From Climatology to Climate Science in the Twentieth Century

  • Matthias Heymann
  • Dania Achermann


This chapter provides a short historical account of major developments and shifts in twentieth-century climate research. It explores a pattern of changes in the study of climate: from a geographical to a physical science; from an empirically focused study to a theory-based one; from the collection of measurements and descriptions to a search for causes and explanations; and from a bottom-up, local-scale practice to an increasingly top-down, global-scale science. The chapter pays particular attention to the roles of temporal and spatial scales, namely to the globalization of climate knowledge. A globalization of climate science and knowledge shifted attention away from local and regional human–climate interactions and the role of climate in human affairs to the investigation of purely physical processes, represented in differential equations.


  1. Achermann, Dania. “Snow and Avalanche Research as a Patriotic Duty: Switzerland’s Ground Work for Cold War Ice and Snow Sciences.” In Ice and Snow in the Cold War: Histories of Extreme Climatic Environments, edited by Julia Herzberg, Christian Kehrt, and Franziska Torma. New York: Berghahn Books, forthcoming.Google Scholar
  2. Agar, Jon. “What Difference Did Computers Make?” Social Studies of Science 36 (2006): 869–907.CrossRefGoogle Scholar
  3. Aspray, William. John von Neumann and the Origins of Modern Computing. Cambridge, MA: MIT Press, 1990.Google Scholar
  4. Bahrenberg, Gerhard. “Der Bruch der modernen Geographie mit der Tradition.” In Kontinuität und Diskontinuität der deutschen Geographie in Umbruchphasen, edited by Ute Wardenga and Ingrid Honsch, 151–59. Münster: Institut für Geographie der Westfälischen Wilhelms-Universität, 1995.Google Scholar
  5. Bergeron, Tom. “Richtlinien einer dynamischen Klimatologie.” Meteorologische Zeitschrift 47 (1930): 246–62.Google Scholar
  6. Bjerknes, Vilhelm. “Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik.” Meteorologische Zeitschrift 21 (1904): 1–7.Google Scholar
  7. Bobek, H., and J. Schmithüsen. “Die Landschaft im logischen System der Geographie.” Erdkunde 3 (1949): 112–20.CrossRefGoogle Scholar
  8. Bretherton, Francis P. “Earth System Science and Remote Sensing.” Proceedings of the IEEE 73 (1985): 1118–27.CrossRefGoogle Scholar
  9. Broecker, Wallace. “Unpleasant Surprises in the Greenhouse.” Nature 328 (1987): 123–26.CrossRefGoogle Scholar
  10. Brönnimann, Stefan. “Picturing Climate Change.” Climate Research 22 (2002): 87–95.CrossRefGoogle Scholar
  11. Brooks, C.E.P. The Evolution of Climate. London: Benn Brothers, 1922.Google Scholar
  12. Brooks, C.E.P. Climate Through the Ages. Revised ed. New York: McGraw-Hill, 1949.Google Scholar
  13. Brückner, Edward. Klimaschwankungen seit 1700, nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Wien-Olmutz: E. Hölzel, 1890.Google Scholar
  14. Callendar, G.S. “The Artificial Production of Carbon Dioxide and Its Influence on Temperature.” Quarterly Journal of the Royal Meteorological Society 64 (1938): 223–40.CrossRefGoogle Scholar
  15. Charney, Jule G. et al. Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: Climate Research Board, National Research Council, 1979.Google Scholar
  16. Christaller, Walter. Die zentralen Orte in Süddeutschland. Eine ökonomisch-geographische Untersuchung über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischer Funktion. Jena: Fischer, 1933.Google Scholar
  17. Clifford, Nicholas. “Globalization: Science, (Physical) Geography and Environment.” In Key Concepts in Geography, edited by Nicholas Clifford, Sarah Holloway, Stephen Rice, and Gill Valentine, 2nd ed., 344–64. Los Angeles: SAGE, 2009.Google Scholar
  18. Coen, Deborah R. “Climate and Circulation in Imperial Austria.” The Journal of Modern History 82 (2010): 839–75.CrossRefGoogle Scholar
  19. Cosgrove, Denis. Apollo’s Eye: A Cartographic Genealogy of the Earth in the Western Imagination. Baltimore, MD: Johns Hopkins University Press, 2001.Google Scholar
  20. Craddock, J.M. et al. The Present Status of Long-Range Forecasting in the World. Geneva: World Meteorological Association, 1962.Google Scholar
  21. Dahan Dalmedico, Amy. “History and Epistemology of Models: Meteorology (1946–1963) as a Case Study.” Archive for the History of Exact Sciences 55 (2001): 395–422.CrossRefGoogle Scholar
  22. Dahan Dalmedico, Amy. “Putting the Earth System in a Numerical Box? The Evolution from Climate Modeling Toward Global Change.” Studies in History and Philosophy of Modern Physics 41 (2010): 282–92.CrossRefGoogle Scholar
  23. Dansgaard, Willi. “The Abundance of O18 in Atmospheric Water and Water Vapour.” Tellus 5 (1953): 461–69.CrossRefGoogle Scholar
  24. Dansgaard, Willi. Frozen Annals: Greenland Ice Sheet Research. Copenhagen: Niels Bohr Institute, 2005.Google Scholar
  25. Dansgaard, Willi et al. “One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet.” Science 166 (1969): 377–80.CrossRefGoogle Scholar
  26. DeVorkin, David. Science With a Vengeance: How the Military Created the US Space Sciences After World War II. New York: Springer-Verlag, 1992.Google Scholar
  27. DeVorkin, David, and Jose M. Sanchez-Ron. “The Military Origins of the Space Sciences in the American V-2 Era.” In National Military Establishments and the Advancement of Science and Technology, edited by Paul Forman, 233–60. Boston: Kluwer Academic Publishers, 1996.CrossRefGoogle Scholar
  28. Edwards, Paul N. “Global Climate Science, Uncertainty, and Politics: Data-Laden Models, Model-Filtered Data.” Science as Culture 8 (1999): 437–72.CrossRefGoogle Scholar
  29. Edwards, Paul N. “Meteorology as Infrastructural Globalism.” Osiris 21 (2006): 229–50.CrossRefGoogle Scholar
  30. Edwards, Paul N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. Cambridge, MA: MIT Press, 2010.Google Scholar
  31. Ellingsen, Gunnar. “The Bergen School: Rethinking How Scientific Meteorology Began.” Unpublished Manuscript, University of Bergen, 2015.Google Scholar
  32. Faust, Heinrich. “Raketen, Satelliten und Meteorologie.” Meteorologische Rundschau 13 (1960): 130–34.Google Scholar
  33. Fisher, Arthur. “One Model to Fit All.” MOSAIC 19 (1988): 52–59.Google Scholar
  34. Fleming, James R. Historical Perspectives on Climate Change. New York: Oxford University Press, 1998.Google Scholar
  35. Fleming, James R. The Callendar Effect: The Life and Work of Guy Stewart Callendar (1898–1964). Boston: American Meteorological Society, 2007.Google Scholar
  36. Fleming, James R. “Knowing Global Environments: New Historical Perspectives on the Field Sciences.” In Knowing Global Environments: New Historical Perspectives on the Field Sciences, edited by Jeremy Vetter, 190–211. Piscataway, NJ: Rutgers University Press, 2010.Google Scholar
  37. Flohn, Hermann. “Neue Anschauungen über die allgemeine Zirkulation der Atmosphäre und ihre klimatische Bedeutung.” Erdkunde 4 (1950a): 141–62.Google Scholar
  38. Flohn, Hermann. “Scherhags ‘Neue Methoden der Wetteranalyse und Wetterprognose’ und die Entwicklung der dreidimensionalen Synoptik.” Meteorologische Rundschau 3 (1950b): 19–27.Google Scholar
