The Creative Process in Science and Engineering

Part of the Palgrave Studies in Creativity and Culture book series (PASCC)


This chapter discusses the elements defining the creative thinking process within the scientific and engineering domains, in the light of the dynamic definition of creativity. Elements such as dynamism, time and space dependence, and the variables influencing the potential of the creative process in both realms are described. The contrast and co-existence of both creative achievement and inconclusiveness are presented, indicating that extensive exploration, multiple trials and errors, as well as difficulty or absence of recognition are constitutive elements of the creative process. These concepts are mapped onto the classic 4Ps framework, to achieve a broad view about the creative process in science and engineering, which are shown to be distinguishable but connected through an epistemological circle, with impact on both knowledge and practical endeavors.


Creativity Inconclusiveness Creative potential Originality 4Ps Engineering Science Epistemological circle DIMAI Discovery Invention Dynamic systems 


  1. Agnoli, S., & Corazza, G. E. (2013). TRIZ as seen through the DIMAI creative thinking model. In TRIZ Future Conference Proceedings (pp. 23–33). Paris.Google Scholar
  2. Agnoli, S., Corazza, G. E., & Runco, M. (2016). Estimating creativity with a multiple-measurement approach within scientific and artistic domains. Creativity Research Journal, 28, 171–176.CrossRefGoogle Scholar
  3. Agnoli, S., Corazza, G. E., Cagnone, S., & Runco, M. (2015). SEM-based analysis of scientific and artistic creative achievement. In ICIE Conference, July 1–4. Krakow, Poland.Google Scholar
  4. Agnoli, S., Franchin, L., Rubaltelli, E., & Corazza, G. E. (2015). An eye-tracking analysis of irrelevance processing as moderator of openness and creative performance. Creativity Research Journal, 27, 125–132.CrossRefGoogle Scholar
  5. Agnoli, S., Franchin, L., Rubaltelli, E., & Corazza, G. E. (2018). The emotionally intelligent use of attention and affective arousal under creative frustration and creative success. Personality and Individual Differences.
  6. Agnoli, S., Runco, M. A., Kirsch, C., & Corazza, G. E. (2018). The role of motivation in the prediction of creative achievement inside and outside of school environment. Thinking Skills and Creativity, 28, 167–176.Google Scholar
  7. Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia.
  8. Altshuller, G. (1984). Creativity as an exact science. New York: Gordon and Breach.Google Scholar
  9. Altshuller, G. (1999). The innovation algorithm: TRIZ, systematic innovation, and technical creativity. Worchester, MA: Technical Innovation Center.Google Scholar
  10. Amabile, T. M. (1996). Creativity in context. New York: Westview.Google Scholar
  11. Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66, 950–967.CrossRefGoogle Scholar
  12. Barlow, N. (1958). The autobiography of Charles Darwin 1809–1882. London: Collins.Google Scholar
  13. Batey, M., & Furnham, A. (2006). Creativity, personality and intelligence: A critical review of the scattered literature. Genetic, Social, and General Psychology Monographs, 132, 355–429.CrossRefGoogle Scholar
  14. Becattini, N., & Cascini, G. (2015). Improving self-efficacy in solving inventive problems with TRIZ. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 195–214). Singapore: Springer.Google Scholar
  15. Berrou, C., & Glavieux, A. (2003). Turbo codes. In John G. Proakis (Ed.), Encyclopedia of telecommunications. Hoboken, NJ: Wiley.Google Scholar
  16. Botella, M., & Lubart, T. (2015). Creative processes: Art, design and science. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 53–66). Singapore: Springer.Google Scholar
  17. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, NY: W. W. Norton & Company.Google Scholar
  18. Chermahini, S. A., & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465.
