Skip to main content

A Matter of Size

Abstract

The size of our brain stands out among other species, which many times has been invoked as the main evolutionary acquisiton of Homo sapiens, and as the explanation of our superior mental capacity, including language. However, it is not yet clear how having a large brain results in enhanced cognitive abilities. Here I review the main determinants of brain size, and especially of neuron numbers across species, and the evidence that supports their relation with cognitive function. It is concluded that, while among species there is some association between the number of neurons and processing capacity, this is not a simple equation, that depends on body size, and ecological, developmental, and network organization variables.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12:269–283

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aboitiz F (1988) Epigenesis and the evolution of the human brain. Med Hypotheses 25:55–59.

    CrossRef  PubMed  Google Scholar 

  • Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47: 225–245

    CrossRef  PubMed  Google Scholar 

  • Aboitiz F, Montiel J (2007a) Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 18:311–342

    CrossRef  PubMed  Google Scholar 

  • Aboitiz F, Montiel J (2007b) Origin and evolution of the vertebrate telencephalon, with special reference to the mammalian neocortex. Adv Anat Embryol Cell Biol 193:1–112

    CrossRef  PubMed  Google Scholar 

  • Aboitiz F, Montiel JF (2015) Olfaction, navigation, and the origin of isocortex. Front Neurosci 9:402

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aboitiz F, Zamorano F (2013) Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 7:38

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221

    CrossRef  Google Scholar 

  • Anderson ML, Finlay BL (2014) Allocating structure to function: the strong links between neuroplasticity and natural selection. Front Hum Neurosci 7:918

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476.

    CrossRef  PubMed  Google Scholar 

  • Barton RA (2004) Binocularity and brain evolution in primates. Proc Natl Acad Sci U S A 101:10113–10115

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barton RA (2012) Embodied cognitive evolution and the cerebellum. Philos Trans R Soc Lond B Biol Sci 367:2097–2107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    CrossRef  PubMed  Google Scholar 

  • Barton RA, Venditti C (2013a) Human frontal lobes are not relatively large. Proc Natl Acad Sci U S A 110:9001–9006

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barton RA, Venditti C (2013b) Reply to Smaers: getting human frontal lobes in proportion. Proc Natl Acad Sci U S A 110: E3683–E3684

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barton RA, Venditti C (2014) Rapid evolution of the cerebellum in humans and other great apes. Curr Biol 24:2440–2444

    CrossRef  PubMed  Google Scholar 

  • Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B Biol Sci 348:381–392

    CrossRef  PubMed  Google Scholar 

  • Bishop KM, Rubenstein JL, O’Leary DD (2002) Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22:7627–7638

    PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cahalane DJ, Charvet CJ, Finlay BL (2012) Systematic, balancing gradients in neuron density and number across the primate isocortex. Front Neuroanat 6:28

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Catania KC (1995) Magnified cortex in star-nosed moles. Nature 375:453–454

    CrossRef  PubMed  Google Scholar 

  • Charvet CJ (2014) Distinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution. Front Hum Neurosci 8:190

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Charvet CJ, Striedter GF (2011) Causes and consequences of expanded subventricular zones. Eur J Neurosci 34:988–993

    CrossRef  PubMed  Google Scholar 

  • Charvet CJ, Hof PR, Raghanti MA, Van Der Kouwe AJ, Sherwood CC, Takahashi E (2017) Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates. J Comp Neurol 525:1075–1093

    Google Scholar 

  • Cheung AF, Pollen AA, Tavare A, DeProto J, Molnár Z (2007) Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211:164–176

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cheung AF, Kondo S, Abdel-Mannan O, Chodroff RA, Sirey TM, Bluy LE, Webber N, DeProto J, Karlen SJ, Krubitzer L, Stolp HB, Saunders NR, Molnár Z (2010) The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb Cortex 20:1071–1081

    CrossRef  PubMed  Google Scholar 

  • Clayton NS. (1998) Memory and the hippocampus in food-storing birds: a comparative approach. Neuropharmacology 37:441–452

    CrossRef  PubMed  Google Scholar 

  • Cornélio AM, de Bittencourt-Navarrete RE, de Bittencourt Brum R, Queiroz CM, Costa MR (2016) Human brain expansion during evolution is independent of fire control and cooking. Front Neurosci 10:167