  39. Flohn, Hermann. “Ergebnisse und Probleme der Meteorologie 1940 bis 1950.” Naturwissenschaftliche Rundschau 5 (1951): 201–10.Google Scholar
  40. Flohn, Hermann. Witterung und Klima in Mitteleuropa. Stuttgart: S. Hirzel Verzag, 1954.Google Scholar
  41. Flohn, Hermann. “Probleme der theoretischen Klimatologie.” Naturwissenschaftliche Rundschau 18 (1965): 385–92.Google Scholar
  42. Flohn, Hermann. Meteorologie im Übergang, Erfahrungen und Erinnerungen. Bonn: Dummler, 1992.Google Scholar
  43. Fortak, Heinz. Interview with authors. November 27, 2015.Google Scholar
  44. Friedman, Robert M. Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Ithaca, NY: Cornell University Press, 1989.Google Scholar
  45. Gramelsberger, Gabriele. “Conceiving Meteorology as the Exact Science of the Atmosphere: Vilhelm Bjerknes’s Paper of 1904 as a Milestone.” Meteorologische Zeitschrift 18 (2009): 669–73.CrossRefGoogle Scholar
  46. Gramelsberger, Gabriele. “Calculating the Weather: Emerging Cultures of Prediction in the Late Nineteenth- and Early Twentieth-Century.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 61–83. New York: Routledge, 2017.Google Scholar
  47. Guillemot, Hélène. “How to Develop Climate Models? The “Gamble” of Improving Climate Model Parameterizations.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 120–36. New York: Routledge, 2017.Google Scholar
  48. Hann, Julius. Handbuch der Klimatologie, Vol. 1. Stuttgart: Engelhorn, 1908.Google Scholar
  49. Hansen, J. et al. “Climate Impact of Increasing Atmospheric Carbon Dioxide.” Science 213 (1981): 957–66.CrossRefGoogle Scholar
  50. Harper, Kristine. Weather by the Numbers: The Genesis of Modern Meteorology. Cambridge, MA: MIT Press, 2008.CrossRefGoogle Scholar
  51. Henderson, Gabriel. “Global Atmospheric Research Program.” In Climate Change: An Encyclopedia of Science and History, edited by Brian Black et al. Santa Barbara, CA: ABC-CLIO, 2013.Google Scholar
  52. Hettner, Alfred. Die Klimate der Erde. Leipzig: Teubner, 1930.Google Scholar
  53. Heymann, Matthias. “Klimakonstruktionen: Von der klassischen Klimatologie zur Klimaforschung.” NTM Journal of the History of Science, Technology and Medicine 17 (2009): 171–97.Google Scholar
  54. Heymann, Matthias. “The Evolution of Climate Ideas and Knowledge.” Wiley Interdisciplinary Reviews: Climate Change 1 (2010a): 581–97.Google Scholar
  55. Heymann, Matthias. “Understanding and Misunderstanding Computer Simulation: The Case of Atmospheric and Climate Science—An Introduction.” Studies in History and Philosophy of Modern Physics 41 (2010b): 193–200.CrossRefGoogle Scholar
  56. Heymann, Matthias. “Constructing Evidence and Trust: How Did Climate Scientists’ Confidence in Their Models and Simulations Emerge.” In The Social Life of Climate Change Models: Anticipating Nature, edited by Kirsten Hastrup and Martin Skrydstrup, 203–24. New York: Routledge, 2012.Google Scholar
  57. Heymann, Matthias, and Nils Hundebøl. “From Heuristic to Predictive: Making Climate Models Political Instruments.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 100–19. New York: Routledge, 2017.Google Scholar
  58. Holm, Poul et al. “Collaboration Between the Natural, Social and Human Sciences in Global Change Research.” Environmental Science and Policy 28 (2013): 25–35.CrossRefGoogle Scholar
  59. Hulme, Mike. “Geographical Work at the Boundaries of Climate Change.” Transactions of the Institute of British Geographers 33 (2008): 5–11.CrossRefGoogle Scholar
