Digital Methods: Five Challenges

  • Bernhard Rieder Theo Röhle


While the use of computers for humanities and social science research has a long history1, the immense success of networked personal computing has made both physical machines and software more accessible to scholars. But even more importantly, digital artifacts now populate every corner of post-industrial societies. This means that besides the study of non-digital objects and phenomena with the help of computers, there now is a continuously expanding space of cultural production and social interaction riddled by machine mediation, which has been, from the beginning, tied to digital schemes and formats. An obvious effect of this expansion has been the explosion of material available in digital form. ‘Traditional’ cultural artifacts like books or movies, ‘native’ digital forms such as software programs, online publications or computer games, and a deluge of all kinds of ‘information’ – logged traces of use practices, online interaction, and so forth – contribute to a growing mountain of data begging to be analysed.


Knowledge Production Computational Tool Scholarly Work Digital Method Digital Humanity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamic, L. and Glance, N. (2005), ‘The Political Blogosphere and the 2004 U.S. Election: Divided They Blog’, LinkKDD ‘05:Proceedings of the 3rd International Workshop on Link Discovery,, date accessed 1 December 2010.Google Scholar
  2. Agre, P. E. (1997), ‘Toward a Critical Technical Practice: Lessons Learned in Trying to Reform AI’, in G. C. Bowker, et al. (eds), Social Science, Technical Systems, and Cooperative Work: Beyond the Great Divide (Mahwah, NJ: Lawrence Erlbaum Associates, 131-57).Google Scholar
  3. Anderson, C. (2008), ‘The End of Theory. The Data Deluge Makes the Scientific Method Obsolete’, Wired,–07/pb_theory,date accessed 1 December 2010Google Scholar
  4. I. Ayres (2007), Super Crunchers: Why Thinking-by-Numbers Is the New Way to Be Smart (New York: Bantam Books).Google Scholar
  5. Barabási, A-L. and Fowler, J. (2010) ‘Social Networks. Albert-László Barabási and James Fowler’, in A. Bly (ed.), Science Is Culture:Conversations at the New Intersection of Science + Society (New York: Harper Perennial, 297–312).Google Scholar
  6. L. Bertalanffy (1957), ‘Allgemeine Systemtheorie. Wege zu einer Mathesis universalis’,Deutsche Universitätszeitung 5/6: 8–12.Google Scholar
  7. E. A. Bowles (1967), Computers in Humanistic Research: Readings and Perspectives (Englewood Cliffs, NJ: Prentice-Hall).Google Scholar
  8. Carvalho, J. and Ribeiro, A. (2008), ‘Using Network Analysis on Parish Register. How Spiritual Kinship Uncovers Social Structure’, in J. Carvalho (ed.), Bridging the Gaps:Sources, Methodology, and Approaches to Religion in History (Pisa: Pisa University Press,171–86).Google Scholar
  9. Cha, M., et al. (2010), ‘Measuring User Influence in Twitter: The Million Follower Fallacy’,ICWSM ‘10: Proceedings of International AAAI Conference on Weblogs and Social Media,, date accessed 1 December 2010.Google Scholar
  10. Cohen, P. (2010), ‘Digital Keys for Unlocking the Humanities’ Riches’, New York Times,16 November 2010,, date accessed 1 December 2010.Google Scholar
  11. Computers and the Humanities (1966), ‘Prospect’, Computers and the Humanities 1(1):1–2.Google Scholar
  12. Daston, L. and Galison, P. (2007), Objectivity (New York: Zone Books).de Certeau, M. (1990), L’invention du quotidien (Paris: Gallimard).Google Scholar
  13. Desrosières, A. (1993), La politique des grands nombres. Histoire de la raison statistique (Paris:La Découverte).Google Scholar
  14. Galison, P. (1996), ‘Computer Simulations and the Trading Zone’, in P. Galison and D. J. Stump (eds) The Disunity of Science: Boundaries, Contexts, and Power (Stanford, CA:Stanford University Press, 118–57).Google Scholar
  15. Gigerenzer, G., et al. (189), The Empire of Chance: How Probability Changed Science and Everyday Life (Cambridge/New York: Cambridge University Press).Google Scholar
  16. Hacking, I. (1983), Representing and Intervening: Introductory Topics in the Philosophy of Natural Science (Cambridge/New York: Cambridge University Press).CrossRefGoogle Scholar
  17. Heintz, B. (2007), ‘Zahlen, Wissen, Objektivität: Wissenschaftssoziologische Perspektiven’, in A. Mennicken and H. Vollmer (eds), Zahlenwerk. Kalkulation,Organisation und Gesellschaft (Wiesbaden: VS Verlag für Sozialwissenschaften, 65–86).CrossRefGoogle Scholar
  18. Hofstadter, D. R. (1985), Metamagical Themas: Questing for the Essence of Mind and Pattern (New York: Basic Books).Google Scholar
  19. Jones, C. A. and Galison, P. (1998), Picturing Science, Producing Art (New York: Routledge).Google Scholar
  20. Knobloch, E. (2004), ‘Mathesis – The Idea of a Universal Science’, in R. Seising,M. Folkerts and U. Hashagen (eds), Form, Zahl, Ordnung. Studien zur Wissenschafts-undTechnikgeschichte (Stuttgart: Steiner, 77–90). \Google Scholar
  21. Knorr-Cetina, K. D. (1992), ‘Science as Practice and Culture’, in A. Pickering (ed.), The Couch, the Cathedral, and the Laboratory: On the Relationship between Experiment and Laboratory in Science (Chicago/London: Chicago University Press, 113–38).Google Scholar
  22. Kuhn, T. S. (1962), The Structure of Scientific Revolutions (Chicago: University of Chicago Press).Google Scholar
  23. Machlup, F. and Mansfield, U. (1983), The Study of Information: Interdisciplinary Messages (New York: Wiley).Google Scholar
  24. Mitchell, W. J. T. (1994), Picture Theory: Essays on Verbal and Visual Representation (Chicago:University of Chicago Press).Google Scholar
  25. Murtagh, F., Ganz, A., and McKie, S. (2009), ‘The Structure of Narrative: The Case of Film Scripts’, Pattern Recognition 42(2): 302–12.CrossRefGoogle Scholar
  26. Nagel, T. (1986), The View from Nowhere (New York: Oxford University Press).Google Scholar
  27. Prieur, C., et al. (2008), ‘The Strength of Weak Cooperation: A Case Study on Flickr’,, date accessed 1 December 2010.Google Scholar
  28. Rieder, B. (2007), Étudier les réseaux comme phénomènes hétérogènes: quelle place pourla ‘nouvelle science des réseaux’ en sciences humaines et sociales?’, Journées d’étude:dynamiques de réseaux – information, complexité et non-linéarité,, date accessed 1 December 2010.Google Scholar
  29. Rieder, B. (2010), ‘One Network and Four Algorithms,’, date accessed 1 December 2010.Google Scholar
  30. Rieger, O. Y. (2010), ‘Framing Digital Humanities: The Role of New Media in HumanitiesScholarship,’ First Monday 10, php/fm/article/view/3198/2628, date accessed 1 December 2010.Google Scholar
  31. Rogers, R. (2009), The End of the Virtual: Digital Methods (Amsterdam: Vossiuspers UvA).CrossRefGoogle Scholar
  32. Shapin, S. and Schaffer, S. (1985), Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life (Princeton, NJ: Princeton University Press).Google Scholar
  33. Snow, C. P. (1959), The Two Cultures (Cambridge, MA: Cambridge University Press).Google Scholar
  34. Tukey, J. W. (1962), ‘The Future of Data Analysis’, The Annals of Mathematical Statistics 33: 11–67.Google Scholar
  35. Tufte, E. R. (2001), The Visual Display of Quantitative Information, 2nd ed. (Cheshire, CT:Graphics Press).Google Scholar
  36. Wang, H. (1963), ‘Toward Mechanical Mathematics’, in K. M. Sayre and F. J. Crosson (eds), The Modeling of Mind (South Bend, IN: Notre Dame University Press).Google Scholar

Copyright information

© Bernhard Rieder and Theo Röhle 2012

Authors and Affiliations

  • Bernhard Rieder Theo Röhle

There are no affiliations available

Personalised recommendations