  19. Corazza, G. E. (2016). Potential originality and effectiveness: The dynamic definition of creativity. Creativity Research Journal, 28, 258–267.CrossRefGoogle Scholar
  20. Corazza, G. E. (2017). Organic creativity for well-being in the post-information society. Europe’s Journal of Psychology, 13, 599–605.Google Scholar
  21. Corazza, G. E., & Agnoli, S. (2013). DIMAI: An universal mordel for creative thinking (Internal Report). Marconi Institute for Creativity.Google Scholar
  22. Corazza, G. E., & Agnoli, S. (2015a). On the impact of ICT over the creative process in humans. In MCCSIS Conference 2015 Proceedings. Las Palmas De Gran Canaria.Google Scholar
  23. Corazza, G. E., & Agnoli, S. (2015b). On the path towards the science of creative thinking. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 3–20). Singapore: Springer.Google Scholar
  24. Corazza, G. E., Agnoli, S., & Martello, S. (2014). Counterpoint as a principle of creativity: Extracting divergent modifiers from ‘The Art of Fugue’ by Johann Sebastian Bach. Musica Docta, 4, 93–105.Google Scholar
  25. Corazza, G. E., Pedone, R., & Vanelli-Coralli, A. (2010). Technology as a need: Trends in the evolving information society. Advances in Electronics and Telecommunications, 1, 124–132.Google Scholar
  26. Cropley, D. H. (2015). Creativity in engineering. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 155–174). Singapore: Springer.Google Scholar
  27. Dow, G. T., & Mayer, R. E. (2004). Teaching students to solve insight problems: Evidence for domain specificity in creativity training. Creativity Research Journal, 16, 389–398.CrossRefGoogle Scholar
  28. Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. Sternberg & J. Davidson (Eds.), Mechanisms of insight (pp. 365–395). Cambridge, MA: MIT Press.Google Scholar
  29. Edison, T. A. (1948). The diary and sundry observations of Thomas Alva Edison. New York, NY: Philosophical Library.Google Scholar
  30. Eisenberger, R., & Rhoades, L. (2001). Incremental effects of reward on creativity. Journal of Personality and Social Psychology, 81, 728–741.CrossRefGoogle Scholar
  31. Eisenberger, R., Armeli, S., & Pretz, J. (1998). Can the promise of reward increase creativity? Journal of Personality and Social Psychology, 74, 704–714.Google Scholar
  32. Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147–178.CrossRefGoogle Scholar
  33. Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290–309.CrossRefGoogle Scholar
  34. Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
  35. Galton, F. (1869/1978). Hereditary genius. New York: Friedmann.Google Scholar
  36. Gentner, D. (1981). Are scientific analogies metaphors? (No. BBN-4604). Cambridge, MA: Bolt Beranek and Newman.Google Scholar
  37. Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.Google Scholar
  38. Hallam, A. (1975). Alfred Wegener and the hypothesis of continental drift. Scientific American, 232, 88–97.CrossRefGoogle Scholar
  39. Hennessey, B. A. (1989). The effect of extrinsic constraints on children’s creativity while using a computer. Creativity Research Journal, 2, 151–168.CrossRefGoogle Scholar
  40. Hickman, L. A. (1990). John Dewey’s pragmatic technology. Bloomington, IN: Indiana University Press.Google Scholar
  41. Hodson, D. (1986). The nature of scientific observation. School Science Review, 68, 17–29.Google Scholar
  42. Ilevbare, I. M., Probert, D., & Phaal, R. (2013). A review of TRIZ, and its benefits and challenges in practice. Technovation, 33, 30–37.CrossRefGoogle Scholar
  43. James, W. (1907/1955). Pragmatism. Cambridge: Harvard University Press.Google Scholar
  44. Keynes, J. M. (1956). Newton, the man. In J. R. Newman (Ed.), The world of mathematics (pp. 277–285). New York: Simon & Schuster.Google Scholar
  45. Kirsch, C., Lubart, T., & Houssemand, C. (2015). Creativity in student architects: Multivariate approach. In G. E. Corazza & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking (pp. 175–194). Singapore: Springer.Google Scholar
  46. Kuhn, T. S. (1962/1970/2012). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  47. Manley, J., & Laver, R. (2011). From the eureka moment to the marketplace. Policy Options, 69–70.Google Scholar
