognition. Psychol Res 76:212–219

    Article  PubMed  Google Scholar 

  • Güntürkün O, Bugnyar T (2016) Cognition without Cortex. Trends Cogn Sci 20:291–303

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  Google Scholar 

  • Healy S, Walsh P, Hansell M (2008) Nest building by birds. Curr Biol 18:R271–R273

    Article  PubMed  Google Scholar 

  • Heinrich B, Bugnyar T (2007) Just how smart are ravens? Sci Amer 4:64–71

    Article  Google Scholar 

  • Howard MW, Eichenbaum H (2015) Time and space in the hippocampus. Brain Res 1621:345–354

    Article  PubMed  Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–459

    Article  Google Scholar 

  • Hunt GR. (1996) Manufacture and use of hook-tools by New Caledonian crows. Nature 379:249–251

    Article  Google Scholar 

  • Jacobs LF (2012) From chemotaxis to the cognitive map: the function of olfaction. Proc Natl Acad Sci U S A 109(Suppl. 1):10693–10700

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis ED (2004) Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci 1016:749–777

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis ED, Ribeiro S, da Silva ML, Ventura D, Vielliard J, Mello CV (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G, Whitney O, Jarvis SC, Jarvis ER, Kubikova L, Puck AE, Siang-Bakshi C, Martin S, McElroy M, Hara E, Howard J, Pfenning A, Mouritsen H, Chen CC, Wada K (2013) Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol 521:3614–3665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas JH (2013) The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4:33–45

    Article  PubMed  Google Scholar 

  • Källén B (1951) On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci. J Comp Neurol 95:307–347

    Article  PubMed  Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153

    Article  PubMed  Google Scholar 

  • Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann New York Acad Sci 167:164–179

    Article  Google Scholar 

  • Karten HJ (1991) Homology and the evolutionary origins of the “neocortex”. Brain Behav Evol 38:264–272

    Article  PubMed  Google Scholar 

  • Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian neocortex. Proc Natl Acad Sci U S A 94:2800–28004

    Article  PubMed  PubMed Central  Google Scholar 

  • Karten HJ (2013) Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol 23:R12–R15

    Article  PubMed  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli R, Luo ZX (2004) Mammals from the Age of Dinosaurs. Columbia University Press, New York

    Book  Google Scholar 

  • King SL, McGregor PK (2016) Vocal matching: the what, the why and the how. Biol Lett 12:20160666

    Google Scholar 

  • Kleinfeld D, Deschênes M, Ulanovsky N (2016) Whisking, sniffing, and the hippocampal θ-Rhythm: a tale of two oscillators. PLoS Biol 14:e1002385

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi M (2004) The role of auditory feedback in birdsong. Ann N Y Acad Sci 1016:463–475

    Article  PubMed  Google Scholar 

  • Langmore NE (1998) Functions of duet and solo songs of female birds. Trends Ecol Evol 13:136–140

    Article  PubMed  Google Scholar 

  • Lipkind D, Marcus GF, Bemis DK, Sasahara K, Jacoby N, Takahasi M, Suzuki K, Feher O, Ravbar P, Okanoya K, Tchernichovski O (2013) Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498:104–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WC, Wada K, Jarvis ED, Nottebohm F (2013) Rudimentary substrates for vocal learning in a suboscine. Nat Commun 4:2082

    Google Scholar 

  • Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature. 450:1011–1019

    Article  PubMed  Google Scholar 

  • Luo ZX, Ruf I, Schultz JA, Martin T (2011) Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc Biol Sci 278:28–34

    Article  PubMed  Google Scholar 

  • Luzzati F (2015) A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program. Front Neurosci 9:162

    Google Scholar 

  • Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041

    Article  PubMed  Google Scholar 

  • Lynch G (1986) Synapses, Circuits, and the Beginnings of Memory. MIT Press, Cambridge

    Google Scholar 

  • Markowitz JE, Ivie E, Kligler L, Gardner TJ (2013) Long-range order in canary song. PLoS Comput Biol 9:e1003052

    Article  PubMed  PubMed Central  Google Scholar 

  • Marler P (1990a) Innate learning preferences: signals for communication. Dev Psychobiol 23:557–568

