Advertisement

Wittgenstein on Gödelian ‘Incompleteness’, Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully

  • Wolfgang Kienzler
  • Sebastian Sunday Grève

Abstract

We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, emphasises its refined composition and rigorous internal structure.

Keywords

Mathematical Practice Ordinary Language English Sentence Philosophical Investigation True Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bays, T. (2004) ‘On Floyd and Putnam on Wittgenstein and Gödel’, Journal of Philosophy 101, pp. 197–210.CrossRefGoogle Scholar
  2. Berto, F. (2009) ‘The Gödel Paradox and Wittgenstein’s Reasons’, Philosophia Mathematica 17: 2, pp. 208–19.CrossRefGoogle Scholar
  3. Feferman, S. (1984) ‘Kurt Gödel: Conviction and Caution’, Philosophia Naturalis 21:2/4, pp. 546–62.Google Scholar
  4. Floyd, J. (1995) ‘On Saying What You Really Want to Say: Wittgenstein, Gödel, and the Trisection of the Angle’, in J. Hintikka (ed) From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics, Kluwer, pp. 373–425.CrossRefGoogle Scholar
  5. Floyd, J. (2001) ‘Prose versus Proof: Wittgenstein on Gödel, Tarski, and Truth’, Philosophia Mathematica 9: 3, pp. 280–307.CrossRefGoogle Scholar
  6. Floyd, J. (2012) ‘Das Überraschende: Wittgenstein on the Surprising in Mathematics’, in J. Ellis and D. Guevara (eds) Wittgenstein and the Philosophy of Mind, Oxford University Press, pp. 225–58.CrossRefGoogle Scholar
  7. Floyd, J. and Putnam, H. (2000) ‘A Note on Wittgenstein’s Notorious Paragraph about the Gödel Theorem’, Journal of Philosophy 97, pp. 624–32.Google Scholar
  8. Frege, G. (1979) Posthumous Writings, H. Hermes, F. Kambartel and F. Kaulbach (eds), trans. P. Long and R. White, Blackwell.Google Scholar
  9. Gödel, K. (1930) ‘Einige metamathematische Resultate über Entscheidungsdefinitheit und Widerspruchsfreiheit’, Anzeiger der Akademie der Wissenschaften in Wien 61, pp. 214–15. English translation in Gödel (1986).Google Scholar
  10. Gödel, K. (1931), ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatshefte für Mathematik und Physik 38, pp. 173–98. English translation in Gödel (1986).CrossRefGoogle Scholar
  11. Gödel, K. (1934) ‘On Undecidable Propositions of Formal Mathematical Systems’ (mimeographed lecture notes, taken by S. Kleene and J. Rosser), reprinted with corrections in Gödel (1986).Google Scholar
  12. Gödel, K. (1986) Collected Works. Volume I. Publications 1929–1936, S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay and J. van Heijenoort (eds), Oxford University Press.Google Scholar
  13. Gödel, K. (2003) Collected Works. Volume V. Correspondence H–Z, S. Feferman, J. W. Dawson, W. Goldfarb, C. Parsons and W. Sieg (eds), Oxford University Press.Google Scholar
  14. Kienzler, W. (2008) ‘Wittgensteins Anmerkungen zu Gödel. Eine Lektüre der Bemerkungen über die Grundlagen der Mathematik, Teil I, Anhang III’, in M. Kroß (ed) ‘Ein Netz von Normen’: Wittgenstein und die Mathematik, Parerga, pp. 149–98.Google Scholar
  15. Mühlhölzer, F. (2002) ‘Wittgenstein and Surprises in Mathematics’, in R. Haller and K. Puhl (eds) Wittgenstein and the Future of Philosophy. A Reassessment after 50 Years, Österreichischer Bundesverlag, pp. 306–15.Google Scholar
  16. Rodych, V. (1999) ‘Wittgenstein’s Inversion of Gödel’s Theorem’, Erkenntnis 51, pp. 173–206.CrossRefGoogle Scholar
  17. Sigmund, K., Dawson, J. and Mühlberger, K. (eds) (2006) KurtGödel. Das Album/The Album, Vieweg.Google Scholar
  18. Shanker, S. G. (1988) ‘Wittgenstein’s Remarks on the Significance of Gödel’s Theorem’, in S. G. Shanker (ed) Gödel’s Theorem in Focus, Croom Helm, pp. 155–256.Google Scholar
  19. Steiner, M. (2001) ‘Wittgenstein as His Own Worst Enemy: The Case of Gödel’s Theorem’, Philosophia Mathematica 3, pp. 257–79.CrossRefGoogle Scholar
  20. Whitehead, A. N. and Russell, B. (1910–13, 21925–27) Principia Mathematica, Cambridge University Press.Google Scholar

Copyright information

© Wolfgang Kienzler and Sebastian Sunday Grève 2016

Authors and Affiliations

  • Wolfgang Kienzler
  • Sebastian Sunday Grève

There are no affiliations available

Personalised recommendations