  48. Mastria, S., Agnoli, S., Zanon, M., Lubart, T., & Corazza, G. E. (2018). Creative brain, creative mind, creative person. In Z. Kapoula, J. Renoult, E. Volle, & M. Andreatta (Eds.), Exploring transdisciplinarity in art and science. Basel, CH: Springer.Google Scholar
  49. Mayer, R. E. (1999). Fifty years of creativity research. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 449–460). Cambridge: Cambridge University Press.Google Scholar
  50. McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education (pp. 53–70). Dordrecht, NL: Springer.Google Scholar
  51. McComas, W. F. (2002). The nature of science in science education: Rationales and strategies. New York, NY: Kluwer Academic Publishers.Google Scholar
  52. McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60, 175–215.CrossRefGoogle Scholar
  53. Medawar, P. (1991). The threat and the glory. Oxford, UK: Oxford University Press.Google Scholar
  54. Miller, A. I. (2011). Einstein, Albert. In M. A. Runco & S. Pritzker (Eds.), Encyclopedia of creativity (2nd ed.). San Diego, CA: Elsevier.Google Scholar
  55. Mumford, M. D., Medeiros, K. E., & Partlow, P. J. (2012). Creative thinking: Processes, strategies, and knowledge. Journal of Creative Behavior, 46, 30–47.CrossRefGoogle Scholar
  56. Mumford, M. D., Mobley, M. I., Uhlman, C. E., Reiter-Palmon, R., & Doares, L. M. (1991). Process analytic models of creative capacities. Creativity Research Journal, 4, 91–122.CrossRefGoogle Scholar
  57. Parkhurst, H. B. (1999). Confusion, lack of consensus, and the definition of creativity as a construct. Journal of Creative Behavior, 33, 1–21.CrossRefGoogle Scholar
  58. Pasteur, L. (1854, December 7). Lecture, University of Lille.Google Scholar
  59. Poincarè, H. (1952). Science and method (Francis Maitland, Trans.). London: Dover (Original work published 1914).Google Scholar
  60. Popper, K. (1963). Conjectures and refutations (Vol. 7). London: Routledge and Kegan Paul.Google Scholar
  61. Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research, 20, 53–66.CrossRefGoogle Scholar
  62. Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42, 305–310.Google Scholar
  63. Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687.CrossRefGoogle Scholar
  64. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 92–96.CrossRefGoogle Scholar
  65. Runco, M. A., & Pritzker, S. (2011). Encyclopedia of creativity (2nd ed.). San Diego, CA: Elsevier.Google Scholar
  66. Shalin, D. N. (1986). Pragmatism and social interactionism. American Sociological Review, 51, 9–29.Google Scholar
  67. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
  68. Silvia, P. J. (2008). Discernment and creativity: How well can people identify their most creative ideas. Psychology of Aesthetics, Creativity, and the Arts, 2, 139–146.CrossRefGoogle Scholar
  69. Simonton, D. K. (1996). Creative expertise: A life-span developmental perspective. In K. A. Ericsson (Ed.), The road to expert performance: Empirical evidence from the arts and sciences, sports, and games (pp. 227–253). Mahwah, NJ: Erlbaum.Google Scholar
  70. Simonton, D. K. (2000). Creative development as acquired expertise: Theoretical issues and an empirical test. Developmental Review, 20(2), 283–318.
  71. Simonton, D. K., & Ting, S. S. (2010). Creativity in Eastern and Western civilizations: The lessons of historiometry. Management and Organization Review, 6, 329–350.CrossRefGoogle Scholar
  72. Steiner, G. A. (1965). Introduction. In G. A. Steiner (Ed.), The creative organization (pp. 1–24). Chicago: University of Chicago Press.Google Scholar
  73. Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51, 677–688.CrossRefGoogle Scholar
  74. Wallas, G. (1926). The art of thought. New York: Harcourt Brace.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.DEI DepartmentUniversity of BolognaBolognaItaly
  2. 2.Marconi Institute for CreativityPontecchio MarconiItaly

Personalised recommendations