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Darwin C. (1871) The Descent of Man, and Selection in Relation to Sex. John Murray, London

    CrossRef  Google Scholar 

  • Dawkins R (1991) The Blind Watchmaker. Penguin, New York

    Google Scholar 

  • Deacon T (1997) The Symbolic Species. The Co-evolution of Language and the Brain. Norton Press, New York

    Google Scholar 

  • DeCasien AR, Williams SA, Higham JP (2017) Pimate brain size is predicted by diet but not sociality. Nature Ecol Evol 1:1002

    Google Scholar 

  • Diamond ME, Armstrong-James M, Ebner FF (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90:2082–2086

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Díaz E, Pinto-Hamuy T, Fernández V (1994) Interhemispheric structural asymmetry induced by a lateralized reaching task in the rat motor cortex. Eur J Neurosci 6:1235–1238

    CrossRef  PubMed  Google Scholar 

  • Dicke U, Roth G (2016) Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 371:20150180

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ebbesson SO (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212

    PubMed  Google Scholar 

  • Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    CrossRef  PubMed  Google Scholar 

  • Finlay BL, Uchiyama R (2015) Developmental mechanisms channeling cortical evolution. Trends Neurosci 38:69–76

    CrossRef  PubMed  Google Scholar 

  • Finlay BL, Workman AD (2013) Human exceptionalism. Trends Cogn Sci 17:199–201

    CrossRef  PubMed  Google Scholar 

  • Finlay BL, Hersman MN, Darlington RB (1998) Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain Behav Evol 52:232–242

    CrossRef  PubMed  Google Scholar 

  • Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194

    CrossRef  PubMed  Google Scholar 

  • Foley RA, Lee PC (1991) Ecology and energetics of encephalization in hominid evolution. Philos Trans R Soc Lond B Biol Sci 334:223–231

    CrossRef  PubMed  Google Scholar 

  • Fonseca-Azevedo K, Herculano-Houzel S (2012) Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc Natl Acad Sci U S A 109:18571–18576

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Frahm HD, Rehkämper G, Nevo E (1997) Brain structure volumes in the mole rat, Spalax ehrenbergi (Spalacidae, Rodentia) in comparison to the rat and subterrestrial insectivores. J Hirnforsch 38:209–222

    PubMed  Google Scholar 

  • Gabi M, Neves K, Masseron C, Ribeiro PF, Ventura-Antunes L, Torres L, Mota B, Kaas JH, Herculano-Houzel S (2016) No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc Natl Acad Sci U S A 113:9617–9622

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gai D, Haan E, Scholar M, Nicholl J, Yu S (2015) Phenotypes of AKT3 deletion: a case report and literature review. Am J Med Genet A 167:174–179

    Google Scholar 

  • Galton F (1907) Inquiries into Human Faculty and Its Development. JM Dent & Sons, London

    CrossRef  Google Scholar 

  • Gamble C, Gowlett J, Dunbar R (2014) Thinking Big: How the Evolution of Social Life Shaped the Human Mind. Thames and Hudson, New York

    Google Scholar 

  • Garcia-Junco-Clemente P, Golshani P (2014) PTEN: A master regulator of neuronal structure, function, and plasticity. Commun Integr Biol 7:e28358

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Georgala PA. Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71:690–709

    CrossRef  PubMed  Google Scholar 

  • Geschwind DH, Rakic P (2013) Cortical evolution: judge the brain by its cover. Neuron 80:633–647

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gilad Y, Przeworski M, Lancet D (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:E5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A 112:14799–14804

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gould SJ (1981) The Mismeasure of Man. WW Norton, New York

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc Roy Soc Lond B 205:581–598

    CrossRef  Google Scholar 

  • Grove EA, Fukuchi-Shimogori T (2003) Generating the cerebral cortical area map. Annu Rev Neurosci 26:355–380

    CrossRef  PubMed  Google Scholar 

  • Halley AC (2016) Prenatal brain-body allometry in mammals. Brain Behav Evol 88:14–24

    CrossRef  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    CrossRef  PubMed  Google Scholar 

  • Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–142

    CrossRef  PubMed  Google Scholar 

  • Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12

    PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2015) Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution. Proc Biol Sci 282:20151853

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521

    CrossRef  PubMed  Google Scholar 

  • Herculano-Houzel S, Mota B, Wong P, Kaas JH (2010) Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci U S A 107:19008–19013

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77

    PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Catania K, Manger PR, Kaas JH (2015a) Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol 86:145–163

    CrossRef  PubMed  Google Scholar 

  • Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA (2015b) When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front Neuroanat 9:64

    PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH (2015c) How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res 360:29–42

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Kaas JH, de Oliveira-Souza R (2016) Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J Comp Neurol 524:448–455

    CrossRef  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2009) Sculpting the brain. Sci Amer 2:66–71

    CrossRef  Google Scholar 

  • Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. Academic Press, New York

    Google Scholar 

  • Kaas JH (2011) Reconstructing the areal organization of the neocortex of the first mammals. Brain Behav Evol 78:7–21

    CrossRef  PubMed  Google Scholar 

  • Kaas JH (2013) The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4:33–45

    CrossRef  PubMed  Google Scholar 

  • Kleiber M (1975) Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J Theor Biol 53:199–204

    CrossRef  PubMed  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399

    CrossRef  PubMed  Google Scholar 

  • Krubitzer L (2009) In search of a unifying theory of complex brain evolution. Ann N Y Acad Sci 1156:44–67

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Krubitzer LA, Seelke AM (2012) Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc Natl Acad Sci U S A 109 (Suppl 1):10647–10654

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306

    Google Scholar 

  • Lashley KS (1929) Brain Mechanisms and Intelligence. University Of Chicago Press, Chicago

    Google Scholar 

  • Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB (2014) An adaptive threshold in mammalian neocortical evolution. PloS Biology 12: e1002000

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liow LH, Van Valen L, Stenseth NC (2011) Red Queen: from populations to taxa and communities. Trends Ecol Evol 26:349–358

    CrossRef  PubMed  Google Scholar 

  • Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM, Boogert NJ, Brannon EM, Bray EE, Bray J, Brent LJ, Burkart JM, Call J, Cantlon JF, Cheke LG, Clayton NS, Delgado MM, DiVincenti LJ, Fujita K, Herrmann E, Hiramatsu C, Jacobs LF, Jordan KE, Laude JR, Leimgruber KL, Messer EJ, Moura AC, Ostojić L, Picard A, Platt ML, Plotnik JM, Range F, Reader SM, Reddy RB, Sandel AA, Santos LR, Schumann K, Seed AM, Sewall KB, Shaw RC, Slocombe KE, Su Y, Takimoto A, Tan J, Tao R, van Schaik CP, Virányi Z, Visalberghi E, Wade JC, Watanabe A, Widness J, Young JK, Zentall TR, Zhao Y (2014) The evolution of self-control. Proc Natl Acad Sci U S A 111:E2140–E2148

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16:1091–1101

    CrossRef  PubMed  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60

    CrossRef  PubMed  Google Scholar 

  • Montgomery SH, Mundy NI, Barton RA (2016) Brain evolution and development: adaptation, allometry and constraint. Proc Roy Soc B 283:20160433.

    CrossRef  Google Scholar 

  • Mota B, Herculano-Houzel S (2014) All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses. Front Neuroanat 8:127

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349:74–77

    CrossRef  PubMed  Google Scholar 

  • Navarrete A, van Schaik CP, Isler K (2011) Energetics and the evolution of human brain size. Nature 480:91–93

    CrossRef  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    CrossRef  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    PubMed  Google Scholar 

  • O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18:90–100

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A 113:7255–7260

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pagel MD, Harvey PH (1988) How mammals produce large-brained offspring. Evolution 42:948–957

    CrossRef  PubMed  Google Scholar 

  • Passingham RE, Smaers JB (2014) Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors. Brain Behav Evol 84:156–166

    CrossRef  PubMed  Google Scholar 

  • Pirlot P, Pottier J (1977) Encephalization and quantitative brain composition in bats in relation to their life-habits. Rev Can Biol 36:321–336

    PubMed  Google Scholar 

  • Pontzer H, Brown MH, Raichlen DA, Dunsworth H, Hare B, Walker K, Luke A, Dugas LR, Durazo-Arvizu R, Schoeller D, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Thompson ME, Shumaker RW, Ross SR (2016) Metabolic acceleration and the evolution of human brain size and life history. Nature 533:390–392

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pulvers JN, Journiac N, Arai Y, Nardelli J (2015) MCPH1: a window into brain development and evolution. Front Cell Neurosci 9:92

