Quantum Game Theoretical Frameworks in Economics

Chapter

Abstract

The authors briefly review quantum game theory and its application in economics. This review is addressed at newcomers and some basic ideas of quantum theory are necessary to follow the text—the short introduction in chapter “A Brief Introduction to Quantum Formalism” will be sufficient. Due to the lack of space only the flagship issues will be discussed. Quantum game theory, whatever opinions may be held due to its abstract physical formalism, have already found various applications even outside the orthodox physics domain. We are aware that the implementation of genuine quantum models is not an easy task. Nevertheless, such models are already an interesting although sophisticated theoretical tool.

Keywords

Ultimatum Game Quantum Strategy Combinatorial Auction Social Choice Rule Quantum Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work has been supported by the project Quantum games: theory and implementations financed by the National Science Center under contract no DEC-2011/01/B/ST6/07197.

References

  1. Alonso-Sanz, R. (2012). A quantum battle of the sexes cellular automaton. Proceedings of the Royal Society A (London), 468, 3370–3383.Google Scholar
  2. Asano, M., Ohya, M., Tanaka, Y., Basieva, I., & Khrennikov, A. (2011). Quantumlike model of brain’s functioning: Decision making from decoherence. Journal of Theoretical Biology, 281, 56–64.CrossRefGoogle Scholar
  3. Baaquie, B. E. (2004). Quantum finance: Path integrals and Hamiltonians for options and interest rates. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Baaquie, B. E. (2009). Interest rates and coupon bonds in quantum finance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Bao, N., & Halpern, N. Y. (2015). Quantum voting and violation of Arrow’s impossibility theorem. arXiv:1501.00458 [quant-ph].Google Scholar
  6. Bisconi, C., Corallo, A., Fortunato, L., & Gentile, A. A. (2015). A quantum-BDI model for information processing and decision making. International Journal of Theoretical Physics, 54, 710–726.CrossRefGoogle Scholar
  7. Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Choustova, O. (2006). Quantum Bohmian model for financial markets. Physica A, 374, 304–314.CrossRefGoogle Scholar
  9. Cramton, P., Shoham, Y., & Steinberg, R. (2005). Combinatorial auctions. Cambridge: MIT Press.CrossRefGoogle Scholar
  10. Deutsch, D. (2000). Machines, logic and quantum physics. The Bulletin of Symbolic Logic, 6, 265–283.CrossRefGoogle Scholar
  11. Eisert, J., Wilkens, M., & Lewenstein, M. (1999). Physical Review Letters, 83, 3077–3080.CrossRefGoogle Scholar
  12. Elton, E. J., Gruber, M. J., Brown, S. J., & Goetzmann, W. N. (2013). Modern portfolio theory and investment analysis. New York: Wiley.Google Scholar
  13. Flitney, A. P., & Abbott, D. (2003a). Advantage of a quantum player over a classical one in 2x2 quantum games. Proceedings of the Royal Society A (London), 459, 2463–2474.Google Scholar
  14. Flitney, A. P., & Abbott, D. (2003b). Quantum models of Parrondo’s games. Physica A, 324, 152–156.Google Scholar
  15. Frąckiewicz, P. (2009). The ultimate solution to the quantum bof the sexes game. Journal of Physics A: Mathematical and Theoretical, 42, 365305 (7 pp.).CrossRefGoogle Scholar
  16. Frąckiewicz, P., & Sładkowski, J. (2014). Quantum information approach to the ultimatum game. International Journal of Theoretical Physics, 53, 3248–3261.CrossRefGoogle Scholar
  17. Frieden, B. R. (2004). Science from fisher information: A unification. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Gonçalves, C. P., & Gonçalves, C. (2007). An evolutionary quantum game model of financial market dynamics. Capital Markets: Asset Pricing & Valuation eJournal, 11; available at SSRN: http://ssrn.com/abstract=982086 or http://dx.doi.org/10.2139/ssrn.982086
  19. Hatzinikitas, A., & Smyrnakis, I. (2002). The noncommutative harmonic oscillator in more than one dimension. Journal of Mathematical Physics, 43, 113–125.CrossRefGoogle Scholar
  20. Haven, E. (2005). Pilot-wave theory and financial option pricing. International Journal of Theoretical Physics, 44, 1957–1962.CrossRefGoogle Scholar
  21. Haven, E., & Khrennikov, A. (2009). Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 95, 378–388.Google Scholar