  60. Hulme, Mike. “Reducing the Future to Climate: A Story of Climate Determinism and Reductionism.” Osiris 26 (2011): 245–66.CrossRefGoogle Scholar
  61. Humboldt, Alexander von. Cosmos: A Survey of the General Physical History of the Universe. New York: Harper & Bros, 1845.Google Scholar
  62. Imbrie, John, and Katherine Palmer Imbrie. Ice Ages: Solving the Mystery. Short Hills, NJ: Enslow Publishers, 1979.CrossRefGoogle Scholar
  63. IPCC. “Long Term Climate Change: Projections, Commitments and Irreversibility.” In Fifth Assessment Report, The Physical Science Basis, 1029–136. Cambridge: Cambridge University Press, 2013.Google Scholar
  64. Jasanoff, Sheila. “Image and Imagination: The Formation of Global Environmental Consciousness.” In Changing the Atmosphere: Expert Knowledge and Environmental Governance, edited by Clark A. Miller and Paul N. Edwards, 303–37. Cambridge, MA: MIT Press, 2001.Google Scholar
  65. Jouzel, Jean. “A Brief History of Ice Core Science Over the Last 50 Years.” Climate of the Past 9 (2013): 2525–47.CrossRefGoogle Scholar
  66. Jouzel, Jean et al. “Orbital and Millennial Antarctic Climate Variability Over the Past 800,000 Years.” Science 317 (2007): 793–96.Google Scholar
  67. Kellogg, William. “Predicting the Climate.” In Man’s Impact on the Climate, edited by William Henry Matthews, William Kellogg, and G.D. Robinson, 123–32. Cambridge, MA: MIT Press, 1971.Google Scholar
  68. Kellogg, William. Effects of Human Activities on Global Climate. Geneva: World Meteorological Association, 1977.Google Scholar
  69. Kenworthy, Joan. “Meteorologist’s Profile – Charles Ernest Pelham Brooks I.S.O., D.Sc. (1888–1957).” Weather 67 (2012): 235–37.CrossRefGoogle Scholar
  70. Khrgian, A.K. Meteorology: A Historical Survey. Jerusalem: Keter Press, 1970.Google Scholar
  71. Kiesewetter, Hubert. Region und Industrie in Europa 1815–1995. Stuttgart: Steiner, 2000.Google Scholar
  72. Knobloch, Eberhard. “Alexander von Humboldt – The Explorer and the Scientist.” Centaurus 49 (2007): 3–14.CrossRefGoogle Scholar
  73. Köppen, Wladimir. “Die gegenwärtige Lage und die neueren Fortschritte der Klimatologie.” Geographische Zeitschrift 1 (1895): 613–28.Google Scholar
  74. Köppen, Wladimir. “Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf.” Petermanns Geographische Mitteilungen 64 (1918): 193–203, 243–48.Google Scholar
  75. Köppen, Wladimir. Die Klimate der Erde, Grundriss der Klimakunde. Leipzig: Walter de Gruyter & Co., 1923.Google Scholar
  76. Köppen, Wladimir. “Das geographische System der Klimate.” In Handbuch der Klimatologie, edited by W. Köppen and R. Geiger, Vol. I, C1–C44. Berlin: Gebr. Borntröger, 1936.Google Scholar
  77. Köppen, Wladimir, and Rudolf Geiger. “Preface.” In Handbuch der Klimatologie, Vol. I. Berlin: Gebr. Borntröger, 1936.Google Scholar
  78. Krüger, Tobias. Discovering the Ice Ages: International Reception and Consequences for a Historical Understanding of Climate. Leiden: Brill, 2013.CrossRefGoogle Scholar
  79. Kutzbach, Gisela. The Thermal Theory of Cyclones, A History of Meteorological Thought in the Nineteenth Century. Boston: American Meteorological Society, 1979.CrossRefGoogle Scholar
  80. Lamb, Hubert H. Climate, History, and the Modern World. New York: Methuen, 1982.CrossRefGoogle Scholar
  81. Lehmann, Philipp. “Whither Climatology? Brückner’s Climate Oscillations, Data Debates, and Dynamic Climatology.” History of Meteorology 7 (2015): 49–70.Google Scholar
  82. Lenhard, Johannes, and Eric Winsberg. “Holism, Entrenchment, and the Future of Climate Model Pluralism.” Studies in History and Philosophy of Modern Physics 41 (2010): 253–62.CrossRefGoogle Scholar
  83. Lewis, John M. “Clarifying the Dynamics of the General Circulation, Phillips’s 1956 Experiment.” Bulletin of the American Meteorological Society 79 (1998): 39–60.CrossRefGoogle Scholar
  84. Livingstone, David. The Geographical Tradition: Episodes in the History of a Contested Enterprise. Oxford: Blackwell Publishers, 1993.Google Scholar
  85. Lovelock, James, and Lynn Margulis. “Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis.” Tellus 26 (1974): 2–9.CrossRefGoogle Scholar
  86. Lynch, Peter. The Emergence of Numerical Weather Prediction, Richardson’s Dream. Cambridge: Cambridge University Press, 2005.Google Scholar
  87. Malberg, Horst. “In Memoriam Professor Dr. Richard Scherhag.” Beiträge des Instituts für Meteorologie 80 (2007): 1–4.Google Scholar
  88. Martin-Nielsen, Janet. “‘The Deepest and Most Rewarding Hole Ever Drilled’: Ice Cores and the Cold War in Greenland.” Annals of Science 70 (2012): 47–70.CrossRefGoogle Scholar
  89. Martin-Nielsen, Janet. Eismitte in the Scientific Imagination: Knowledge and Politics at the Center of Greenland. New York: Palgrave Macmillan, 2013.CrossRefGoogle Scholar
  90. Mason, B.J. “The GARP Atlantic Tropical Experiment.” Contemporary Physics 75 (1975): 17–20.Google Scholar
  91. Meadows, Donella et al. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. New York: Universe Books, 1972.Google Scholar
  92. NASA. Earth System Science – Overview: A Program for Global Change. Washington, DC: National Aeronautics and Space Administration, 1986.Google Scholar
  93. Nebeker, Frederik. Calculating the Weather: Meteorology in the 20th Century. San Diego, CA: Academic Press, 1995.Google Scholar
  94. Oldfield, Jonathan. “Climate Modification and Climate Change Debates Among Soviet Physical Geographers, 1940s–1960s.” Wiley Interdisciplinary Reviews: Climate Change 4 (2013): 513–24.Google Scholar
  95. Palsson, Gisli et al. “Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the Social Sciences and Humanities in Global Environmental Change Research.” Environmental Science and Policy 28 (2012): 3–13.CrossRefGoogle Scholar
  96. Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part 1: Internationalism and Engineering NWP in Sweden, 1952–69.” Meteorological Applications 12 (2005a): 135–59.CrossRefGoogle Scholar
  97. Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part III: Endurance and Mathematics – British NWP, 1948–1965.” Meteorological Applications 12 (2005b): 381–413.CrossRefGoogle Scholar
  98. Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part II: Twenty Countries Around the World.” Meteorological Applications 12 (2005c): 269–89.Google Scholar
  99. Petterssen, Sverre. “Some Aspects of the General Circulation of the Atmosphere.” Centenary Proceedings of the Royal Meteorological Society (1950): 120–55.Google Scholar
  100. Phillips, N.A. “The General Circulation of the Atmosphere: A Numerical Experiment.” Quarterly Journal of the Royal Meteorological Society 82 (1956): 123–64.CrossRefGoogle Scholar
  101. Randall, David et al. “Breaking the Cloud Parameterization Deadlock.” Bulletin of the American Meteorological Society 84 (2003): 1547–64.CrossRefGoogle Scholar
  102. Richardson, Lewis. Weather Prediction by Numerical Process. Cambridge: Cambridge University Press, 1922.Google Scholar
  103. Rudloff, Hans. Die Schwankungen und Pendelungen des Klimas in Europa seit dem Beginn der regelmässigen Instrumenten-Beobachtungen (1670). Braunschweig: Vieweg, 1967.CrossRefGoogle Scholar
