Skip to main content

Part of the book series: Financial Engineering Explained ((FEX))

  • 1206 Accesses

Abstract

It is a well-known phenomenon in financial markets that sudden, large movements in asset prices occur every now and then. This can happen for example after major news events. Already in 1976, Merton [63] proposed to add a jump term to the geometric Brownian motion in order to obtain a better model for the asset price evolution. The jumps are assumed to follow a compound Poisson process, so that they arrive randomly according to a Poisson process and their size is random as well compare for example [80]. When a jump occurs, the price of the asset is modelled by multiplying its price at the time instant just before the jump with a given positive random variable Y.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. Almendral & C. W. Oosterlee, Numerical valuation of options with jumps in the underlying, Appl. Numer. Math. 53 (2005) 1–18.

    Article  Google Scholar 

  2. L. Andersen & J. Andreasen, Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing, Rev. Deriv. Res. 4 (2000) 231–262.

    Article  Google Scholar 

  3. M. Briani, R. Natalini & G. Russo, Implicit-explicit numerical schemes for jump-diffusion processes, Calcolo 44 (2007) 33–57.

    Article  Google Scholar 

  4. R. Cont & P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall, 2003.

    Google Scholar 

  5. R. Cont & E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J. Numer. Anal. 43 (2005) 1596–1626.

    Article  Google Scholar 

  6. D. J. Duffy, Finite Difference Methods in Financial Engineering, Wiley, 2006.

    Google Scholar 

  7. L. Feng & V. Linetsky, Pricing options in jump-diffusion models: an extrapolation approach, Oper. Res. 56 (2008) 304–325.

    Article  Google Scholar 

  8. Y. d'Halluin, P. A. Forsyth & K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal. 25 (2005) 87–112.

    Article  Google Scholar 

  9. W. Hundsdorfer & J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, 2003.

    Google Scholar 

  10. Y. Kwon & Y. Lee, A second-order finite difference method for option pricing under jump-diffusion models, SIAM J. Numer. Anal. 49 (2011) 2598–2617.

    Article  Google Scholar 

  11. R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Finan. Econ. 3 (1976) 125–144.

    Article  Google Scholar 

  12. S. Salmi & J. Toivanen, IMEX schemes for pricing options under jump-diffusion models, Appl. Numer. Math. 84 (2014) 33–45.

    Article  Google Scholar 

  13. S. Salmi, J. Toivanen & L. von Sydow, An IMEX-scheme for pricing options under stochastic volatility models with jumps, SIAM J. Sci. Comp. 36 (2014) B817–B834.

    Article  Google Scholar 

  14. W. Schoutens, Lévy Processes in Finance, Wiley, 2003.

    Google Scholar 

  15. R. U. Seydel, Tools for Computational Finance, 5th ed., Springer, 2012.

    Google Scholar 

  16. S. E. Shreve, Stochastic Calculus for Finance II, 8th pr., Springer, 2008.

    Google Scholar 

  17. D. Tavella & C. Randall, Pricing Financial Instruments, Wiley, 2000.

    Google Scholar 

  18. P. Wilmott, Derivatives, Wiley, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

in ’t Hout, K. (2017). Merton Model. In: Numerical Partial Differential Equations in Finance Explained. Financial Engineering Explained. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-43569-9_12

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-43569-9_12

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-43568-2

  • Online ISBN: 978-1-137-43569-9

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics