Skip to main content

Part of the book series: Financial Engineering Explained ((FEX))

  • 1199 Accesses

Abstract

For the numerical solution of initial-boundary value problems for convection-diffusion-reaction equations (2.1) the method of lines (MOL) forms a flexible and versatile approach. It is widely employed in practice and is popular in particular in computational finance. The MOL consists of two general, consecutive step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. I. J. Clark, Foreign Exchange Option Pricing, Wiley, 2011.

    Google Scholar 

  2. D. J. Duffy, Finite Difference Methods in Financial Engineering, Wiley, 2006.

    Google Scholar 

  3. D. J. Higham, An Introduction to Financial Option Valuation, Cambridge Univ. Press, 2004.

    Google Scholar 

  4. W. Hundsdorfer & J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, 2003.

    Google Scholar 

  5. A. R. Mitchell & D. F. Griffiths, The Finite Difference Method in Partial Differential Equations, Wiley, 1980.

    Google Scholar 

  6. G. G. O'Brien, M. A. Hyman & S. Kaplan, A study of the numerical solution of partial differential equations, J. Math. and Phys. 29 (1951) 223–251.

    Article  Google Scholar 

  7. R. D. Richtmyer & K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., Wiley, 1967.

    Google Scholar 

  8. R. U. Seydel, Tools for Computational Finance, 5th ed., Springer, 2012.

    Google Scholar 

  9. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Clarendon Press, 1985.

    Google Scholar 

  10. M. N. Spijker, Numerical Stability, Lecture notes, Univ. Leiden, 1998.

    Google Scholar 

  11. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth, 1989.

    Google Scholar 

  12. D. Tavella & C. Randall, Pricing Financial Instruments, Wiley, 2000.

    Google Scholar 

  13. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer, 1995.

    Google Scholar 

  14. L. N. Trefethen & M. Embree, Spectra and Pseudospectra, Princeton Univ. Press, 2005.

    Google Scholar 

  15. P. Wilmott, Derivatives, Wiley, 1999.

    Google Scholar 

  16. Y. I. Zhu, X. Wu, I. L. Chern & Z. z. Sun, Derivative Securities and Difference Methods, 2nd ed., Springer, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

in ’t Hout, K. (2017). Spatial Discretization I. In: Numerical Partial Differential Equations in Finance Explained. Financial Engineering Explained. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-43569-9_3

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-43569-9_3

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-43568-2

  • Online ISBN: 978-1-137-43569-9

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics