Skip to main content

General Methods for the Extraction, Purification, and Measurement of Steroids by Chromatography and Mass Spectrometry

  • Chapter
  • First Online:

Abstract

Steroids consist of an essentially lipophilic (or hydrophobic, non-polar) cyclopentanoperhydrophenanthrene nucleus modified on the periphery of the nucleus or on the side chain by the addition of hydrophilic (or lipophobic, polar) groups. Although steroids are widely distributed in nature and many thousands have been synthesised in the laboratories of pharmaceutical and chemical organisations, this chapter concentrates primarily on the methodology for the analysis of steroids of biological importance to human subjects and in particular on the methods for the analysis of the very low concentrations of steroids found in human biological tissues or formed during in vitro or in vivo studies. This does not, however, imply that the techniques discussed here may not find applicability in other areas of steroid analysis. This chapter neither discusses specifically the saturation analysis techniques including immunoassay-radioimmunoassay (RIA), enzymeimmunoassay (EIA), which are explained in Chapter 4, nor the analysis of cardenolides, sapogenins, alkaloids, brassinosteroids or ecdysteroids, which present their own analytical challenges but are of less interest in a clinical context. Further details on basic principles of mass spectrometry (MS) are discussed in Chapter 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that Lida, T and Iida, T appear to be the same person but are spelled differently in PubMed. In the text and reference list the spelling adopted by PubMed is used. Please check both spellings in the reference list.

References

  • Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore, and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J. Mass. Spectrom. 34; 244–254.

    CAS  Google Scholar 

  • AbuRuz S, Millership J, Heaney L, McElnay J (2003) Simple liquid chromatography method for the rapid simultaneous determination of prednisolone and cortisol in plasma and urine using hydrophilic lipophilic balanced solid phase extraction cartridges. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 798; 193–201.

    CAS  Google Scholar 

  • Adlercreutz H, Kiuru P, Rasku S, Wahala K, Fotsis T (2004) An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine. J. Steroid Biochem. Mol. Biol. 92; 399–411.

    CAS  Google Scholar 

  • Agnus B, Sebille B, Gosselet N-M (1991) Effects of P-cyclodextrin in the mobile phase on the retention and indirect detection of non-electrolytes in reversed-phase liquid chromatography. II. Steroids. J. Chromatogr. 552; 583–592.

    CAS  Google Scholar 

  • Agnus B, Gosselet N-M, Sebille B (1994) Indirect photodetection of pregnanolone on a Cyclobond column by high-performance liquid chromatography. J. Chromatogr. 663; 27–33.

    CAS  Google Scholar 

  • Agrawal AK, Pampori NA, Shapiro BH (1995) Thin-layer chromatographic separation of regioselective and stereospecific androgen metabolites. Anal. Biochem. 224; 455–57.

    CAS  Google Scholar 

  • Al-Alousi LM, Anderson RA (2002) A relatively simple and rapid multi-component method for. analysis of steroid profiles in blood, fecal and liver samples. Steroids. 67; 269–275.

    CAS  Google Scholar 

  • Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recogn. 19; 106–180.

    CAS  Google Scholar 

  • Alkharfy KM, Frye RF (2002) Sensitive liquid chromatographic method using fluorescence detection for the determination of estradiol 3- and 17-glucuronides in rat and human liver microsomal incubations: formation kinetics. J. Chromatogr. B 774; 33–38.

    CAS  Google Scholar 

  • Al Sharef O, Feely J, Kavanagh PV, Scott KR, Sharma SC (2007) An HPLC method for the determination of the free cortisol/cortisone ratio in human urine. Biomed. Chromatogr. 21; 1201–1206.

    CAS  Google Scholar 

  • Amin M, Harrington K, Vonwandruszka R (1993) Determination of steroids in urine by micellar HPLC with detection by sensitized terbium fluorescence. Anal. Chem. 65; 2346–2351.

    CAS  Google Scholar 

  • Amundsen LK, Nevanen TK, Takkinen K, Rovio S, Siren H (2007) Microscale immunoaffinity SPE and MEKC in fast determination of testosterone in male urine. Electrophoresis. 28; 3232–3241.

    CAS  Google Scholar 

  • Anari MR, Bakhtiar R, Zhu B, Huskey S, Franklin RB, Evans DC (2002) Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal. Chem. 74; 4136–4144.

    CAS  Google Scholar 

  • Andersson SHG, Sjövall J (1985) Analysis of profiles of unconjugated steroids in rat testicular. tissue by gas chromatography-mass spectrometry. J. Steroid Biochem. 23; 469–475.

    CAS  Google Scholar 

  • Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T, Mano N, Goto J (2006) High sensitive analysis of rat serum bile acids Iw liqWd chromatography/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 40; 1179–1180.

    CAS  Google Scholar 

  • Ando T, Koshika S, Komura K, Nakayama Y, Hara S (1986) Characterization of packing columns for the liquid chromatographic determination of corticosteroids in human plasma. J. Liquid Chromatogr. 9; 2601–2608.

    CAS  Google Scholar 

  • Andreohni F, Borra C, Caccamo F, et al. (1987) Estrogen conjugates in late-pregnancy fluids – extraction and group separation by a graphitized carbon black cartridge and quantification by high-performance liquid chromatography. Anal. Chem. 59; 1720–1725.

    Google Scholar 

  • Andreolini F, Beade SC, Novotny M (1988) Determination of serum metabolic profiles of bile acids by microcolumn liquid chromatography/laser-induced fluorescence. J. High Res. Chromatogr. 11; 20–24.

    CAS  Google Scholar 

  • Antignac J-P, Brosseaud I, Gaudin-Hirret FA, Le Bizec B (2005) Analytical strategies for the direct mass spectrometric analysis of steroid and corticosteroid phase II metabolites. Steroids. 70; 205–216.

    CAS  Google Scholar 

  • Appelblad P, Irgum K (2002) Separation and detection of neuroactive steroids from biological matrices. J. Chromatogr. A. 955; 151–182.

    CAS  Google Scholar 

  • Appelblad P, Jonsson T, Backstrom T, Irgum K (1998) Determination of C-21 ketosteroids in serum using trifluoromethanesulfonic acid catalyzed precolumn dansylation and 1, 1’-oxalyldiimidazole postcolumn peroxyoxalate chemiluminescence detection. Anal. Chem. 70; 5002–5009.

    CAS  Google Scholar 

  • Archambault A, Begue R-J, Faure Z. et al. (1984) Chromatography of C, C, and C steroids on Sephadex LH-20. J. Chromatogr. 284; 261–268.

    CAS  Google Scholar 

  • Arroyo D, Ortiz MC, Sarabia LA (2007) Multiresponse optimization and parallel factor analysis, useful tools in the determination of estrogens by gas chromatography-mass spectrometry. J. Chromatogr. A.1157; 358–368.

    CAS  Google Scholar 

  • Axelson M (1985) Liquid-solid extraction of vitamin D3 metabolites from plasma for analysis by HPLC, GC/MS and protein binding techniques. Anal. Lett. 18; 1607–1622.

    CAS  Google Scholar 

  • Axelson M, Sahlberg B-L (1983) Group separation and gas chromatography-mass spectrometry of conjugated steroids in plasma. J. Steroid Biochem. 18; 313–321.

    CAS  Google Scholar 

  • Balthazart J, Cornil CA, Taziaux M, Charlier TD, Baillien M, Ball GF (2006) Rapid changes in production and behavioral action of estrogens. Neuroscience. 138; 783–91.

    CAS  Google Scholar 

  • Barrett YC, Akinsanya B, Chang SY, Vesterqvist O (2005) Automated on-line SPE LC-MS/MS method to quantitate 6beta-hydroxycortisol and cortisol in human urine: use of the 6beta-hydroxycortisol to cortisol ratio as an indicator of CYP3A4 activity. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 821; 159–165.

    CAS  Google Scholar 

  • Batta AK, Salen G (1999) Gas chromatography of bile acids. J. Chromatogr. B Biomed. Sci. Appl. 723; 1–16.

    CAS  Google Scholar 

  • Batta AK, Aggarwal SK, Tint GS, Batta M, Salen G (1995) Capillary gas-liquid chromatography of 6-hydroxylated bile acids. J. Chromatogr. A. 704; 228–233.

    CAS  Google Scholar 

  • Batta AK, Salen G, Rapole KR, Batta M, Earnest D, Alberts D (1998) Capillary gas chromatographic analysis of serum bile acids as the n-butyl ester-trimethylsilyl ether derivatives. J. Chromatogr. B Biomed. Sci. Appl. 706; 337–341.

    CAS  Google Scholar 

  • Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 775; 153–261.

    CAS  Google Scholar 

  • Bicikova M, Lapcik O, Hampl R, Starka L, Knuppen R, Haupt O, Dibbelt L (1995) A novel radioimmunoassay of allopregnanolone. Steroids. 60; 210–213.

    CAS  Google Scholar 

  • Biddle S, Teale P, Robinson A, Bowman J, Houghton E (2007) Gas chromatography-mass spectrometry/mass spectrometry analysis to determine natural and post-administration levels of oestrogens in bovine serum and urine. Anal. Chim. Acta. 586; 115–121.

    CAS  Google Scholar 

  • Bixo M, Andersson A, Winblad B, Purdy RH, Backstrom T (1997) Progesterone, 5alpha-pregnane-3, 20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764; 173–178.

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1957) A rapid method for total lipid extraction and purification. Can. J. Biochem. 37; 911–917.

    Google Scholar 

  • Borges CR, Miller N, Shelby M, Hansen M, White C, Slawson MH, Monti K, Crouch DJ (2007) Analysis of a challenging subset of World Anti-Doping Agency-banned steroids and antiestrogens by LC-MS-MS. J. Anal. Toxicol. 31; 125–131.

    CAS  Google Scholar 

  • Borts DJ, Bowers LD (2000) Direct measurement of urinary testosterone and epitestosterone conjugates using high-performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 35; 50–61.

    CAS  Google Scholar 

  • Bove KE, Heubi JE, Balistreri WF, Setchell KD (2004) Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol. 7; 315–134.

    Google Scholar 

  • Bowers LD, Sanaullah (1996) Direct measurement of steroid sulphate and glucuronide conjugates with high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B 687; 61–68.

    CAS  Google Scholar 

  • Bradlow HL (1968) Extraction of steroid conjugates with a neutral resin. Steroids. 11; 265–272.

    CAS  Google Scholar 

  • Bradlow HL (1977) Modified technique for the elution of polar steroid conjugates from Amberlite-XAD2. Steroids. 30; 581–582.

    CAS  Google Scholar 

  • Brandon DD, Isabelle LM, Samuels MH, Kendall JW, Loriaux DL (1999) Cortisol production rate measurement by stable isotope dilution using gas chromatography-negative ion chemical ionization mass spectrometry. Steroids. 64; 372–378.

    CAS  Google Scholar 

  • Bratoeff E, Sainz T, Cabeza M, Heuze I, Recillas S, Perez V, Rodriguez C, Segura T, Gonzales J, Ramirez E (2007) Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5alpha-reductase. J. Steroid Biochem. Mol. Biol. 107; 48–56.

    CAS  Google Scholar 

  • Bravo JC, Fernandez P, Durand JS (2005) Flow injection fluorimetric determination of beta-estradiol using a molecularly imprinted polymer. Analyst. 130; 1404–1409.

    CAS  Google Scholar 

  • Brooks CJ, Harvey DJ (1969) Comparison of various alkylboronic acids for the characterization of corticosteroids by gas-liquid chromatography-mass spectrometry. Biochem. J. 114; 15 p.

    Google Scholar 

  • Brooks CJ, Cole WJ, Lawrie TD, MacLachlan J, Borthwick JH, Barrett GM (1983) Selective reactions in the analytical characterisation of steroids by gas chromatography-mass spectrometry. J. Steroid Biochem. 19; 189–201.

    CAS  Google Scholar 

  • Brown HJB (1955) A chemical method for the determination of oestriol, oestrone and oestradiol in human urine. Biochem. J. 60; 185–193.

    CAS  Google Scholar 

  • Burgess C (1978) Rapid reversed-phase high-performance liquid chromatographic analysis of steroid products. J. Chromatogr. 149; 233–240.

    CAS  Google Scholar 

  • Burkard I, Rentsch KM, von Eckardstein A (2004) Determination of 24S-and 27-hydroxycholesterol in plasma by high-performance liquid chromatography-mass spectrometry. J. Lipid Res. 45; 776–781.

    CAS  Google Scholar 

  • Bush I (1961) The Chromatography of Steroids. Pergamon, Oxford.

    Google Scholar 

  • Cannell GR, Mortimer RH, Maguire DJ, Addison RS (1991) Liquid chromatographic analysis of prednisolone, prednisone and their 20-reduced metabolites in perfusion media. J. Chromatogr. Biomed. Appl. 563; 341–347.

    CAS  Google Scholar 

  • Capp MW, Simonian MH (1985) Separation of the major adrenal steroids by reversed-phase high-performance liquid chromatography. Anal. Biochem. 147; 374–381.

    CAS  Google Scholar 

  • Carey MP, Aniszewski CA, Fry JP (1994) Metabolism of progesterone in mouse brain. J. Steroid Biochem. Mol. Biol. 50; 213–217.

    CAS  Google Scholar 

  • Caron P, Trottier J, Verrault M, Belanger J, Kaeding J, Barbier O (2006) Enzymatic production of bile acid glucuronides as analytical standards for liquid chromatography-mass spectrometry analyses. Mol. Pharm. 3; 293–302.

    CAS  Google Scholar 

  • Cawley AT, Kazlauskas R, Trout GJ, George AV (2005) Determination of urinary steroid sulfate metabolites using ion paired extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 825; 1–10.

    CAS  Google Scholar 

  • Chabraoui L, Mathian B, Patricot MC, Revol A (1991) Specific assay for unconjugated dehydroepiandrosterone in human plasma by capillary gas chromatography with electron-capture detection. J. Chromatogr. Biomed. Appl. 567; 299–307.

    CAS  Google Scholar 

  • Chang YC, Li CM, Li LA, Jong SB, Liao PC, Chang LW (2003) Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst. 128; 363–368.

    CAS  Google Scholar 

  • Chatman K, Hollenbeck T, Hagey L, Vallee M, Purdy R, Weiss F, Siuzdak G (1999) Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. Anal. Chem. 71; 2358–2363.

    CAS  Google Scholar 

  • Chen MC, Chou SH, Lin CH (2004) Determination of corticosterone and 17-hydroxycorticosterone in plasma and urine samples by sweeping techniques using micellar electrokinetic chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 347–353.

    CAS  Google Scholar 

  • Cheng ZN, Huang SL, Tan ZR, Wang W, Zhou HH (2001) Determination of estradiol metabolites in human liver microsome by high performance liquid chromatography-electrochemistry detector. Acta. Pharmacol. Sin. 22; 369–374.

    CAS  Google Scholar 

  • Chetrite GS, Cortes-Prieto JC, Philippe JC, Pasqualini JR (2007) Estradiol inhibits the estrone sulfatase activity in normal and cancerous human breast tissues. J. Steroid Biochem. Mol. Biol. 104; 289–292.

    CAS  Google Scholar 

  • Chichila TM, Edlund PO, Henion JD, Epstein RL (1989) Determination of melengestrol acetate in bovine tissues by automated coupled-column normal-phase high-performance liquid chromatography. J. Chromatogr. 488; 389–406.

    CAS  Google Scholar 

  • Cho SH, Jung BH, Lee WY, Chung BC (2006) Rapid column-switching liquid chromatography-mass spectrometric assay for DHEA-sulfate in the plasma of patients with Alzheinmer’s disease. Biomed. Chromatogr. 20; 1093–1097.

    CAS  Google Scholar 

  • Choi MH, Chung BC (1999) GC-MS determination of steroids related to androgen biosynthesis in human hair with pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation. Analyst. 124; 1297–1300.

    CAS  Google Scholar 

  • Choi MH, Yoo YS, Chung BC (2001) Measurement of testosterone and pregnenolone in nails using gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2754; 495–501.

    Google Scholar 

  • Choi MH, Hahm JR, Jung BH, Chung BC (2002) Measurement of corticoids in the patients with clinical features indicative of mineralocorticoid excess. Clin. Chim. Acta. 320; 95–99.

    CAS  Google Scholar 

  • Christiaens B, Chiap P, Rbeida O, Cello D, Crommen J, Hubert P (2003) Fully automated method for the liquid chromatographic determination of cyproterone acetate in plasma using restricted access material for sample pre-treatment. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 795; 73–82.

    CAS  Google Scholar 

  • Christiaens B, Fillet M, Chiap P, Rbeida O, Ceccato A, Streel B, De Graeve J, Crommen J, Hubert P (2004) Fully automated method for the liquid chromatographic-tandem mass spectrometric determination of cyproterone acetate in human plasma using restricted access material for on-line sample clean-up. J. Chromatogr. A. 1056; 105–110.

    CAS  Google Scholar 

  • Chrousos GP, O’Dowd L, Uryniak T, Simpson B, Casty F, Goldman M (2007) Basal and cosyntropin-stimulated plasma cortisol concentrations, as measured by high-performance liquid chromatography, in children aged 5 months to younger than 6 years. J. Clin. Endocrinol. Metab. 92; 2125–2129.

    CAS  Google Scholar 

  • Cimpoiu C, Hosu A, Hodisan S (2006) Analysis of some steroids by thin-layer chromatography using optimum mobile phases. J. Pharm. Biomed. Anal. 41; 633–637.

    CAS  Google Scholar 

  • Ciotti PM, Franceschetti F, Bulletti C, Jasonni VM, Bolelli GF (1989) Rapid and specific RIA of serum estrone sulfate with selective solid phase extraction. J. Steroid Biochem. 32; 473–474.

    CAS  Google Scholar 

  • Cirimele V, Kintz P, Dumestre V, Goulle JP, Ludes B (2000) Identification of ten corticosteroids in human hair by liquid chromatography ionspray mass spectrometry. Forensic Sci. Int. 107; 381–388.

    CAS  Google Scholar 

  • Clarke N, Goldman M (2005) Clinical applications of HTLC-MS/MS in the very high throughput diagnostic environment: LC-MS/MS on steroids. Proceedings of 53rd ASMS Conference on Mass Spectrometry and Allied Topics, June 5–9, San Antonio, TX.

    Google Scholar 

  • Clayton PT, Leonard JV, Lawson AM, Setchell KDR, Andersson S, Egestad B, Sjövall J (1987) Familial giant cell hepatitis associated with synthesis of 3|3, 7a-dihydroxy-and 3|3, 7a, 12a-trihydroxy-5-cholenoic acids. J. Clin. Invest. 79; 1031–1038.

    CAS  Google Scholar 

  • Clifton VL, Bisits A, Zarzycki PK (2007) Characterization of human fetal cord blood steroid profiles in relation to fetal sex and mode of delivery using temperature-dependent inclusion chromatography and principal component analysis (PCA). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 855; 249–254.

    CAS  Google Scholar 

  • Coldwell RD, Trafford DJ, Varley MJ, Kirk DN, Makin HLJ (1990) Stable isotope-labeled vitamin D, metabolites and chemical analogs: synthesis and use in mass spectrometric studies. Steroids. 55; 418–432.

    CAS  Google Scholar 

  • Coldwell RD, Trafford DJ, Makin HLJ, Varley MJ, Kirk DN (1984) Specific estimation of 24, 25-dihydroxyvitamin D in plasma by gas chromatography-mass spectrometry. Clin. Chem. 30; 1193–1198.

    CAS  Google Scholar 

  • Conley AJ, Elf P, Corbin CJ, Dubowsky S, Fivizzani A, Lang JW (1997) Yolk steroids decline during sexual differentiation in the alligator. Gen. Comp. Endocrinol. 197; 191–200.

    Google Scholar 

  • Courant F, Antignac JP, Maume D, Monteau F, Andersson AM, Skakkebaek N, Andre F, Le Bizec B (2007) Exposure assessment of prepubertal children to steroid endocrine disrupters 1. Analytical strategy for estrogens measurement in plasma at ultra-trace level. Anal. Chim. Acta. 586; 105–114.

    CAS  Google Scholar 

  • Cristoni S, Cuccato D, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Weber G, Mora S (2004) Analysis of 21-deoxycortisol, a marker of congenital adrenal hyperplasia, in blood by atmospheric pressure chemical ionization and electrospray ionization using multiple reaction monitoring. Rapid Commun. Mass Spectrom. 18; 77–82.

    CAS  Google Scholar 

  • Cristoni S, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Chiumello G, Mora S (2004) Surface-activated chemical ionization ion trap mass spectrometry in the analysis of 21-deoxycortisol in blood. Rapid Commun. Mass Spectrom. 18; 1392–1396.

    CAS  Google Scholar 

  • Culbreth PH, Sampson EJ (1981) Liquid chromatography measurement of cortisol in methylene chloride extracts of aqueous solutions. J. Chromatogr. 212; 221–228.

    CAS  Google Scholar 

  • Daeseleire EAI, De Guesquière A, Van Peteghem CH (1992) Multiresidue analysis of anabolic agents in muscle tissues and urines of cattle by GC-MS. J. Chromatogr. Sci. 30; 409–414.

    CAS  Google Scholar 

  • D’Agostino G, Castagnetta L, Mitchell F, O’Hare MJ (1985) Computer aided mobile-phase optimization and chromatogram simulation in HPLC: a review. J. Chromatogr. 338; 1–23.

    Google Scholar 

  • Dalla Valle L, Toffolo V, Vianello S, Belvedere P, Colombo L (2004) Expression of cytochrome P450c17 and other steroid-converting enzymes in the rat kidney throughout the life-span. J. Steroid Biochem. Mol. Biol. 91; 49–58.

    CAS  Google Scholar 

  • Davison SL, Bell R, Montalto JG, Sikaris K, Donath S, Stanczyk FZ, Davis SR (2005) Measurement of total testosterone in women: comparison of a direct radioimmunoassay versus radioimmunoassay after organic solvent extraction and celite column partition chromatography. Fertil. Steril. 84; 1698–1704.

    CAS  Google Scholar 

  • DeBrabandere V, Thienpont L, DeLeenheer A (1993) The use of cyclodextrins as a novel approach for the prepurification of steroids from human serum prior to their determination with an ID-GC/MS reference method. Abstract presented at 10th IFCC European Congress of Clinical Chemistry, Nice. Ann. Biol. Clin. 51; 517.

