Skip to main content

Immunoassay of Steroids

  • Chapter
  • First Online:

Abstract

Prior to 1970, few chemical methods existed that were appropriate for the determination of nanomolar and picomolar concentrations of steroid hormones in biological fluids. Nevertheless, by the end of the 1960s, several technologies were being proposed for the measurement of steroids in serum and urine, which included gas–liquid chromatography (Collins et al., 1968), double isotope derivatization (Kliman and Peterson, 1960; Gandy and Peterson, 1968), spectrophotometry and fluorometry (Brown et al., 1968).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham GE (1974) Radioimmunoassay of steroids in biological materials. Acta Endocrinol. 75; 7–42.

    Google Scholar 

  • Ali H, Ghaffari MA, Vanlier JE (1987) Regioselective a-ring iodination of estradiol diacetates. J. Steroid Biochem. Mol. Biol. 28; 21–23.

    CAS  Google Scholar 

  • Aslam M, Dent AH (eds) (1998) Bioconjugation: Protein Coupling Methods for the Biomedical Sciences. Macmillan, London.

    Google Scholar 

  • Babson AL (2005) United reagent random-access analysers: Immulite® and Immulite 1000. In The Immunoassay Handbook (ed) Wild D. Elsevier, Oxford, pp. 370–373.

    Google Scholar 

  • Bai C, Schmidt A, Freedman LP (2003) Steroid hormone receptors and drug discovery: therapeutic opportunities and assay designs. Assay Drug Dev. Technol. 1; 843–852.

    CAS  Google Scholar 

  • Bangham D (1988) Reference preparations and matrix effects. In Complementary Immunoassays (ed) Collins WP. Wiley, Chichester, pp. 13–25.

    Google Scholar 

  • Barnard GJ (1988) The development of fluorescence immunoassays. In Non-radiometric Assay: Technology and Application in Polypeptide and Steroid Hormone Detection (eds) Albertson B, Haseltine F Progress in Clinical and Biological Research, Vol 285. Alan Liss, New York, pp. 153–180.

    Google Scholar 

  • Barnard G, Kohen F (1990) Idiometric assay: a non-competitive immunoassay for small molecules typified by the measurement of serum estradiol. Clin. Chem. 36; 1945–1950.

    CAS  Google Scholar 

  • Barnard G, Kohen F (1998) Monitoring ovarian function by the simultaneous time-resolved fluorescence immunoassay of two urinary steroid metabolites. Clin. Chem. 44; 1520–1528.

    CAS  Google Scholar 

  • Barnard GJ, Williams JL, Shah HP, et al. (1988) Time-resolved fluoroimmunoassay. In Complementary Immunoassays (ed) Collins WP. Wiley, Chichester, pp. 149–167.

    Google Scholar 

  • Blockz P, Martin M (2005) Laboratory quality assurance. In The Immunoassay Handbook (ed) Wild D. Elsevier, Oxford, pp 456–471.

    Google Scholar 

  • Boots LR, Potter S, Potter D, Azziz R (1998) Measurement of total serum testosterone levels using commercially available kits: high degree of between-kit variability. Fertil. Steril. 69; 286–292.

    CAS  Google Scholar 

  • Breuer H, Hamel D, Kruskemper HL (eds) (1976) Methods in Hormone Analysis. Wiley, New York, pp. 1–520.

    Google Scholar 

  • Brown JB, MacLeod SC, Macnaughtan C, et al. (1968) A rapid method for estimating estrogens in urine using a semi-automatic extractor. J. Endocrinol. 42; 5–15.

    Google Scholar 

  • Bush VJ, Janu MR, Bathur F, et al. (2001) Comparison of BD vacutainer SSTTM Plus Tubes with BD SSTTM II Plus Tubes for common analytes. Clin. Chim. Acta. 306; 139–143.

    CAS  Google Scholar 

  • Cameron EHD, Scarisbrook JJ, Morris SE, et al. (1974) Some aspects of the use of 125I-labelled ligands for steroid radioimmunoassay. J. Steroid Biochem. 5; 749–756.

    CAS  Google Scholar 

  • Cawood ML, Field HP, Ford CG, et al. (2005) Testosterone measurement by isotope-dilution liquid chromatography-tandem mass spectrometry: validation of a method for routine clinical practice. Clin. Chem. 51; 1472–1479.

    CAS  Google Scholar 

  • Collins WP, Sisterson JM, Koullapis EN, et al. (1968) The evaluation of a gas-liquid chromatographic method for the determination of plasma testosterone using nickel-63 electron capture detection. J. Chromatogr. 37; 33–45.

    CAS  Google Scholar 

  • Cook B, Beastall GH (1987) Measurement of steroid hormone concentrations in blood, urine and tissues. In Steroid Hormones: A Practical Approach (eds) Green B, Leake RE. IRL Press, Oxford, pp. 1–65.

    Google Scholar 

  • Cook NJ, Read GF, Walker RF, et al. (1992) Salivary cortisol and testosterone as markers of stress in normal subjects in abnormal situations. In Assessment of Hormones and Drugs in Biobehavioural Research (eds) Kirschbaum C, Read GF, Hellhammer D. Hofgrefe & Huber, Seattle, WA.

    Google Scholar 

  • Corrie JET (1983) [125] Iodinated tracers for steroid radioimmunoassay: the problem of bridge recognition. In Immunoassays for Clinical Chemistry (eds) Hunter WM, Corrie JET. Churchill Livingstone, Edinburgh, pp. 353–357.

    Google Scholar 

  • Corrie JET, Hunter WM, Macpherson J (1981) A strategy for radioimmunoassay of plasma progester-one with use of a homologous-site 125I-labelled radioligand. Clin. Chem. 27; 594–599.

    CAS  Google Scholar 

  • De Boever J, Kohen F, Usanachitt C, et al. (1986) Direct chemiluminescence immunoassay for estradiol in serum. Clin. Chem. 32; 1985–1990.

    Google Scholar 

  • Diver MJ (1987) Plasma estradiol concentrations in neonates. Clin. Chem. 33; 1934.

    Google Scholar 

  • Ekins R (2005) Ambient analyte assay. In The Immunoassay Handbook (ed) Wild D. Elsevier, Oxford, pp 48–62.

    Google Scholar 

  • Ekins RP (1960) The estimation of thyroxine in human plasma by an electrophoretic technique. Clin. Chim. Acta. 5; 452–459.

    Google Scholar 

  • Ekins RP (1983a) The precision profile: its use in assay design, assessment and quality control. In Immunoassays for Clinical Chemistry (eds) Hunter WM, Corrie JET. Churchill Livingstone, Edinburgh, pp. 76–104.

    Google Scholar 

  • Ekins RP (1983b) The direct immunoassay of free (non-protein bound) hormones in body fluids. In Immunoassays for Clinical Chemistry (eds) Hunter WM, Corrie JET. Churchill Livingstone, Edinburgh, pp. 319–337.

    Google Scholar 

  • Ekins RP (1985) Current concepts and future developments. In Complementary Immunoassays (ed) Collins WP. Wiley, Chichester, pp. 219–237.

    Google Scholar 

  • Ekins RP (1992) The free hormone hypothesis and measurement of free hormones. Clin. Chem. 38; 1289–1293.

    CAS  Google Scholar 

  • Erlanger BF (1981) The preparation of antigenic hapten-carrier conjugates: a survey. In Methods in Enzymology, Vol 70 (eds) Van Vunakis H, Langone JJ. Academic, New York, pp. 85–104.

    Google Scholar 

  • Ewis AA, Zhelev Z, Bakalova R, et al. (2005) A history of microarrays in biomedicine. Expert Rev. Mol. Diagn. 5; 315–328.

    CAS  Google Scholar 

  • Ferry JD, Collins S, Sykes E (1999) Effect of serum volume and time of exposure to gel barrier tubes on results for progesterone by Roche Diagnostics Elecsys 2010. Clin. Chem. 45; 1574–1575.

    CAS  Google Scholar 

  • Fraser CG (1992) Biological variation in clinical chemistry - an update - collated data 1988–1991. Arch. Pathol. Lab. Med. 116; 916–923.

    CAS  Google Scholar 

  • Gandy HM, Peterson RE (1968) Measurement of testosterone and 17-ketosteroids in plasma by double isotope dilution derivative technique. J. Clin. Endocrinol. Metab. 28; 949–977.

    CAS  Google Scholar 

  • Gillis EH, Gosling JP, Sreenam JM, et al. (2002) Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J. Immunol. Meth. 267; 131–138.

    CAS  Google Scholar 

  • Goding JW (1996) Monoclonal antibodies: principles and practice - production and application of monoclonal antibodies in cell biology. In Biochemistry and Immunology. Academic Press, London.

    Google Scholar 

  • Granger DA, Cicchetti D, Rogosch FA, et al. (2007) Blood contamination in children’s saliva: prevalence, stability, and impact on the measurement of salivary cortisol, testosterone and dehydroepiandrosterone. Psychoneuroendocrinology. 32; 724–733.

    CAS  Google Scholar 

  • Guo TD, Chan M, Soldin SJ (2004) Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source. Arch. Pathol. Lab. Med. 128; 469–475.

    Google Scholar 

  • Guo TD, Taylor RL, Singh RJ, et al. (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photo spray ionization tandem mass spectrometry. Clin. Chim. Acta. 372; 76–82.

    CAS  Google Scholar 

  • Hadd AG, Brown JT, Fandruss BF, et al. (2005) Adoption of array technologies into the clinical laboratory. Expert Rev. Mol. Diagn. 5; 409–420.

    CAS  Google Scholar 

  • Harlow E, Lane D (1998) Using Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Hay ID, Bayer MF, Kaplan MM, et al. (1991) American Thyroid Association assessment of current free thyroid hormone and thyrotropin measurements and guidelines for future clinical assays. Clin. Chem. 37; 2002–2008.

    CAS  Google Scholar 

  • Heald AH, Butterworth A, Kane JW, et al. (2006) Investigation into possible causes of interference in serum testosterone measurement in women. Ann. Clin. Biochem. 43; 189–195.

    CAS  Google Scholar 

  • Hemmila IA (1991) Applications of Fluorescence in Immunoassays. Wiley, New York, pp. 1–344.

    Google Scholar 

  • Herold DA, Fitzgerald RL (2003) Immunoassays for testosterone in women: better than a guess? Clin. Chem. 49; 1250–1251.

    CAS  Google Scholar 

  • Hommola J (2003) Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377; 528–529.

    Google Scholar 

  • Ismail AAA, Walker PL, Barth JL, et al. (2002) Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin. Chem. 48; 2023–2029.

    CAS  Google Scholar 

  • Jackson TM, Ekins RP (1986) Theoretical limitations on immunoassay sensitivity. J. Immunol. Meth. 87; 13–20.

    CAS  Google Scholar 

  • Kabat EA (1981) Basic principles of antigen-antibody reactions. In Methods in Enzymology, Vol 70 (eds) Van Vunakis H, Langone JJ. Academic Press, New York, pp. 3–49.

    Google Scholar 

  • Kaiser T, Gudat P, Stock W, et al. (2000) Biotinylated steroid derivatives as ligands for biospecific interaction analysis with monoclonal antibodies using immunosensor devices. Anal. Biochem. 282; 173–185.

    CAS  Google Scholar 

  • Kellie AE, Lichman KV, Samarajeewa P (1975) Chemistry of steroid-protein conjugate formation. In Steroid Immunoassay (eds) Cameron EHD, Hillier SG, Griffiths K. Alpha Omega, Cardiff, pp. 33–46.

    Google Scholar 

  • Kesner JS, Wright DM, Schrader SM, et al. (1992) Methods of monitoring menstrual function in field studies - efficacy of methods. Reprod. Toxicol. 6; 385–400.

    CAS  Google Scholar 

  • Key TJA, Moore JW (1988) Interference of sex-hormone binding globulin in a no-extraction double antibody radioimmunoassay for oestradiol. Clin. Chem. 34; 1357–1358.

    CAS  Google Scholar 

  • Kliman B, Peterson RE (1960) Double isotope derivative assay of aldosterone in biological extracts. J. Biol. Chem. 235; 1639–1648.

    CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature. 256; 495–497.

    CAS  Google Scholar 

  • Korenman SG, Perrin LE, Rao BR, et al. (1970) Plasma estrogen assays utilizing the cytoplasmic estrogen binder of rabbit uterus. Res. Steroids. 4; 287–296.

    CAS  Google Scholar 

  • Kricka LJ (1994) Selected strategies for improving sensitivity and reliability of immunoassays. Clin. Chem. 40; 347–357.

    CAS  Google Scholar 

  • Kumar A, Goel G, Fahrenbach E, et al. (2005) Microarrays: the technology, analysis and application. Eng. Life Sci. 5; 215–222.

    CAS  Google Scholar 

  • Lamph SA, Wheeler MJ, Halloran SP (2003a) Dynex Technologies DSX immunoassay analyser. Medical and Healthcare Products Regulatory Agency Evaluation Report: MHRA 0317, Centre for Evidence-Based Purchasing, London.

    Google Scholar 

  • Lamph SA, Wheeler MJ, Halloran SP (2003b) Eight testosterone assays. Medical and Healthcare Products Regulatory Agency Evaluation Report: MHRA 03127, Centre for Evidence-Based Purchasing, London.

    Google Scholar 

  • Lamph SA, Wheeler MJ, Halloran SP (2004) Six oestradiol assays. Medical and Healthcare Products Regulatory Agency Evaluation Report: MHRA 04106, centre for evidence-based purchasing, London.

    Google Scholar 

  • Le Roux CW, Sivakumaran S, Alaghband-Zadeh J, et al. (2002) Free cortisol index as a surrogate marker for free cortisol. Ann. Clin. Biochem. 39; 406–408.

    CAS  Google Scholar 

  • Le Roux CW, Chapman GA, Kong WM, et al. (2003) Free cortisol index is better than free total cortisol in determining hypothalamo-pituitary-adrenal status in patients undergoing surgery. J. Clin. Endocrinol. Metab. 88; 2045–2048.

    CAS  Google Scholar 

  • Leake RE, Habib F (1987) Steroid hormone receptors: assay and characterization. In Steroid Hormones: A Practical Approach (eds) Green B, Leake RE. IRL Press, Oxford, pp. 67–97.

    Google Scholar 

  • Marks V (2002) False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin. Chem. 48; 2008–2016.

    CAS  Google Scholar 

  • Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin. Chem. 51; 1683–1690.

    CAS  Google Scholar 

  • Mayes D, Nugent CA (1970) Plasma estradiol determined with a competitive protein binding method. Steroids. 15; 389–403.

    CAS  Google Scholar 

  • McCapra F (1974) Chemiluminescence of organic compounds. Prog. Org. Chem. 8; 231–277.

    Google Scholar 

  • Medical and Healthcare Products Regulatory Agency (2004) Medical Device Alert for BD vacutainer® SSTTM, and SST IITM AdvanceTM blood collection tubes (glass and plastic). MDA/2004/048.

    Google Scholar 

  • Middle JG (2007) Dehydroepiandrosterone sulphate interferes in many direct immunoassays for testosterone. Ann. Clin. Biochem. 44; 173–177.

    CAS  Google Scholar 

  • Mikola H, Sundell A-C, Hanninen E (1993) Labeling of estradiol and testosterone alkyloxime derivatives with a europium chelate for time-resolved fluoroimmunoassays. Steroids. 58; 330–334.

    CAS  Google Scholar 

  • Miro F, Coley J, Gani MM, et al. (2004) Comparison between creatinine and pregnanediol adjustments in the retrospective analysis of urinary hormone profiles during the human menstrual cycle. Clin. Chem. Lab. Med. 42; 1043–1050.

    CAS  Google Scholar 

  • Mitchell JS, Wu Y, Cook C, et al. (2006) Estrogen conjugation and antibody binding interactions in surface plasmon resonance biosensing. Steroids. 71; 618–631.

    CAS  Google Scholar 

  • Moal V, Mathieu E, Reynier P, et al. (2007) Low serum testosterone assayed by liquid chromatography-tandem mass spectrometry. Comparison with five immunoassay techniques. Clin. Chim. Acta. 386; 12–19.

    CAS  Google Scholar 

  • Nahoul K, Castanier M, Gervasi G, et al. (1989) Assay of plasma progesterone and testosterone. Comparison of enzyme immunoassays and radioimmunoassays. Ann. Biol. Clin. Sci. Paris. 47; 127–134.

    CAS  Google Scholar 

  • Nars PW, Hunter WM (1973) A method for labelling oestradiol-17 with radioiodine for radioimmunoassay. Endocrinology. 57; xlvii-xlviii.

    Google Scholar 

  • National Committee for Clinical Laboratory Standards (1992) Evaluation of precision performance of clinical chemistry devices - Second Edition. NCCLS document EP5-T2, NCCLS, Villanova, PA.

    Google Scholar 

  • Ngo TT, Lenhoff HM (1982) Enzymes as versatile labels and signal amplifiers for monitoring immunochemical reactions. Mol. Cell. Biochem. 44; 3–12.

    CAS  Google Scholar 

  • Nicoloff JT, Spencer CA (1990) The use and misuse of sensitive thyrotropin assays. J. Clin. Endocrinol. Metab. 71; 553–558.

    CAS  Google Scholar 

  • Nieschlag E, Wickings EJ (1975) Review of radioimmunoassay. Z. Klin. Chem. Klin. Bio. 13; 261–271.

    CAS  Google Scholar 

  • Nisbet JA, Jomain PA (1987) Discrepancies in plasma estradiol values obtained with commercial kits. Clin. Chem. 33; 1672.

    Google Scholar 

  • Novotny M, Wilson DH (2005) Testosterone testing: an immunoassay with improved accuracy in samples from both males and females. Clin. Lab. 29; 26–27.

    Google Scholar 

  • Petersen PH, Fraser CG, Jorgensen L, et al. (2002) Combination of analytical quality specifications based on biological within- and between-subject variation. Ann. Clin. Biochem. 39; 543–550.

    CAS  Google Scholar 

  • Pratt JJ (1978) Steroid immunoassay in clinical chemistry. Clin. Chem. 24; 1869–1890.

    CAS  Google Scholar 

  • Quinn FA (2005) Achitect® i2000® and i2000®SR analysers. In The Immunoassay Handbook (ed) Wild D. Elsevier, Oxford, pp. 406–411.

    Google Scholar 

  • Ratcliffe WA (1983) Direct (non-extraction) serum assays for steroids. In Immunoassays for Clinical Chemistry (eds) Hunter WM, Corrie JET. Churchill Livingstone, Edinburgh, pp. 401–409.

    Google Scholar 

  • Ratcliffe WA, Carter GD, Dowsett M, et al. (1988) Oestradiol assays: applications and guidelines for the provision of a clinical biochemistry service. Ann. Clin. Biochem. 25; 466–483.

    CAS  Google Scholar 

  • Read GF, Walker RF, Wilson DW, et al. (1990) Steroid analysis in saliva for the assessment of endocrine function. Ann. N Y Acad. Sci. 595; 260–274.

    CAS  Google Scholar 

  • Reeves BD, de Souza MLA, Thompson JE, et al. (1970) An improved method for the assay of progesterone by competitive protein binding. Acta Endocrinol. (Kbh. ) 63; 225–241.

    CAS  Google Scholar 

  • Riad Fahmy D, Read GF, Walker RF, et al. (1982) Steroids in saliva for assessing endocrine function. Endocr. Rev. 3; 367–395.

    CAS  Google Scholar 

  • Richardson A, Kim JB, Barnard G, et al. (1985) Chemiluminescence immunoassay of plasma progesterone using progesterone-acridinium ester as the labelled antigen. Clin. Chem. 31; 1664–1668.

    CAS  Google Scholar 

  • Roda A, Girotti S, Piacentini AL, et al. (1986) Development of a sensitive direct luminescent enzyme immunoassay for plasma oestradiol. Ann. Clin. Biochem. 23; 135–145.

    Google Scholar 

  • Rosner W (2001) An extraordinary inaccurate assay for free testosterone is still with us. J. Clin. Endocrinol. Metab. (Letter) 86; 2903.

    Google Scholar 

  • Scatchard G (1949) The attraction of protein for small molecules and ions. Ann. N Y Acad. Sci. 51; 660–672.

    CAS  Google Scholar 

  • Schroeder HR, Yeager FM (1978) Chemiluminescence and detection limits of some isoluminol derivatives in various oxidation systems. Anal. Chem. 50; 1114–1120.

    CAS  Google Scholar 

  • Self CH (1985) Antibodies, manufacture and use. International Patent No. WO/85/04422.

    Google Scholar 

  • Self CH (1989) Determination method, use and components. International Patent No. WO/89/05453.

    Google Scholar 

  • Self CH, Dessi JL, Winger LA (1994) High-performance assays for small molecules: enhanced sensitivity, rapidity and convenience demonstrated with a noncompetitive immunometric anti-immune complex assay system for digoxin. Clin. Chem. 40; 2035–2041.

    CAS  Google Scholar 

  • Simpson JSA, Campbell AK, Woodhead JS, et al. (1981) Chemiluminescence labels in immunoassay. In Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications (eds) DeLuca M, McElroy WD. Academic Press, New York, pp. 673–679.

    Google Scholar 

  • Slaats EH, Kennedy JC, Kruijswijk H (1987) Interference of sex-hormone binding globulin in the ‘Coat-a-Count’ testosterone no-extraction radioimmunoassay. Clin. Chem. 33; 300–302.

    CAS  Google Scholar 

  • Stavreus-Evers A, Cekan SZ (2001) Quantitative measurements of steroid receptors and their messenger ribonucleic acids with a special emphasis on polymerase chain reaction. J. Lab. Clin. Med. 137; 383–397.

    CAS  Google Scholar 

  • Sweet F, Patrick TB, Mudd JM (1979) A-ring iodination of estradiol. J. Org. Chem. 44; 2296–2298.

    CAS  Google Scholar 

  • Taieb J, Mathian B, Millot F, et al. (2003) Testosterone measured by 10 immunoassays and isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women and children. Clin. Chem. 49; 1381–1395.

    CAS  Google Scholar 

  • Tarle M, Padovan R, Spaventi S (1978) Catalytic iodination and direct radiolabelling of dihy-drotestosterone and estradiol-17-diphosphates. J. Labelled Compd. R. 15; 665–671.

    CAS  Google Scholar 

  • Thienpont LM (1998) Standardization of steroid immunoassays - in theory an easy task. Clin. Chem. Lab. Med. 36; 349–352.

    CAS  Google Scholar 

  • Thienpont LM, De Leenheer AP (1998) Efforts by industry toward standardization of serum, estradiol-17|3 measurements. Clin. Chem. 44; 671–674.

    CAS  Google Scholar 

  • Thienpont LM, Van Uytfanghe K, De Leenheer AP (2002) Reference measurement systems in clinical chemistry. Clin. Chim. Acta 323; 73–87.

    CAS  Google Scholar 

  • Thorpe GHG, Kricka LJ, Moseley SB, et al. (1985) Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction: application in luminescence monitored enzyme immunoassays. Clin. Chem. 31; 1335–1341.

    CAS  Google Scholar 

  • Titus MA, Gregory CW, Ford OH, et al. (2005) Steroid 5 alpha-reductase isoenzymes I and II in recurrent prostate cancer. Clin. Cancer Res. 11; 4365–4371.

    CAS  Google Scholar 

  • Usuki S, Kondoh K, Kubo T (2000) Plasma endothelin and LH-RH, LH, FSH, prolactin, progesterone, 17 alpha-hydroxyprogesterone, estrone, 17 beta-estradiol, delta(4)-androstenedione, testosterone, active renin, angiotensin-II and ANP levels in blood and LH, estrone and 17 beta-estradiol and pregnanediol levels in urine of normal cycling women. J. Cardiovasc. Pharmacol. 36; S421–S427.

    CAS  Google Scholar 

  • van Weeman BK, Schuurs AHWM (1975) The influence of heterologous combinations of antiserum and enzyme-labelled estrogen on the characteristics of estrogen enzyme-immunoassays. Immunochemistry. 12; 667–670.

    CAS  Google Scholar 

  • Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84; 3666–3672.

    CAS  Google Scholar 

  • Wade S, Haegele AD (1991) Time-integrated measurements of corticosteroids in saliva by oral diffusion sink technology. Clin. Chem. 37; 1166–1172.

    CAS  Google Scholar 

  • Wang C, Catlin DH, Demers LM, et al. (2004) Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 89; 534–543.

    CAS  Google Scholar 

  • Warner MH, Kane JW, Atkin SL, et al. (2006) Dehydroepiandrosterone sulphate interferes with the Abbott Architect direct immunoassay for testosterone. Ann. Clin. Biochem. 43; 196–199.

    CAS  Google Scholar 

  • Weeks I, McCapra F, Campbell AK, et al. (1982) Immunoassays using chemiluminescent labelled antibodies. In Immunoassays for Clinical Chemistry (eds) Hunter WM, Corrie JET. Churchill Livingstone, Edinburgh, pp. 525–530.

    Google Scholar 

  • Wheeler MJ (1995) The determination of bio-available testosterone. Ann. Clin. Biochem. 32; 345–357.

    CAS  Google Scholar 

  • Wheeler MJ (2001) Automated immunoassay analysers. Ann. Clin. Biochem. 38; 217–229.

    CAS  Google Scholar 

  • Wheeler MJ, Lowy C (1987) Warning on serum testosterone measurement. Lancet. 29; 514.

    Google Scholar 

  • Wheeler MJ, Barnes SC (2008) Measurement of testosterone in the diagnosis of hypogonadism in the ageing male. Clin. Endocrinol. 69; 515–525.

    CAS  Google Scholar 

  • Wheeler MJ, Hutchinson JM (eds) (2006) Hormone Assays in Biological Fluids. Humana Press, Totowa, NJ.

    Google Scholar 

  • Wheeler MJ, D’Souza A, Matadeen J, et al. (1996) Ciba Corning ACS: 180 testosterone assay evaluated. Clin. Chem. 42; 1445–1449.

    CAS  Google Scholar 

  • Wild D (ed) (2005) The Immunoassay Handbook. Elsevier, Oxford, pp 406–411.

    Google Scholar 

  • Wild D, Kusnezow W (2005) Separation systems. In Immunoassay Handbook (ed) Wild D. Elsevier, Oxford, pp. 177–191.

    Google Scholar 

  • Wiwanitkit V (2001) Comparison of blood specimens from plain and gel vacuum blood collection tubes. J. Med. Assoc. Thai. 84; 723–726.

    CAS  Google Scholar 

  • Wood P (2009) Salivary steroid assays-research or routine. Ann. Clin. Biochem. 46; 183–196.

    CAS  Google Scholar 

  • Wu Y, Mitchell J, Cook C, et al. (2002) Evaluation of progesterone-ovalbumin conjugates with different length linkers in enzyme-linked immunosorbant assay and surface plasmon resonance-based immunoassay. Steroids. 67; 565–572.

    CAS  Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in men. J. Clin. Invest. 39; 1157–1175.

    CAS  Google Scholar 

  • Yaneva M, Mosnier-Pudar H, Dugué M-A, et al. (2004) Midnight salivary cortisol for the initial diagnosis of Cushing’s syndrome of various causes. J. Clin. Endocrinol. Metab. 89; 3345–3351.

    CAS  Google Scholar 

  • Zola H. (1999) Monoclonal Antibodies. Bios Scientific, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Wheeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wheeler, M.J., Barnard, G. (2010). Immunoassay of Steroids. In: Makin, H., Gower, D. (eds) Steroid Analysis. Springer, Dordrecht. https://doi.org/10.1023/b135931_4

Download citation

Publish with us

Policies and ethics