  104. Rupke, Nicolaas. Alexander von Humboldt: A Metabiography. Chicago: University of Chicago Press, 2008.Google Scholar
  105. Ruse, Michael. The Gaia Hypothesis: Science on a Pagan Planet. Chicago: University of Chicago Press, 2013.CrossRefGoogle Scholar
  106. Schellnhuber, Hans-Joachim. “Earth System Analysis: The Scope of the Challenge.” In Earth System Analysis: Integrating Science for Sustainability, edited by Hans-Joachim Schellnhuber and Volker Wenzel, 3–195. Heidelberg: Springer, 1998.CrossRefGoogle Scholar
  107. Schellnhuber, Hans-Joachim. “‘Earth System’ Analysis and the Second Copernican Revolution.” Nature 402 (1999): C19–C23.CrossRefGoogle Scholar
  108. Scherhag, Richard. “Sofortige Veröffentlichung der Höhenwetterkarten im täglichen Wetterbericht.” Annalen de Hydrologie 64 (1936).Google Scholar
  109. Schneider, Steven, and Penelope Boston, eds. Scientists on Gaia. Cambridge, MA: MIT Press, 1992.Google Scholar
  110. Sepkoski, David. “Towards ‘A Natural History of Data’: Evolving Practices and Epistemologies of Data in Paleontology, 1800–2000.” Journal of the History of Biology 46 (2013): 401–44.CrossRefGoogle Scholar
  111. Shackley, Simon et al. “Uncertainty, Complexity and Concepts of Good Science in Climate Change Modeling: Are GCMs the Best Tools?” Climatic Change 38 (1998): 159–205.CrossRefGoogle Scholar
  112. Smith, Heather A. “Disrupting the Global Discourse of Climate Change: The Case of Indigenous Voices.” In The Social Construction of Climate Change. Power, Knowledge, Norms, Discourses, edited by Mary E. Pettenger, 197–216. Aldershot: Ashgate Publishing Ltd., 2007.Google Scholar
  113. Sörlin, Sverker. “The Anxieties of a Science Diplomat: Field Coproduction of Climate Knowledge and the Rise and Fall of Hans Ahlmann’s ‘Polar Warming’.” Osiris 26 (2011): 66–88.CrossRefGoogle Scholar
  114. Thorpe, Alan et al. “The Bjerknes’ Circulation Theorem: A Historical Perspective.” Bulletin of the American Meteorological Society 84 (2003): 471–80.Google Scholar
  115. Uhrqvist, Ola. “One Model to Fit All? The Pursuit of Integrated Earth System Models in GAIM and AIMES.” Historical Social Research 40 (2015): 271–97.Google Scholar
  116. Volkert, Hans. “Components of the Norwegian Cyclone Model: Observations and Theoretical Ideas in Europe Prior to 1920.” In The Life Cycles of Extratropical Cyclones, edited by Melvyn Shapiro and Sigbjørn Grønås, 15–28. Boston: American Meteorological Society, 1999.CrossRefGoogle Scholar
  117. Wagner, A. et al. “Klimatologie der freien Atmosphäre.” In Handbuch der Klimatologie, edited by W. Köppen and R. Geiger. Berlin: Gebr. Borntröger, 1931.Google Scholar
  118. Warnecke, Günther. Interview with author, November 26, 2015.Google Scholar
  119. Weart, Spencer. The Discovery of Global Warming. Revised ed. Cambridge, MA: Harvard University Press, 2008.Google Scholar
  120. Werlen, Brunno. “Gibt es eine Geographie ohne Raum? Zum Verhältnis von traditioneller Geographie und zeitgenössischen Gesellschaften.” Erdkunde 47 (1993): 241–55.Google Scholar
  121. Wilcock, Arthur. “Köppen After Fifty Years.” Annals of the Association of American Geographers 58 (1968): 12–28.CrossRefGoogle Scholar
  122. WMO. Proceedings of the World Climate Conference: A Conference of Experts on Climate and Mankind, Geneva. Geneva: World Meteorological Association, 1979.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Matthias Heymann
    • 1
  • Dania Achermann
    • 1
  1. 1.Centre for Science StudiesAarhus UniversityAarhusDenmark

Personalised recommendations