    Google Scholar 

  • De Cock KJ, Delbeke FT, Van Eenoo P, Desmet N, Roels K, De Backer P (2001) Detection and determination of anabolic steroids in nutritional supplements. J. Pharm. Biomed. Anal. 25; 843–852.

    CAS  Google Scholar 

  • Decreau RA, Marson CM, Smith KE, Behan JM (2003) Production of malodorous steroids from androsta-5, 16-dienes and androsta-4, 16-dienes by Corynebacteria and other human axillary bacteria. J. Steroid Biochem. Mol. Biol. 87; 327–336.

    CAS  Google Scholar 

  • Dekker R, Vandermeer R, Olieman C (1991) Sensitive pulsed amperometric detection of free and conjugated bile acids in combination with gradient reversed-phase HPLC. Chromatographia. 31; 549–553.

    CAS  Google Scholar 

  • Delvoux B, Husen B, Aldenhoff Y, Koole L, Dunselman G, Thole H, Groothuis P (2007) A sensitive HPLC method for the assessment of metabolic conversion of estrogens. J. Steroid Biochem. Mol. Biol. 104; 246–251.

    CAS  Google Scholar 

  • Derks HLGM, Drayer NM (1978) Improved methods for isolating cortisol metabolites from neonatal urine. Clin. Chem. 24; 1158–1162.

    CAS  Google Scholar 

  • Derks HJGM, Drayer NM (1978) The identification and quantification of three new 6 hydroxylated corticosteroids in human neonatal urine. Steroids. 31; 289–305.

    CAS  Google Scholar 

  • Di Marco MP, Felix G, Descorps V, Ducharme MP, Wainer IW (1998) On-line deconjugation of glucuronides using an immobilized enzyme reactor based upon beta-glucuronidase. J. Chromatogr. B Biomed. Sci. Appl. 715; 379–386.

    CAS  Google Scholar 

  • Dolan JW (2002) Temperature selectivity in reversed-phase high performance liquid chromatography. J. Chromatogr. A. 965; 195–205.

    CAS  Google Scholar 

  • Dolan JW, Snyder LR, Blanc T (2000) Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. II. Minimizing column reproducibility problems. J. Chromatogr. A. 897; 51–63.

    CAS  Google Scholar 

  • Dolan JW, Snyder LR, Blanc T, Van Heukelem L (2000) Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution. J. Chromatogr. A. 897; 37–50. Erratum in: J. Chromatogr. A. 2001 March 2;910(2):385.

    CAS  Google Scholar 

  • Dong H, Tong AJ, Li LD (2003) Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 59; 279–284.

    Google Scholar 

  • Dong J, Chen W, Wang S, Zhang J, Li H, Guo H, Man Y, Chen B (2007) Jones oxidation and high performance liquid chromatographic analysis of cholesterol in biological samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 858; 239–246.

    CAS  Google Scholar 

  • Doostzadeh J, Morfin R (1997) Effects of cytochrome P450 inhibitors and of steroid hormones on the formation f 7-hydroxylated metabolites of pregnenolone in mouse brain microsomes. J. Endocrinol. 155; 343–350.

    CAS  Google Scholar 

  • Dumestre-Toulet V, Cirimele V, Ludes B, Gromb S, Kintz P (2002) Hair analysis of seven bodybuilders for anabolic steroids, ephedrine, and clenbuterol. J. Forensic Sci. 47; 211–214.

    CAS  Google Scholar 

  • Ebner MJ, Corol DI, Havlikova H, Honour JW, Fry JP (2006) Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 147; 179–190.

    CAS  Google Scholar 

  • Edwards RWH (1969a) Column chromatographic techniques. In Chromatographic and Electrophoretic Techniques (ed Smith I), 3rd edn., Vol 1. William Heinemann Medical Books, London, pp. 940–967.

    Google Scholar 

  • Edwards RWH (1969) Steroids. Chapter 21. Methods for the detection of biochemical compounds on paper and thin-layer chromatograms. In Data for Biochemical Research (eds Dawson RMC,. Elliott DC, Eliott WH, Jones KM), 2nd edn. Clarendon, Oxford, pp. 567–578.

    Google Scholar 

  • Edwards RWH, Kellie AE, Wade AP (1953) The extraction and oxidation Cambridge University Press of urinary steroid conjugates. Memoirs of the Society for Endocrinology, Part 2, pp. 53–63.

    Google Scholar 

  • Egawa Y, Shimura Y, Nowatari Y, Aiba D, Juni K (2005) Preparation of molecularly imprinted cyclodextrin microspheres. Int J. Pharm. 293; 1651–1670.

    Google Scholar 

  • Embree L, McErlane KM (1990) Electrochemical detection of the 3, 5-dinitrobenzoyl derivative of digoxin by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl. 526; 439–446.

    CAS  Google Scholar 

  • Engelbrecht Y, Swart P (2000) Adrenal function in Angora goats: a comparative study of adrenal steroidogenesis in Angora goats, Boer goats and Merino sheep. J. Anim. Sci. 78; 1036–1046.

    CAS  Google Scholar 

  • Epstein EH, Han A, Shackleton CHL (1983) Failure of steroid sulfatase to desulfate vitamin D3 sulfate. J. Invest. Dermatol. 80; 514–516.

    Google Scholar 

  • Etter ML, Eichhorst J, Lehotay DC (2006) Clinical determination of 17-hydroxyprogesterone in serum by LC-MS/MS: comparison to Coat-A-Count RIA method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 840; 69–74.

    CAS  Google Scholar 

  • Evans RL, Rushing LG, Billedeau SM, Holder CL, Siitonen PH (2005) Trace analysis of ethinyl estradiol in casein diet using gas chromatography with electron capture detection. J. Chromatogr. Sci. 43; 76–80.

    CAS  Google Scholar 

  • Fell AF, Scott HP, Gill R, Moffat AC (1983) Novel techniques for peak recognition and deconvolution by computer-aided photodiode array detection in high-performance liquid chromatography. J. Chromatogr. 282; 123–140.

    CAS  Google Scholar 

  • Fenske M (2008) Determination of cortisol in human plasma by thin-layer chromatography and fluorescence derivatization with isonicotinic acid hydrazide. J. Chromatogr. Sci. 46; 1–3.

    CAS  Google Scholar 

  • Fenton M (1992) Chromatographic separation of cholesterol in foods. J. Chromatogr. 624; 369–388.

    CAS  Google Scholar 

  • Ferchaud V, Courcoux P, Le Bizec B, Monteau F, Andre F (2000) Enzymatic hydrolysis of conjugated steroid metabolites: search for optimum conditions using response surface methodology. Analyst. 125; 2255–2259.

    CAS  Google Scholar 

  • Fernandes VT, Ribeiro-Neto LM, Lima SB, Vieira JG, Verreschi IT, Kater CE (2003) Reversed-phase high-performance liquid chromatography separation of adrenal steroids prior to radio-immunoassay: application in congenital adrenal hyperplasia. J. Chromatogr. Sci. 41; 251–254.

    CAS  Google Scholar 

  • Fernandez N, Garcia JJ, Diez MJ, et al., (1993) Rapid high-performance liquid chromatographic assay of ethynyloestradiol in rabbit plasma. J. Chromatogr. Biomed. Appl. 619; 143–147.

    CAS  Google Scholar 

  • Ferreira HECS, Elliott WH (1991) Pre-column derivatization of free bile acids for ­high-performance liquid chromatographic and gas chromatographic mass spectrometric analysis. J. Chromatogr. Biomed. Appl. 562; 697–712.