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54 (Suppl 1):25–40

    PubMed  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rash BG, Rakic P (2014) Genetic resolutions of brain convolutions. Science 343:744–745

    CrossRef  PubMed  Google Scholar 

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci U S A 99:4436–4441

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ribeiro PF, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini RE, Leite RE, Filho WJ, Herculano-Houzel S (2013) The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat 7:28

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Riska B, Atchley WR (1985) Genetics of growth predict patterns of brain-size evolution. Science 229:668–671

    CrossRef  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    CrossRef  PubMed  Google Scholar 

  • Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119:691–731

    CrossRef  PubMed  Google Scholar 

  • Scheibel AB (1988) Dendritic correlates of human cortical function. Arch Ital Biol 126:347–357

    PubMed  Google Scholar 

  • Sherry DF, Forbes MR, Khurgel M, Ivy GO (1993) Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird. Proc Natl Acad Sci U S A 90:7839–7843

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sherwood CC, Smaers JB (2013) What’s the fuss over human frontal lobe evolution? Trends Cogn Sci 17:432–433

    Google Scholar 

  • Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695

    CrossRef  PubMed  Google Scholar 

  • Shultz S, Dunbar R (2010) Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc Natl Acad Sci U S A 107:21582–21586

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Smaers JB (2013) How humans stand out in frontal lobe scaling. Proc Natl Acad Sci U S A 110:E3682

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011) Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77:67–78

    CrossRef  PubMed  Google Scholar 

  • Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC (2017) Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans. Curr Biol 27:714–720

    Google Scholar 

  • Somel M, Liu X, Khaitovich P (2013) Human brain evolution: transcripts, metabolites and their regulators. Nat Rev Neurosci 14:112–127

    CrossRef  PubMed  Google Scholar 

  • Stevens JR (2014) Evolutionary pressures on primate intertemporal choice. Proc Biol Sci 281:1786

    CrossRef  Google Scholar 

  • Striedter GF (2005) Principles of Brain Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Striedter GF, Srinivasan S (2015) Knowing when to fold them. Science 349:31–32

    CrossRef  PubMed  Google Scholar 

  • Striedter GF, Srinivasan S, Monuki ES (2015) Cortical folding: when, where, how, and why? Annu Rev Neurosci 38:291–307

    CrossRef  PubMed  Google Scholar 

  • Suárez R, Fernández-Aburto P, Manger PR, Mpodozis J (2011) Deterioration of the Gαo vomeronasal pathway in sexually dimorphic mammals. PLoS One 6(10):e26436

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sun T, Hevner RF (2014) Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15:217–232

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sur M, Pallas SL, Roe AW (1990) Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends Neurosci 13:227–233

    CrossRef  PubMed  Google Scholar 

  • Tallinen T, Chung JY, Biggins JS, Mahadevan L (2014) Gyrification from constrained cortical expansion. Proc Natl Acad Sci U S A 111:12667–12672

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60

    CrossRef  PubMed  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    CrossRef  PubMed  Google Scholar 

  • Ventura-Antunes L, Mota B, Herculano-Houzel S. (2013) Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front Neuroanat 7:3

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vincze O, Vágási CI, Pap PL, Osváth G, Møller AP (2015) Brain regions associated with visual cues are important for bird migration. Biol Lett 11 pii: 20150678

    Google Scholar 

  • Von Bonin G (1948) The frontal lobe of primates; cytoarchitectural studies. Res Publ Assoc Res Nerv Ment Dis 27:67–83

    PubMed  Google Scholar 

  • Wang L, Hou S, Han YG (2016) Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci 19:888–896

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wong P, Peebles JK, Asplund CL, Collins CE, Herculano-Houzel S, Kaas JH (2013) Faster scaling of auditory neurons in cortical areas relative to subcortical structures in primate brains. Brain Behav Evol 81:209–218

    CrossRef  PubMed  Google Scholar 

  • Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wrangham R (2009) Catching Fire: How Cooking Made Us Human. Profile Books, London

    Google Scholar 

  • Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL (2010) A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci U S A 107:12946–12951

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yu YC, Bultje RS, Wang X, Shi SH (2009) Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458:501–504

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aboitiz, F. (2017). A Matter of Size. In: A Brain for Speech. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-54060-7_3

Download citation