Modelling for Policy Assessment in the Natural Gas Industry

  • Y. Olaya
  • I. Dyner
Part of the OR Essentials book series (ORESS)


The selection of a method for policy assessment in a particular industry varies according to the characteristics of the issues involved. In the natural gas industry, each component has its own specific features and, when analysed as a single whole, a synthesized modelling approach may turn appropriate. This paper shows that in some instances, the integration of modelling methodologies might be of great value for understanding, evaluating and formulating energy policy. Here we address methodological issues that have been considered for the assessment of policy options in the natural gas industry in Colombia. We focus on both modelling and policy, specifically with respect to industry sustainability, and also on environmental impacts.


Simulation Modelling Energy policy System dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Naill RG, Klinger BA and Petersen E (1992). An analysis of the cost effectiveness of US energy policies to mitigate global warming. System Dyn Rev 8(2): 111–128.CrossRefGoogle Scholar
  2. 2.
    Sterman J and Richardson G (1985). An experiment to evaluate methods for estimating fossil fuel resources. J Forecasting 4: 197–229.Google Scholar
  3. 3.
    Davidsen P, Sterman J and Richardson G (1990). A petroleum life cycle model for the United States with endogenous technology, exploration, recovery, and demand. System Dyn Rev 6(1): 66–93.CrossRefGoogle Scholar
  4. 4.
    Becker A, Godec M, Pepper W and Zammerilli A (1995). Gas system analysis model. Technology and policy assessment of North American natural gas potential. Society of Petroleum Engineers, SPE PAPER 30187, Dallas.Google Scholar
  5. 5.
    Baron R (1997). Recent developments in the gas system analysis model (GSAM). US Department of Energy, Washington.Google Scholar
  6. 6.
    Laurillard D (1993). Rethinking University Teaching: A Framework for the Effective Use of Educational Technology. London: Routledge.Google Scholar
  7. 7.
    Curry B and Moutinho L (1992). Using computer simulation in management education. Mngt Educ Dev 23(2): 155–167.CrossRefGoogle Scholar
  8. 8.
    Dyner I (2000). System dynamics platforms for integrated energy analysis. J Opl Res Soc 51: 136–144.Google Scholar
  9. 9.
    Bunn D and Larsen E (eds) (1997). Systems Modelling for Energy Policy. New York: Wiley.Google Scholar
  10. 10.
    Ford A (1997). System dynamics and the electric power industry. System Dyn Rev 13: 53–86.CrossRefGoogle Scholar
  11. 11.
    Morecroft J and Sterman J (1994). Modeling for Learning Organizations. Portland, OR: Productivity Press.Google Scholar
  12. 12.
    Bunn D, Larsen E and Vlahos K (1993). Complementary modelling approaches for analysing several effects of privatization on electricity investment. J Opl Res Soc 44: 957–971.Google Scholar
  13. 13.
    Sage AP (1991). Decision Support Systems Engineering. New York: Wiley.Google Scholar
  14. 14.
    Lane D (1995). On a resurgence of management simulations and games. J Opl Res Soc 46: 604–625.Google Scholar
  15. 15.
    Langley PA and Larsen E (1995). Converging technologies: multi-media and gaming simulations. J Intell Systems 5(2–4): 151–177.Google Scholar
  16. 16.
    Smith R, Dyner I, Olaya Y and Arango S (1999). Penetración del gas en el sector transporte terrestre en Colombia. Energética 12(21): 41–56.Google Scholar
  17. 17.
    Dyner I, Smith R and Peña G (1995). System dynamics modelling for residential energy efficiency analysis and management. J Opl Res Soc 46: 1163–1173.Google Scholar
  18. 18.
    Dyner I and Bunn D (1997). A systems simulation platform to support energy policy in Colombia. In: Bunn D and Larsen E (eds). Systems Modelling for Energy Policy New York: Wiley.Google Scholar
  19. 19.
    Naill RG (1973). The discovery cycle of a finite resource: a case study of US Natural gas. In: Meadows DH and Meadows DL (eds). Toward Global Equilibrium. Cambridge, MA: Wright-Allen Press.Google Scholar
  20. 20.
    Naill RG and Behrens III WW (1974). Non-renewable source sector. In: Meadows DH, Meadows DL, Randers J and Behren III WM (eds). Dynamics of Growth in a Finite World. Cambridge, MA: Wright-Allen Press.Google Scholar
  21. 21.
    Gordon L, Gautier D, Mast R and Root D (1993). US Geological survey estimates of natural gas energy resources. In: The future of energy gases. USGS Geological Paper No. 1570, Washington, pp. 495–506.Google Scholar
  22. 22.
    Morehouse DF (1997). The intricate puzzle of oil and gas reserves growth. Natural Gas Monthly, Energy Information Administration. US DOE, Washington.Google Scholar
  23. 23.
    Ghouri S (1996). Pakistan’s new petroleum policy 1994. An immense promise. Energy Policy 24(5): 477–488.CrossRefGoogle Scholar
  24. 24.
    Livernois J and Russell U (1987). Extraction costs and the economics of nonrenewable resources. J Polit Econ 95(1): 195–203.Google Scholar
  25. 25.
    Berg E, Kverndokk S and Rosendahl K (1999). Optimal oil exploration under climate treaties. Statistics Norway. Discussion paper No 245. Available at etter_serie/dp/
  26. 26.
    Alazard N (1996). Le progres scientifique et technique en exploration–production: impact sur les reserves et les coûts. Rev Energie 47(481): 79–82.Google Scholar
  27. 27.
    Appert O and Boy De La Tour X (1997). Exploration et production des hydrocarbures: les enjeux technologiques pour l’Europe. Rev Energie 48(485): 105–118.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Y. Olaya
    • 1
    • 2
  • I. Dyner
    • 3
  1. 1.Departamento de Ciencias de la Computación and DecisiónFaculted de Minas, Universidad Nacional de ColombiaMedellínColombia
  2. 2.Carrera, BogotaColombia
  3. 3.Energy Institute, Universidad Nacional de ColombiaMedellínColombia

Personalised recommendations