    CAS  Google Scholar 

  • Few JD (1968) A simple method for the separate estimation of 11-deoxy and 11-oxygenated 17-hydroxycorticosteroids in human urine. J. Endocrinol. 41; 213–222.

    CAS  Google Scholar 

  • Fiet J, Giton F, Fidaa I, Valleix A, Galons H, Raynaud JP (2004) Development of a highly sensitive and specific new testosterone time-resolved fluoroimmunoassay in human serum. Steroids. 69; 461–471.

    CAS  Google Scholar 

  • Finlay EM, Gaskell SJ (1981) Determination of testosterone in plasma from men by gas chromatography/mass spectrometry, with high-resolution selected-ion monitoring and metastable peak monitoring. Clin. Chem. 27; 1165–1170.

    CAS  Google Scholar 

  • Fiorelli G, Picariello L, Martineti V, Tognarini I, Tonelli F, Brandi ML (2002) Estrogen metabolism in human colorectal cancer cells. J. Steroid Biochem. Mol. Biol. 81; 281–289.

    CAS  Google Scholar 

  • Foster AB, Jarman M, Mann J, Parr IB (1986) Metabolism of 4-hydroxyandrost-4-ene-3, 17-dione by rat hepatocytes. J. Steroid Biochem. 24; 607–617.

    CAS  Google Scholar 

  • Fredline VF, Taylor PJ, Dodds HM, Johnson AG (1997) A reference method for the analysis of aldosterone in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal. Biochem. 252; 308–313.

    CAS  Google Scholar 

  • Fuqua JS, Sher ES, Migeon CJ, Berkovitz GD (1995) Assay of plasma testosterone during the first six months of life: importance of chromatographic purification of steroids. Clin. Chem. 41; 1146–1149.

    CAS  Google Scholar 

  • Furuta T, Namekawa T, Shibasaki H, Kasuya Y (1999) Synthesis of deuterium-labeled tetrahy-drocortisol and tetrahydrocortisone for study of cortisol metabolism in humans. Steroids. 64; 805–811.

    CAS  Google Scholar 

  • Furuta T, Eguchi N, Shibasaki H, Kasuya Y (2000) Simultaneous determination of endogenous and 13C-labelled cortisols and cortisones in human plasma by stable isotope dilution mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 738; 119–127.

    CAS  Google Scholar 

  • Furuta T, Eguchi N, Yokokawa A, Shibasaki H, Kasuya Y (2000) Synthesis of multi-labeled cortisols and cortisones with (2)H and (13)C for study of cortisol metabolism in humans. Steroids. 65; 180–189.

    CAS  Google Scholar 

  • Furuta T, Suzuki A, Matsuzawa M, Shibasaki H, Kasuya Y (2003) Syntheses of stable isotope-labeled 6 beta-hydroxycortisol, 6 beta-hydroxycortisone, and 6 beta-hydroxytestosterone. Steroids. 68; 693–703.

    CAS  Google Scholar 

  • Furuta T, Mori C, Suzuki A, Shibasaki H, Yokokawa A, Kasuya Y (2004) Simultaneous determination of 6 beta-hydroxycortisol and cortisol in human urine by liquid chromatography with ultraviolet absorbance detection for phenotyping the CYP3A activity determined by the cortisol 6 beta-hydroxylation clearance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 165–71.

    CAS  Google Scholar 

  • Gaertner P, Bica K, Felzmann W, Forsdahl G, Gmeiner G (2007) Synthesis and analytics of 2, 2, 3, 4, 4-d5–19-nor-5alpha-androsterone – an internal standard in doping analysis. Steroids. 72; 429–436.

    CAS  Google Scholar 

  • Gall WE, Zawada G, Mojarrabi B, Tephly TR, Green MD, Coffman BL, Mackenzie PI, Radominska-Pandya A (1999) Differential glucuronidation of bile acids, androgens and estrogens by human UGT1A3 and 2B7. J. Steroid Biochem. Mol. Biol. 70; 101–108.

    CAS  Google Scholar 

  • Gambelunghe C, Sommavilla M, Ferranti C, Rossi R, Aroni K, Manes N, Bacci M (2007) Analysis of anabolic steroids in hair by GC/MS/MS. Biomed. Chromatogr. 21; 369–375.

    CAS  Google Scholar 

  • Garg V, Jusko WJ (1991) Simultaneous analysis of prednisone, prednisolone and their major hydroxylated metabolites in urine by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl. 567; 39–47.

    CAS  Google Scholar 

  • Gartner P, Novak C, Einzinger C, Felzmann W, Knollmuller M, Gmeiner G, Schanzer W (2003) A facile and high yielding synthesis of 2, 2, 3, 4, 4-d5-androsterone-beta-D-glucuronide – an internal standard in dope. Steroids. 68; 85–96.

    Google Scholar 

  • Gaskell SJ (1990) Quantification of steroid conjugates using fast atom bombardment mass spectrometry. Steroids. 55; 458–462.

    CAS  Google Scholar 

  • Gaskell SJ, Brownsey BG (1983) Immunoadsorption to improve gas chromatography/high resolution mass spectrometry of estradiol-17beta in plasma. Clin. Chem. 29; 677–680.

    CAS  Google Scholar 

  • Gaskell SJ, Brownsey BG, Brooks PW, Green BN (1983) Fast atom bombardment mass spectrometry of steroid sulphates: qualitative and quantitative analysis. Biomed. Mass Spectrom. 10; 215–219.

    CAS  Google Scholar 

  • Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V (1997) HPLC-fluorescence determination of free and conjugated bile acids in human serum. Biomed. Chromatogr. 11; 11–15.

    CAS  Google Scholar 

  • Gatti R, Cappellin E, Zecchin B, Antonelli G, Spinella P, Mantero F, De Palo EF (2005) Urinary high performance reverse phase chromatography cortisol and cortisone analyses before and at the end of a race in elite cyclists. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 824; 51–56.

    CAS  Google Scholar 

  • Gavrilova-Jordan LP, Price TM (2007) Actions of steroids in mitochondria. Semin. Reprod. Med. 25; 154–164.

    CAS  Google Scholar 

  • Geisler J, Berntsen H, Lonning PE (2000) A novel HPLC-RIA method for the simultaneous detection of estrone, estradiol and estrone sulphate levels in breast cancer tissue. J. Steroid Biochem. Mol. Biol. 72; 259–264.

    CAS  Google Scholar 

  • Gergely A, Szasz G, Szentesi A, Gyimesi-Forras K, Kokosi J, Szegvari D, Veress G (2006) Evaluation of CD detection in an HPLC system for analysis of DHEA and related steroids. Anal. Bioanal. Chem. 384; 1506–1510.

    CAS  Google Scholar 

  • Geyer H, Parr MK, Mareck U, Reinhart U, Schrader Y, Schanzer W (2004) Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids – results of an international study. Int. J. Sports Med. 25; 124–129.

    CAS  Google Scholar 

  • Ghulam A, Kouach M, Racadot A, Boersma A, Vantyghem MC, Briand G (1999) Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 727; 227–233.

    CAS  Google Scholar 

  • Glencross RG, Abeywardere SA, Corney SJ, et al. (1981) The use of oestradiol-17|3 antiserum covalently coupled to Sepharose to extract oestradiol-17|3 from biological fluids. J. Chromatogr. Biomed. Appl. 223; 193–197.

    CAS  Google Scholar 

  • Godin C, Provost PR, Poirier D, Blomquist CH, Tremblay Y (1999) Separation by thin-layer chromatography of the most common androgen-derived C19 steroids formed by mammalian cells. Steroids. 64; 767–769.