  22. Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Haven, E., & Khrennikov, A. (2016). A brief introduction to quantum formalism. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science. New York: Springer.Google Scholar
  24. Hogg, T., Harsha, P., & Chen, K.-Y. (2007). Quantum auctions. International Journal of Quantum Information, 5, 751–780.CrossRefGoogle Scholar
  25. Hurwicz, L., & Reiter, S. (2006). Designing economic mechanisms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Ieong, S., Man-Cho So, A., & Sundararajan, M. (2007). Stochastic mechanism design. In X. Deng & F. C. Graham (Eds.), Internet and network economics. New York: Springer.Google Scholar
  27. Khan, S., Ramzan, M., & Khan, M. K. (2013). Quantum model of Bertrand duopoly. Chinese Physics Letters, 27, 120302 (4 pp.).Google Scholar
  28. Kleinert, H. (2009). Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. Singapore: World Scientific.CrossRefGoogle Scholar
  29. Li, A., & Yong, X. (2014). Entanglement guarantees emergence of cooperation in quantum Prisoner’s dilemma games on networks. Scientific Reports, 4, 6286 (7 pp.). doi:10.1038/srep06286.CrossRefGoogle Scholar
  30. Li, Q., Iqbal, A., Chen, M., & Abbott, D. (2012). Evolution of quantum and classical strategies on networks by group interactions. New Journal of Physics, 15, 103034 (13 pp.).CrossRefGoogle Scholar
  31. Liu, W.-J., Wang, F., Ji, S., Qu, Z. G., & Wang, X. J. (2014). Attacks and improvement of quantum sealed-bid auction with EPR Pairs. Communications in Theoretical Physics, 61, 686–690.CrossRefGoogle Scholar
  32. Lo, C. F., & Kiang, D. (2004). Quantum Bertrand duopoly with differentiated products. Physics Letters A, 321, 94–98.CrossRefGoogle Scholar
  33. Lo, C. F., & Kiang, D. (2005). Quantum Stackelberg duopoly with incomplete information. Physics Letters A, 346, 65–70.CrossRefGoogle Scholar
  34. Luenberger, D. G. (2009). Investment science. New York: Oxford University Press.Google Scholar
  35. Makowski, M. (2009). Transitivity vs. intransitivity in decision making process – An example in quantum game theory. Physics Letters A, 373, 2125–2130.CrossRefGoogle Scholar
  36. Makowski, M., & Piotrowski, E. W. (2006). Quantum cat’s dilemma: An example of intransitivity in a quantum game. Physics Letters A, 355, 250–254.CrossRefGoogle Scholar
  37. Makowski, M., & Piotrowski, E. W. (2011a). Decisions in elections – Transitive or intransitive quantum preferences. Journal of Physics A: Mathematical and Theoretical, 44, 215303 (10 pp.).Google Scholar
  38. Makowski, M., & Piotrowski, E. W. (2011b). Transitivity of an entangled choice. Journal of Physics A: Mathematical and Theoretical, 44, 075301 (12 pp.).Google Scholar
  39. Makowski, M., Piotrowski, E. W. & Sładkowski, J. (2015). Do transitive preferences always result in indifferent divisions? Entropy, 17, 968–983.CrossRefGoogle Scholar
  40. Meyer, D. A. (1999). Quantum games and quantum strategies. Physical Review Letters, 82, 1052–1055.CrossRefGoogle Scholar
  41. Meyer, D. A., & Blumer, H. (2002). Parrondo games as lattice gas automata. Journal of Statistical Physics, 107, 225–239.CrossRefGoogle Scholar
  42. Miakisz, K., Piotrowski, E. W., & Sładkowski, J. (2006). Quantization of games: Towards quantum artificial intelligence. Theoretical Computer Science, 358, 15–22.CrossRefGoogle Scholar
  43. Miszczak, J., Pawela, Ł., & Sładkowski, J. (2014). General model for a entanglement-enhanced composed quantum game on a two-dimensional lattice. Fluctuation and Noise Letters, 13, 1450012 (14 pp.).CrossRefGoogle Scholar
  44. Moore, J., & Repullo, R. (1988). Subgame perfect implementation. Econometrica, 56, 1191–1220.CrossRefGoogle Scholar
  45. Moreira, C., & Wichert, A. (2014). Interference effects in quantum belief networks. Applied Soft Computing, 25, 64–85.CrossRefGoogle Scholar
  46. Narahari, Y. (2014). Game theory and mechanism design. Singapore: World Scientific.CrossRefGoogle Scholar
  47. Naseri, M. (2009). Secure quantum sealed-bid auction. Optics Communications, 282, 1939–1943.CrossRefGoogle Scholar
  48. Nawaz, A. (2013). The strategic form of quantum prisoners’ dilemma. Chinese Physics Letters, 30, 050302 (7 pp.).CrossRefGoogle Scholar