    Article  PubMed  Google Scholar 

  • Marler P (1990b) Song learning: the interface between behaviour and neuroethology. Philos Trans R Soc Lond B Biol Sci 329:109–114

    Article  PubMed  Google Scholar 

  • Medina L, Abellán A (2009) Development and evolution of the pallium. Semin Cell Dev Biol 20:698–711

    Article  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Molnár Z (2011) Evolution of cerebral cortical development. Brain Behav Evol 78:94–107

    Article  PubMed  Google Scholar 

  • Montiel JF, Aboitiz F (2015) Pallial patterning and the origin of the isocortex. Front Neurosci 9:377

    Google Scholar 

  • Montiel JF, Vasistha NA, Garcia-Moreno F, Molnár Z (2016) From sauropsids to mammals and back: new approaches to comparative cortical development. J Comp Neurol 524:630–645

    Article  PubMed  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    Article  PubMed  Google Scholar 

  • Nagel T (1974) What is it like to be a bat? Philos Rev 83:435–450

    Article  Google Scholar 

  • Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2206

    Google Scholar 

  • Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K (2016) The evolution of basal progenitors in the developing non-mammalian brain. Development 143:66–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Northcutt RG (2003) The Use and abuse of developmental data. Behav Brain Sci 26:565–566

    Article  Google Scholar 

  • Nottebohm F (1970) Ontogeny of bird song. Science 167:950–956

    Article  PubMed  Google Scholar 

  • Nottebohm F (1989) From bird song to neurogenesis. Sci Am 2:74–79

    Article  Google Scholar 

  • Nottebohm F (2004) The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci 1016:628–658

    Article  PubMed  Google Scholar 

  • Nottebohm F (2005) The neural basis of birdsong. PLoS Biol 3:e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Nottebohm F, Liu WC (2010) The origins of vocal learning: New sounds, new circuits, new cells. Brain Lang 115:3–17

    Article  PubMed  Google Scholar 

  • Odom KJ, Hall ML, Riebel K, Omland KE, Langmore NE (2014) Female song is widespread and ancestral in songbirds. Nat Commun 5:3379

    Google Scholar 

  • O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13:419–439

    Article  PubMed  Google Scholar 

  • O’Keefe J (1990) A computational theory of the hippocampal cognitive map. Prog Brain Res 83:301–312

    Article  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Penn DC, Povinelli DJ (2007) Causal cognition in human and nonhuman animals: a comparative, critical review. Annu Rev Psychol 58:97–118

    Article  PubMed  Google Scholar 

  • Pepperberg I (2008) Alex & Me. How a Scientist and a Parrot discovered a Hidden World of Intelligence – and Formed a Deep Bond in the Process. Harper Collins, New York

    Google Scholar 

  • Petkov CI, Jarvis ED (2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front Evol Neurosci 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Petkov CI, Jarvis ED (2014) The basal ganglia within a cognitive system in birds and mammals. Behav Brain Sci 37:568–569; discussion 577–604

    Article  Google Scholar 

  • Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, Mouncastle J, Moseley MA, Thompson JW, Soderblom EJ, Iriki A, Kato M, Gilbert MT, Zhang G, Bakken T, Bongaarts A, Bernard A, Lein E, Mello CV, Hartemink AJ, Jarvis ED (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846

    Google Scholar 

  • Pickrell J (2014) Flying Dinosaurs. How Fearsome Reptiles Became Birds. NewSouth Publishers, Sydney

    Book  Google Scholar 

  • Povinelli DJ (2000) Folk Physics for Apes. Oxford University Press, Oxford

    Google Scholar 

  • Prothero DR (2006) After the Dinosaurs. The Age of Mammals. Indiana Press, Bloomington

    Google Scholar 

  • Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Rubenstein JL (1999) Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol 37:139–150

    Article  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL(2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  PubMed  Google Scholar 

  • Ramón y Cajal Y, Sánchez D (1915) Contribución al conocimiento de los centros nerviosos de los insectos. Parte I Retina y centros ópticos. Trab Lab Invest Biol Univ Madrid 13:1–168

    Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gütürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004a) The avian brain nomenclature forum: terminology for a new century in comparative neuroanatomy. J Comp Neurol 473:E1–E6

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner A, Perkel DJ, Mello CV, Jarvis ED (2004b) Songbirds and the revised avian brain nomenclature. Ann N Y Acad Sci 1016:77–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe T (1996) Coevolution of the mammalian middle ear and neocortex. Science 273:651–654

    Article  PubMed  Google Scholar 

  • Rowe TB, Shepherd GM (2016) Role of ortho-retronasal olfaction in mammalian cortical evolution. J Comp Neurol 524:471–495

    Article  PubMed  Google Scholar 

  • Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332:955–957

    Article  PubMed  Google Scholar 

  • Rubenstein JL (2011) Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatr 52:339–355

    Article  Google Scholar 

  • Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  PubMed  Google Scholar 

  • Sakamoto M, Benton MJ, Venditti C (2016) Dinosaurs in decline tens of millions of years before their final extinction. Proc Natl Acad Sci U S A 113:5036–5040

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Savage C (2007) Crows. Encounters with the Wise Guys of the Avian World. Douglas & McIntyre, London

    Google Scholar 

  • Schaal B, Coureaud G, Doucet S, Delaunay-El Allam M, Moncomble AS, Montigny D, Patris B, Holley A (2009) Mammary olfactory signalisation in females and odor processing in neonates: ways evolved by rabbits and humans. Behav Brain Res 200:346–358

    Article  PubMed  Google Scholar 

  • Schmidt MF, Martin Wild J (2014) The respiratory-vocal system of songbirds: anatomy, physiology, and neural control. Prog Brain Res 212:297–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon RV (2005) Speech and music have different requirements for spectral resolution. Int Rev Neurobiol 70:121–134

    Article  PubMed  Google Scholar 

  • Shepherd GM (2011) The microcircuit concept applied to cortical evolution: from three-layer to six-layer cortex. Front Neuroanat 5:30

    Google Scholar 

  • Smith-Fernández A, Pieau C, Repérant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111

    Google Scholar 

  • Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213

    Article  PubMed  Google Scholar 

  • Striedter GF (2005) Principles of Brain Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Striedter GF, Charvet CJ (2009) Telencephalon enlargement by the convergent evolution of expanded subventricular zones. Biol Lett 5:134–137

    Article  PubMed  Google Scholar 

  • Striedter GF, Northcutt RG (1991) Biological hierarchies and the concept of homology. Brain Behav Evol 38:177–189

    Article  PubMed  Google Scholar 

  • Suzuki IK, Kawasaki T, Gojobori T, Hirata T (2012) The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev Cell 22:863–870

    Article  PubMed  Google Scholar 

  • Suzuki TN, Wheatcroft D, Griesser M (2016) Experimental evidence for compositional syntax in bird calls. Nat Commun 7:10986

    Google Scholar 

  • Taylor J (2009) Not a Chimp: The Hunt to Find the Genes that Make us Human. Oxford University Press, Oxford

    Google Scholar 

  • Taylor AH, Hunt GR, Medina FS, Gray RD (2009) Do new caledonian crows solve physical problems through causal reasoning? Proc Biol Sci 276:247–254

    Article  PubMed  Google Scholar 

  • Tebbich S, Seed AM, Emery NJ, Clayton NS (2007) Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Anim Cogn 10:225–231

    Article  PubMed  Google Scholar 

  • Teissier A, Griveau A, Vigier L, Piolot T, Borello U, Pierani A (2010) A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J Neurosci 30:10563–10574

    Article  PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    Article  PubMed  Google Scholar 

  • Troscianko J, Rutz C (2015) Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras. Biol Lett 11:20150777

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderwolf CH (2001) The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all? Behav Brain Res 127:25–47

    Article  PubMed  Google Scholar 

  • Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107:12676–12681

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir AA, Kacelnik A (2006) A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Anim Cogn 9:317–334

    Article  PubMed  Google Scholar 

  • Weir AA, Chappell J, Kacelnik A (2002) Shaping of hooks in New Caledonian crows. Science 297:981

    Google Scholar 

  • Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F, Ward JM, Wang R, Audet JN, Kellis M, Mukherjee S, Sinha S, Hartemink AJ, West AE, Jarvis ED (2014) Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:1256780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aboitiz, F. (2017). Of Birds and Men. In: A Brain for Speech. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-54060-7_9

Download citation

Publish with us

Policies and ethics