    CAS  Google Scholar 

  • Gomez-Sanchez CE, Foecking MF, Gomez-Sanchez EP (2001) Aldosterone esters and the heart. Am. J. Hypertens. 14; 200S–205S.

    CAS  Google Scholar 

  • Gonzalo-Lumbreras R, Izquierdo-Hornillos R (2000) High-performance liquid chromatographic optimization study for the separation of natural and synthetic anabolic steroids. Application to urine and pharmaceutical samples. J. Chromatogr. B Biomed. Sci. Appl. 742; 1–11.

    CAS  Google Scholar 

  • Gonzalo-Lumbreras R, Izquierdo-Hornillos R (2003) Method development for corticosteroids and anabolic steroids by micellar liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 794; 215–225.

    CAS  Google Scholar 

  • Gonzalo-Lumbreras R, Pimentel-Trapero D, Izquierdo-Hornillos R (2003) Development and method validation for testosterone and epitestosterone in human urine samples by liquid chromatography applications. J. Chromatogr. Sci. 41; 261–265.

    CAS  Google Scholar 

  • Gonzalo-Lumbreras R, Muniz-Valencia R, Santos-Montes A, Izquierdo-Hornillos R (2007) Liquid chromatographic method development for steroids determination (corticoids and anabolics: application to animal feed samples. J. Chromatogr. A. 1156; 321–330.

    CAS  Google Scholar 

  • Gorog S (2004) Recent advances in the analysis of steroid hormones and related drugs. Anal. Sci. 20; 767–782.

    Google Scholar 

  • Gorog S (2005) The sacred cow: the questionable role of assay methods in characterising the quality of bulk pharmaceuticals. J. Pharm. Biomed. Anal. 36; 931–937.

    Google Scholar 

  • Goto J, Saisho Y, Nambara T (1991) Studies on steroids. 252. Separation and characterization of 3-oxo bile acids in serum by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. Biomed. Appl. 567; 343–349.

    CAS  Google Scholar 

  • Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K (2008) Brain microglia express steroid-converting enzymes in the mouse. J. Steroid Biochem. Mol. Biol. 109; 96–107.

    CAS  Google Scholar 

  • Granger DA, Shirtcliff EA, Booth A, Kivlighan KT, Schwartz EB (2004) The “trouble” with salivary testosterone. Psychoneuroendocrinology. 29; 1229–1240.

    CAS  Google Scholar 

  • Grant JK, Beastall GH (1983) The Clinical Biochemistry of Steroid Hormones. Croom Helm, London/Canberra.

    Google Scholar 

  • Gray G, Shakerdi L, Wallace AM (2003) Poor specificity and recovery of urinary free cortisol as determined by the Bayer AD VIA Centaur extraction method. Ann. Clin. Biochem. 40; 563–565.

    CAS  Google Scholar 

  • Griffiths WJ, Liu S, Yang Y, Purdy RH, Sjövall J (1999) Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. Rapid Commun. Mass Spectrom. 13; 1595–1610.

    CAS  Google Scholar 

  • Griffiths WJ, Liu S, Alvelius G, Sjövall J (2003) Derivatisation for the characterisation of neutral oxosteroids by electrospray and matrix-assisted laser desorption/ionisation tandem mass spectrometry: the Girard P derivative. Rapid Commun. Mass Spectrom. 17; 924–935.

    CAS  Google Scholar 

  • Guo T, Gu J, Soldin OP, Singh RJ, Soldin SJ (2008) Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization. Clin. Biochem. 41; 736–741.

    CAS  Google Scholar 

  • Griffiths WJ, Shackleton CH, Sjövall J (2005) Steroid analysis. In The Encylopedia of Mass Spectrometry (ed Capriolli RM) Vol. 5. Elsevier, Oxford, pp. 447–472.

    Google Scholar 

  • Griffiths WJ, Wang Y, Alvelius G, Liu S, Bodin K, Sjövall J (2006) Analysis of oxysterols by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 17; 341–362.

    CAS  Google Scholar 

  • Guldutuna S, You T, Kurts W, Leuschner U (1993) High-performance liquid chromatographic determination of free and conjugated bile acids in serum, liver biopsies, bile, gastric juice and feces by fluorescence labeling. Clin. Chim. Acta. 214; 195–207.

    CAS  Google Scholar 

  • Guo T, Chan M, Soldin SJ (2004) Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source. Arch. Pathol. Lab. Med. 128; 469–475.

    Google Scholar 

  • Guo T, Taylor RL, Singh RJ, Soldin SJ (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin. Chim. Acta. 372; 76–82.

    CAS  Google Scholar 

  • Gupta MK, Geller DH, Auchus RJ (2001) Pitfalls in characterizing P450c17 mutations associated with isolated 17, 20-lyase deficiency. J. Clin. Endocrinol. Metab. 86; 4416–4423.

    CAS  Google Scholar 

  • Haber E, Munoz-Guerra JA, Soriano C, Carreras D, Rodriguez C, Rodriguez FA (2001) Automated sample preparation and gas chromatographic-mass spectrometric analysis of urinary androgenic anabolic steroids. J. Chromatogr. B Biomed. Sci. Appl. 755; 17–26.

    CAS  Google Scholar 

  • Haegele AD, Wade SE (1991) Ultrasensitive differential measurement of cortisol and cortisone in biological samples using fluorescent ester derivatives in normal phase HPLC. J. Chromatogr. 14; 1133–1148.

    CAS  Google Scholar 

  • Haginaka J (2001) HPLC-based bioseparations using molecularly imprinted polymers. Bioseparation. 10; 337–351.

    CAS  Google Scholar 

  • Haider SG (2007) Leydig cell steroidogenesis: unmasking the functional importance of mitochondria. Endocrinology. 148; 2581–2582.

    CAS  Google Scholar 

  • Hajkova K, Pulkrabova J, Schurek J, Hajslova J, Poustka J, Napravnakova M, Kocourek V (2007) Novel approaches to the analysis of steroid estrogens iin river’sediments. Anal. Bioanal. Chem. 387; 1351–1363.

    CAS  Google Scholar 

  • Halket JM, Zaikin VG (2003) Derivatization in mass spectrometry – 1. Silylation. Eur. J. Mass Spectrom. 9; 1–21.

    CAS  Google Scholar 

  • Halket JM, Zaikin VG (2004) Derivatization in mass spectrometry – 3. Alkylation (arylation). Eur. J. Mass Spectrom. (Chichester, England). 10; 1–19.

    CAS  Google Scholar 

  • Halket JM, Zaikin VG (2005) Review: derivatization in mass spectrometry – 5. Specific derivatization of monofunctional compounds. Eur. J. Mass Spectrom. 11; 127–160.

    CAS  Google Scholar 

  • Halket JM, Zaikin VG (2006) Derivatization in mass spectrometry – 7. On-line derivatisation/ degradation. Eur. J. Mass Spectrom. 12; 1–13.

    CAS  Google Scholar 

  • Hämäläinen E, Fotsis T, Adlercreutz H (1991) A gas chromatographic method for the determination of neutral steroid profiles in urine, including studies on the effect of oxytetracycline administration on these profiles in men. Clin. Chim. Acta. 199; 205–220.

    Google Scholar 

  • Hara S (1977) Use of thin-layer chromatographic systems in high-performance liquid chromatographic separations. Procedure for systematization and design of the separatory process in synthetic chemistry. J. Chromatogr. 137; 41–52.

    CAS  Google Scholar 

  • Hara S, Hayashi S (1977) Correlation of retention behaviour of steroidal pharmaceuticals in polar and bonded reversed-phase liquid column chromatography. J. Chromatogr. 142; 689–703.

    CAS  Google Scholar 

  • Hara S, Fujii Y, Hirasawa M, et al. (1978) Systematic design of binary solvent systems for liquid-solid chromatography via retention behaviour of mono-and di-functional steroids on silia gel columns. J. Chromatogr. 149; 143–159.

    CAS  Google Scholar 

  • Hariharan M, Naga S, VanNoord T, Kindt EK (1992) Simultaneous asay of corticosterone and cortisol in plasma by reversed-phase liquid chromatography. Clin. Chem. 38; 346–352.

    CAS  Google Scholar 

  • Hariharan M, Naga S, VanNoord T, Kindt EK (1993) Assay of human plasma cortisone by liquid chromatography – normal plasma concentrations (between 8 and 10am) of cortisone and corticosterone. J. Chromatogr. Biomed. Appl. 613; 195–201.

    CAS  Google Scholar 

  • Hay M, Mormede P (1997) Improved determination of urinary cortisol and cortisone, or corticosterone and 11-dehydrocorticosterone by high-performance liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B Biomed. Sci. Appl. 702; 33–39.

    CAS  Google Scholar 

  • He C, Li S, Liu H, Li K, Liu F (2005) Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A. 1082; 143–149.

    CAS  Google Scholar 

  • Heftmann E (1983) Chapter 14. Steroids. In Chromatography, Fundamentals and Applications of Chromatographic and Electrophoretic Methods. Part B. Applications (ed Heftmann E). Elsevier, Amsterdam, pp. B191–B222.

    Google Scholar 

  • Heikkinen R, Fotsis T, Adlercreutz H (1983) Use of ion exchange chromatography in steroid analysis. J. Steroid. Biochem. 19; 175–180.

    CAS  Google Scholar 

  • Henion J, Lee E (1990) Atmospheric pressure ionization LC/MS for the analysis of biological samples. In Mass Spectrometry in Biological Materials (ed McEwen C). Marcel Dekker, New York, pp. 469–503.

    Google Scholar 

  • Higashi T (2006) Trace determination of steroids causing age-related diseases using LC/MS combined with detection-oriented derivatization. Chem. Pharm. Bull. (Tokyo). 54; 1479–1485.

    CAS  Google Scholar 

  • Higashi T, Shimada K (2004) Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 378; 875–882.

    CAS  Google Scholar 

  • Higashi T, Takido N, Yamauchi A, Shimada K (2002) Electron-capturing derivatization of neutral steroids for increasing sensitivity in liquid chromatography/negative atmospheric pressure chemical ionization-mass spectrometry. Anal. Sci. 18; 1301–1307.

    CAS  Google Scholar 

  • Higashi T, Takido N, Shimada K (2003) Detection and characterization of 20-oxosteroids in rat brains using LC-electron capture APCI-MS after derivatization with 2-nitro-4-trifluoromethylphenylhydrazine of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids. 70; 1–11.

    Google Scholar 

  • Higashi T, Takayama N, Shimada K (2005) Enzymic conversion of 3beta-hydroxy-5-ene-steroids and their sulfates to 3-oxo-4-ene-steroids for increasing sensitivity in LC-APCI-MS. J. Pharm. Biomed. Anal. 39; 718–723.

    CAS  Google Scholar 

  • Higashi T, Yamauchi A, Shimada K, Koh E, Mizokami A, Namiki M (2005) Determination of prostatic androgens in 10 mg of tissue using liquid chromatography-tandem mass spectrometry with charged derivatization. Anal. Bioanal. Chem. 382; 1035–1043.

    CAS  Google Scholar 

  • Higashi T, Yamauchi A, Shimada K (2005c) 2-hydrazino-1-methylpyridine: a highly sensitive derivatization reagent for oxosteroids in liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825; 214–222.

    CAS  Google Scholar 

  • Higashi T, Takayama N, Nishio T, Taniguchi E, Shimada K (2006a) Procedure for increasing the detection responses of estrogens in LC-MS based on introduction of a nitrobenzene moiety followed by electron capture atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 386; 658–665.

    CAS  Google Scholar 

  • Higashi T, Ninomiya Y, Iwaki N, Yamauchi A, Takayama N, Shimada K (2006b) Studies on neurosteroids XVIII LC-MS analysis of changes in rat brain and serum testosterone levels induced by immobilization stress and ethanol administration. Steroids. 71; 609–617.

    CAS  Google Scholar 

  • Higashi T, Takayama N, Kyutoku M, Shimada K, Koh E, Namiki M (2006c) Liquid chromatography-mass spectrometric assay of androstenediol in prostatic tissue: influence of androgen deprivation therapy on its level. Steroids. 71; 1007–1013.

    CAS  Google Scholar 

  • Higashi T, Nagahama A, Otomi N, Shimada K (2007a) Studies on neurosteroids XIX. Development and validation of liquid chromatography-tandem mass spectrometric method for determination of 5alpha-reduced pregnane-type neurosteroids in rat brain and serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 848; 188–199.

    Google Scholar 

  • Higashi T, Shibayama Y, Kawasaki I, Shimada K (2007b) Determination of salivary 17-­ketosteroid sulfates using liquid chromatography-electrospray ionization-mass spectrometry. J. Pharm. Biomed. Anal. 43; 1782–1788.

    CAS  Google Scholar 

  • Higashi T, Nishio T, Hayashi N, Shimada K (2007c) Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization-MS. Chem. Pharm. Bull. (Tokyo). 55; 662–665.

    CAS  Google Scholar 

  • Higashi T, Shibayama Y, Shimada K (2007d) Determination of salivary dehydroepiandrosterone using liquid chromatography – tandem mass spectrometry combined with charged derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 846; 195–201.

    CAS  Google Scholar 

  • Higashi T, Nagahama A, Mukai Y, Shimada K (2008) Studies on neurosteroids XXII. Liquid chromatography-tandem mass spectrometric method for profiling rat brain 3-oxo-4-ene-neuroactive steroids. Biomed. Chromatogr. 22; 34–43.

    Google Scholar 

  • Higashidate S, Hibi K, Senda M, Kanda S, Imai K (1990) Sensitive assay system for bile acids and steroids having hydroxyl groups utilizing high-performance liquid chromatography with peroxyoxalate chemiluminescence detection. J. Chromatogr. 515; 577–584.

    CAS  Google Scholar 

  • Hill M, Cibula D, Havlikova H, Kancheva L, Fait T, Kancheva R, Parizek A, Starka L (2007) Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 105; 166–175.

    CAS  Google Scholar 

  • Hochberg RB, Pahuja SL, Zielinski JE, Larner JM (1991) Steroidal fatty acid esters. J. Steroid Biochem. Mol. Biol. 40; 577–585.

    CAS  Google Scholar 

  • Hojo K, Hakamata H, Ito A, Kotani A, Furukawa C, Hosokawa YY, Kusu F (2007) Determination of total cholesterol in serum by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 1166; 135–141.

    CAS  Google Scholar 

  • Holder G (2006) Measurement of glucocorticoids in biological fluids. Methods Mol. Biol. 324; 141–157.

    CAS  Google Scholar 

  • Hollis BW (1986) Assay of circulating 1,25-dihydroxyvitamin D involving a novel single-cartridge extraction and purification procedure. Clin. Chem. 32; 2060–2063.

    CAS  Google Scholar 

  • Hollis BW, Frank NE (1985) Solid phase extraction system for vitamin D and its major metabolites in human plasma. J. Chromatogr. 343; 43–50.

    CAS  Google Scholar 

  • Holst JP, Soldin OP, Guo T, Soldin SJ (2004) Steroid hormones: relevance and measurement in the clinical laboratory. Clin. Lab. Med. 24; 105–118. I

    Google Scholar 

  • Holst JP, Soldin SJ, Tractenberg RE, Guo T, Kundra P, Verbalis JG, Jonklaas J (2007) Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids. 72; 71–84.