  49. Nawaz, A., & Toor, A. H. (2004). Dilemma and quantum battle of sexes. Journal of Physics A: Mathematical and Theoretical, 37, 4437–4443.CrossRefGoogle Scholar
  50. Osborne, M. J. (2003). An introduction to game theory. Oxford: Oxford University Press.Google Scholar
  51. Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge: MIT Press.Google Scholar
  52. Patel, N. (2007). Quantum games: States of play. Nature, 445, 144–146.CrossRefGoogle Scholar
  53. Pawela, Ł., & Sładkowski, J. (2013a). Cooperative quantum Parrondo’s games. Physica D: Nonlinear Phenomena, 256–257, 51–57.Google Scholar
  54. Pawela, Ł., & Sładkowski, J. (2013b). Quantum Prisoner’s Dilemma game on hypergraph networks. Physica A, 392, 910–917.Google Scholar
  55. Piotrowski, E. W., & Sładkowski, J. (2001). Quantum-like approach to financial risk: Quantum anthropic principle. Acta Physica Polonica, B32, 3873–3879.Google Scholar
  56. Piotrowski, E. W., & Sładkowski, J. (2002a). Quantum bargaining games. Physica A, 308, 391–401.Google Scholar
  57. Piotrowski, E. W., & Sładkowski, J. (2002b). Quantum market games. Physica A, 312, 208–216.Google Scholar
  58. Piotrowski, E. W., & Sładkowski, J. (2003a). An invitation to quantum game theory. International Journal of Theoretical Physics, 42, 1089–1099.Google Scholar
  59. Piotrowski, E. W., & Sładkowski, J. (2003b). Quantum solution to the Newcomb’s paradox. International Journal of Quantum Information, 1, 395–402.Google Scholar
  60. Piotrowski, E. W., & Sładkowski, J. (2003c). Trading by quantum rules: Quantum anthropic principle. International Journal of Theoretical Physics, 42, 1101–1106.Google Scholar
  61. Piotrowski, E. W., & Sładkowski, J. (2003d). The merchandising mathematician model. Physica A, 318, 496–504.Google Scholar
  62. Piotrowski, E. W., & Sładkowski, J. (2003e). Quantum English auctions. Physica A, 318, 505–514.Google Scholar
  63. Piotrowski, E. W., & Sładkowski, J. (2004). Quantum game theory in finance. Quantitative Finance, 4, C61–C67.CrossRefGoogle Scholar
  64. Piotrowski, E. W., & Sładkowski, J. (2008). Quantum auctions: Facts and myths. Physica A, 387, 3949–3953.CrossRefGoogle Scholar
  65. Piotrowski, E. W., & Sładkowski, J. (2009). A model of subjective supply-demand: The maximum Boltzmann/Shannon entropy solution. Journal of Statistical Mechanics: Theory and Experiment, P03035/2009/03/.Google Scholar
  66. Piotrowski, E. W., Sładkowski, J., & Syska, J. (2010). Subjective modelling of supply and demand – The minimum of Fisher information solution. Physica A, 389, 4904–4912.CrossRefGoogle Scholar
  67. Savage, L. J. (1954) The foundations of statistics. New York: Wiley.Google Scholar
  68. Segal, W., & Segal, I. E. (1998). The Black–Scholes pricing formula in the quantum context. Proceedings of the National Academy of Sciences of the USA, 95, 4072–4075.Google Scholar
  69. Sekiguchi, Y., Sakahara, K., & Sato, T. (2010). Uniqueness of Nash equilibria in quantum Cournot duopoly game. Journal of Physics A: Mathematical and Theoretical, 43, 145303 (7 pp.).CrossRefGoogle Scholar
  70. Slanina, F. (2014). Essentials of econophysics modelling. Oxford: Oxford University Press.Google Scholar
  71. Susskind, L., & Friedman, A. (2014). Quantum mechanics. The theoretical minimum. New York: Basic Books; cf. also the accompanying Web lectures: http://www.theoreticalminimum.com
  72. Wang, X., Liu, D., & Zhang, J.-P. (2013). Asymmetric model of the quantum stackelberg duopoly. Chinese Physics Letters, 30, 120302 (4 pp.).CrossRefGoogle Scholar
  73. Weng, G., & Yu, Y. (2014). A quantum battle of the sexes in noninertial frame. Journal of Modern Physics, 5, 908–915.CrossRefGoogle Scholar
  74. Wu, H. (2011a). Quantum mechanism helps agents combat “bad” social choice rules. International Journal of Quantum Information, 9, 615–623.Google Scholar
  75. Wu, H. (2011b). Subgame perfect implementation: A new result. arXiv:1104.2479 [physics.data-an].Google Scholar
  76. Wu, H. (2013). Quantum Bayesian implementation. Quantum Information Processing, 12, 805–813.CrossRefGoogle Scholar
  77. Zhao, Z., Naseri, M., & Zheng, Y. (2010). Secure quantum sealed-bid auction with post-confirmation. Optics Communications, 283, 3194–3197.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland
  2. 2.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations