Skip to main content

The Creative Process in Science and Engineering

  • Chapter
  • First Online:

Part of the book series: Palgrave Studies in Creativity and Culture ((PASCC))

Abstract

This chapter discusses the elements defining the creative thinking process within the scientific and engineering domains, in the light of the dynamic definition of creativity . Elements such as dynamism, time and space dependence, and the variables influencing the potential of the creative process in both realms are described. The contrast and co-existence of both creative achievement and inconclusiveness are presented, indicating that extensive exploration , multiple trials and errors, as well as difficulty or absence of recognition are constitutive elements of the creative process . These concepts are mapped onto the classic 4Ps framework, to achieve a broad view about the creative process in science and engineering , which are shown to be distinguishable but connected through an epistemological circle , with impact on both knowledge and practical endeavors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnoli, S., & Corazza, G. E. (2013). TRIZ as seen through the DIMAI creative thinking model. In TRIZ Future Conference Proceedings (pp. 23–33). Paris.

    Google Scholar 

  • Agnoli, S., Corazza, G. E., & Runco, M. (2016). Estimating creativity with a multiple-measurement approach within scientific and artistic domains. Creativity Research Journal, 28, 171–176.

    Article  Google Scholar 

  • Agnoli, S., Corazza, G. E., Cagnone, S., & Runco, M. (2015). SEM-based analysis of scientific and artistic creative achievement. In ICIE Conference, July 1–4. Krakow, Poland.

    Google Scholar 

  • Agnoli, S., Franchin, L., Rubaltelli, E., & Corazza, G. E. (2015). An eye-tracking analysis of irrelevance processing as moderator of openness and creative performance. Creativity Research Journal, 27, 125–132.

    Article  Google Scholar 

  • Agnoli, S., Franchin, L., Rubaltelli, E., & Corazza, G. E. (2018). The emotionally intelligent use of attention and affective arousal under creative frustration and creative success. Personality and Individual Differences. https://doi.org/10.1016/j.paid.2018.04.041.

  • Agnoli, S., Runco, M. A., Kirsch, C., & Corazza, G. E. (2018). The role of motivation in the prediction of creative achievement inside and outside of school environment. Thinking Skills and Creativity, 28, 167–176.

    Google Scholar 

  • Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2018.02.015.

  • Altshuller, G. (1984). Creativity as an exact science. New York: Gordon and Breach.

    Google Scholar 

  • Altshuller, G. (1999). The innovation algorithm: TRIZ, systematic innovation, and technical creativity. Worchester, MA: Technical Innovation Center.

    Google Scholar 

  • Amabile, T. M. (1996). Creativity in context. New York: Westview.

    Google Scholar 

  • Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66, 950–967.

    Article  Google Scholar 

  • Barlow, N. (1958). The autobiography of Charles Darwin 1809–1882. London: Collins.

    Google Scholar 

  • Batey, M., & Furnham, A. (2006). Creativity, personality and intelligence: A critical review of the scattered literature. Genetic, Social, and General Psychology Monographs, 132, 355–429.

    Article  Google Scholar 

  • Becattini, N., & Cascini, G. (2015). Improving self-efficacy in solving inventive problems with TRIZ. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 195–214). Singapore: Springer.

    Google Scholar 

  • Berrou, C., & Glavieux, A. (2003). Turbo codes. In John G. Proakis (Ed.), Encyclopedia of telecommunications. Hoboken, NJ: Wiley.

    Google Scholar 

  • Botella, M., & Lubart, T. (2015). Creative processes: Art, design and science. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 53–66). Singapore: Springer.

    Google Scholar 

  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, NY: W. W. Norton & Company.

    Google Scholar 

  • Chermahini, S. A., & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465. https://doi.org/10.1016/j.cognition.2010.03.007.

  • Corazza, G. E. (2016). Potential originality and effectiveness: The dynamic definition of creativity. Creativity Research Journal, 28, 258–267.

    Article  Google Scholar 

  • Corazza, G. E. (2017). Organic creativity for well-being in the post-information society. Europe’s Journal of Psychology, 13, 599–605.

    Google Scholar 

  • Corazza, G. E., & Agnoli, S. (2013). DIMAI: An universal mordel for creative thinking (Internal Report). Marconi Institute for Creativity.

    Google Scholar 

  • Corazza, G. E., & Agnoli, S. (2015a). On the impact of ICT over the creative process in humans. In MCCSIS Conference 2015 Proceedings. Las Palmas De Gran Canaria.

    Google Scholar 

  • Corazza, G. E., & Agnoli, S. (2015b). On the path towards the science of creative thinking. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 3–20). Singapore: Springer.

    Google Scholar 

  • Corazza, G. E., Agnoli, S., & Martello, S. (2014). Counterpoint as a principle of creativity: Extracting divergent modifiers from ‘The Art of Fugue’ by Johann Sebastian Bach. Musica Docta, 4, 93–105.

    Google Scholar 

  • Corazza, G. E., Pedone, R., & Vanelli-Coralli, A. (2010). Technology as a need: Trends in the evolving information society. Advances in Electronics and Telecommunications, 1, 124–132.

    Google Scholar 

  • Cropley, D. H. (2015). Creativity in engineering. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 155–174). Singapore: Springer.

    Google Scholar 

  • Dow, G. T., & Mayer, R. E. (2004). Teaching students to solve insight problems: Evidence for domain specificity in creativity training. Creativity Research Journal, 16, 389–398.

    Article  Google Scholar 

  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. Sternberg & J. Davidson (Eds.), Mechanisms of insight (pp. 365–395). Cambridge, MA: MIT Press.

    Google Scholar 

  • Edison, T. A. (1948). The diary and sundry observations of Thomas Alva Edison. New York, NY: Philosophical Library.

    Google Scholar 

  • Eisenberger, R., & Rhoades, L. (2001). Incremental effects of reward on creativity. Journal of Personality and Social Psychology, 81, 728–741.

    Article  Google Scholar 

  • Eisenberger, R., Armeli, S., & Pretz, J. (1998). Can the promise of reward increase creativity? Journal of Personality and Social Psychology, 74, 704–714.

    Google Scholar 

  • Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147–178.

    Article  Google Scholar 

  • Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290–309.

    Article  Google Scholar 

  • Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.

    Google Scholar 

  • Galton, F. (1869/1978). Hereditary genius. New York: Friedmann.

    Google Scholar 

  • Gentner, D. (1981). Are scientific analogies metaphors? (No. BBN-4604). Cambridge, MA: Bolt Beranek and Newman.

    Google Scholar 

  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.

    Google Scholar 

  • Hallam, A. (1975). Alfred Wegener and the hypothesis of continental drift. Scientific American, 232, 88–97.

    Article  Google Scholar 

  • Hennessey, B. A. (1989). The effect of extrinsic constraints on children’s creativity while using a computer. Creativity Research Journal, 2, 151–168.

    Article  Google Scholar 

  • Hickman, L. A. (1990). John Dewey’s pragmatic technology. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Hodson, D. (1986). The nature of scientific observation. School Science Review, 68, 17–29.

    Google Scholar 

  • Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33, 30–37.

    Article  Google Scholar 

  • James, W. (1907/1955). Pragmatism. Cambridge: Harvard University Press.

    Google Scholar 

  • Keynes, J. M. (1956). Newton, the man. In J. R. Newman (Ed.), The world of mathematics (pp. 277–285). New York: Simon & Schuster.

    Google Scholar 

  • Kirsch, C., Lubart, T., & Houssemand, C. (2015). Creativity in student architects: Multivariate approach. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 175–194). Singapore: Springer.

    Google Scholar 

  • Kuhn, T. S. (1962/1970/2012). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Manley, J., & Laver, R. (2011). From the eureka moment to the marketplace. Policy Options, 69–70.

    Google Scholar 

  • Mastria, S., Agnoli, S., Zanon, M., Lubart, T., & Corazza, G. E. (2018). Creative brain, creative mind, creative person. In Z. Kapoula, J. Renoult, E. Volle, & M. Andreatta (Eds.), Exploring transdisciplinarity in art and science. Basel, CH: Springer.

    Google Scholar 

  • Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 449–460). Cambridge: Cambridge University Press.

    Google Scholar 

  • McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education (pp. 53–70). Dordrecht, NL: Springer.

    Google Scholar 

  • McComas, W. F. (2002). The nature of science in science education: Rationales and strategies. New York, NY: Kluwer Academic Publishers.

    Google Scholar 

  • McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60, 175–215.

    Article  Google Scholar 

  • Medawar, P. (1991). The threat and the glory. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Miller, A. I. (2011). Einstein, Albert. In M. A. Runco & S. Pritzker (Eds.), Encyclopedia of creativity (2nd ed.). San Diego, CA: Elsevier.

    Google Scholar 

  • Mumford, M. D., Medeiros, K. E., & Partlow, P. J. (2012). Creative thinking: Processes, strategies, and knowledge. Journal of Creative Behavior, 46, 30–47.

    Article  Google Scholar 

  • Mumford, M. D., Mobley, M. I., Uhlman, C. E., Reiter-Palmon, R., & Doares, L. M. (1991). Process analytic models of creative capacities. Creativity Research Journal, 4, 91–122.

    Article  Google Scholar 

  • Parkhurst, H. B. (1999). Confusion, lack of consensus, and the definition of creativity as a construct. Journal of Creative Behavior, 33, 1–21.

    Article  Google Scholar 

  • Pasteur, L. (1854, December 7). Lecture, University of Lille.

    Google Scholar 

  • Poincarè, H. (1952). Science and method (Francis Maitland, Trans.). London: Dover (Original work published 1914).

    Google Scholar 

  • Popper, K. (1963). Conjectures and refutations (Vol. 7). London: Routledge and Kegan Paul.

    Google Scholar 

  • Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research, 20, 53–66.

    Article  Google Scholar 

  • Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42, 305–310.

    Google Scholar 

  • Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687.

    Article  Google Scholar 

  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 92–96.

    Article  Google Scholar 

  • Runco, M. A., & Pritzker, S. (2011). Encyclopedia of creativity (2nd ed.). San Diego, CA: Elsevier.

    Google Scholar 

  • Shalin, D. N. (1986). Pragmatism and social interactionism. American Sociological Review, 51, 9–29.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Silvia, P. J. (2008). Discernment and creativity: How well can people identify their most creative ideas. Psychology of Aesthetics, Creativity, and the Arts, 2, 139–146.

    Article  Google Scholar 

  • Simonton, D. K. (1996). Creative expertise: A life-span developmental perspective. In K. A. Ericsson (Ed.), The road to expert performance: Empirical evidence from the arts and sciences, sports, and games (pp. 227–253). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Simonton, D. K. (2000). Creative development as acquired expertise: Theoretical issues and an empirical test. Developmental Review, 20(2), 283–318. https://doi.org/10.1006/drev.1999.0504.

  • Simonton, D. K., & Ting, S. S. (2010). Creativity in Eastern and Western civilizations: The lessons of historiometry. Management and Organization Review, 6, 329–350.

    Article  Google Scholar 

  • Steiner, G. A. (1965). Introduction. In G. A. Steiner (Ed.), The creative organization (pp. 1–24). Chicago: University of Chicago Press.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51, 677–688.

    Article  Google Scholar 

  • Wallas, G. (1926). The art of thought. New York: Harcourt Brace.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Emanuele Corazza .

Editor information

Editors and Affiliations

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corazza, G.E., Agnoli, S. (2018). The Creative Process in Science and Engineering. In: Lubart, T. (eds) The Creative Process. Palgrave Studies in Creativity and Culture. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-50563-7_6

Download citation

Publish with us

Policies and ethics