    CAS  Google Scholar 

  • Homma M, Beckerman K, Hayashi S, Jayewardene AL, Oka K, Gambertoglio JG, Aweeka FT (2000) Liquid chromatographic determination of urinary 6beta-hydroxycortisol to assess cytochrome p-450 3A activity in HIV positive pregnant women. J. Pharm. Biomed. Anal. 23; 629–635.

    CAS  Google Scholar 

  • Honour JW (2006) High-performance liquid chromatography for hormone assay. Methods Mol. Biol. 324; 25–52.

    CAS  Google Scholar 

  • Honour JW, Shackleton CH (1977) Mass spectrometric analysis of tetrahydroaldosterone. J. Steroid Biochem. 8; 299–305.

    CAS  Google Scholar 

  • Horie H, Kidowaki T, Koyama Y, Endo T, Homma K, Kambegawa A, Aoki N (2007) Specificity assessment of immunoassay kits for determination of urinary free cortisol concentrations. Clin. Chim. Acta. 378; 66–70.

    CAS  Google Scholar 

  • Horning EC (1968) Gas-phase analytical methods for the study of steroid hormones and their metabolites. In Gas-Phase Chromatography of Steroids (eds Eik-Nes KB, Horning EC). Springer, New York, pp. 1–71.

    Google Scholar 

  • Hsing AW, Stanczyk FZ, Belanger A, Schroeder P, Chang L, Falk RT, Fears TR (2007) Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol. Biomarkers Prev. 16; 1004–1008.

    CAS  Google Scholar 

  • Hu Z, Gong Q, Hu X, Wang L, Cao Y, Cao W, Yu Q, Cheng Z (2005) Simultaneous determination of 6beta-hydroxycortisol and cortisol in human urine and plasma by liquid chromatography with ultraviolet absorbance detection for phenotyping the CYP3A activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 826; 238–243.

    CAS  Google Scholar 

  • Hu Y, Zheng Y, Zhu F, Li G (2007) Sol-gel coated polydimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its application to analysis of estrogens and bisphenol A. J. Chromatogr. A. 1148; 16–22.

    CAS  Google Scholar 

  • Huang W, Kalhorn TF, Baillie M, Shen DD, Thummel KE (2007) Determination of free and total cortisol in plasma and urine by liquid chromatography-tandem mass spectrometry. Ther. Drug Monit. 29; 215–224.

    CAS  Google Scholar 

  • Huang X, Yuan D (2007) Preparation of stir bars for sorptive extraction based on monolithic material. J. Chromatogr. A. 1154; 152–157.

    CAS  Google Scholar 

  • Ibrahim F, Giton F, Boudou P, Villette J-M, Julien R, Galons H, Fiet J (2003) Plasma 11b-hydroxy-4-androstene-3,17-dione: comparison of a time-resolved fluoroimmnuoassay using a biotinylated tracer with a radioimmunoassay using a tritiated tracer. J. Steroid Biochem. Mol. Biol. 84; 563–568.

    CAS  Google Scholar 

  • Iida T, Tamaru T, Chang FC, Goto J, Nambara T (1992) Preparation of glycine-conjugated bile acids and their gas-liquid chromatographic analysis on an aluminum-clad flexible fused silica capillary column. Biomed. Chromatogr. 6; 4–8.

    CAS  Google Scholar 

  • Iida T, Tazawa S, Tamaru T, Goto J, Nambara T (1995) Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column. J. Chromatogr. A. 689; 77–84.

    CAS  Google Scholar 

  • Iida T, Hikosaka M, Goto J, Nambara T (2001) Capillary gas chromatographic behaviour of tert.-hydroxylated steroids by trialkylsilylation. J. Chromatogr. A. 937; 97–105.

    Google Scholar 

  • Ikegawa S, Hirabayashi N, Yoshimura T, Tohma M, Maeda M, Tsuji A (1992) Determination of conjugated bile acids in human urine by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr.-Biomed. Appl. 577; 229–238.

    CAS  Google Scholar 

  • Ikegawa S, Itoh M, Goto J (1994) Separatory determination of biliary metabolites of equilin in rat by high-performance liquid chromatography. J. Liquid Chromatogr. 17; 223–239.

    CAS  Google Scholar 

  • Impens S, De Wasch K, De Brabander H (2001) Determination of anabolic steroids with gas chromatography-ion trap mass spectrometry using hydrogen as carrier gas. Rapid. Commun. Mass Spectrom. 15; 2409–2414.

    CAS  Google Scholar 

  • Iohan F, Vincze I (1991) High-performance liquid chromatographic determination of cortolic and cortolonic acids as pyrenyl ester derivatives. J. Chromatogr.-Biomed. Appl. 564; 27–41.

    CAS  Google Scholar 

  • Iwata T, Hirose T, Yamaguchi M (1997) Direct determination of estriol 3- and 16-glucuronides in pregnancy urine by column-switching high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 695; 201–207.

    CAS  Google Scholar 

  • Izquierdo-Hornillos R, Gonzalo-Lumbreras R (2003) Optimization of the separation of a complex mixture of natural and synthetic anabolic steroids by micellar liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 798; 69–77.

    CAS  Google Scholar 

  • Izquierdo-Hornillos R, Gonzalo-Lumbreras R, Santos-Montes A (2005) Method development for cortisol and cortisone by micellar liquid chromatography using sodium dodecyl sulphate: application to urine samples of rugby players. J. Chromatogr. Sci. 43; 235–240.

    CAS  Google Scholar 

  • Jang S, Lee Y, Hwang SL, Lee MH, Park SJ, Lee IH, Kang S, Roh SS, Seo YJ, Park JK, Lee JH, Kim CD (2007) Establishment of type II 5alpha-reductase over-expressing cell line as an inhibitor screening model. J. Steroid Biochem. Mol. Biol. 107; 245–252.

    CAS  Google Scholar 

  • Jantti SE, Kiriazis A, Reinilla RR, Kostiainen RK, Ketola RA (2007) Enzyme-assisted synthesis and characterization of glucuronide conjugates of neuroactive steroids. Steroids. 72; 287–296.

    Google Scholar 

  • Jawad MJ, Wilson EA, Rayburn F (1981) Effect of serum lipids on radioimmunoassays of unconjugated estriol in serum. Clin. Chem. 27; 280–285.

    CAS  Google Scholar 

  • Jeannot MA, Cantwell FF (1997) Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution. Anal. Chem. 69; 2935–2940.

    CAS  Google Scholar 

  • Jellinck PH, Michnovicz JJ, Bradlow HL (1991) Influence of indole-3-carbinol on the hepatic microsomal formation of catechol estrogens. Steroids. 56; 446–450.

    CAS  Google Scholar 

  • Jellinck PH, Croft G, McEwen BS, Gottfried-Blackmore A, Jones G, Byford V, Bulloch K (2005) Metabolism of dehydroepiandrosterone by rodent brain cell lines: relationship between 7-hydroxylation and aromatization. J. Steroid Biochem. Mol. Biol. 93; 81–86.

    CAS  Google Scholar 

  • Jellinck PH, Kaufmann M, Gottfried-Blackmore A, Croft G, Byford V, McEwen BS, Jones G, Bulloch K (2006) Dehydroepiandrosterone (DHEA) metabolism in the brain: identification by liquid chromatography/mass spectrometry of the delta-4-isomer of DHEA and related steroids formed from androstenedione by mouse BV2 microglia. J. Steroid Biochem. Mol. Biol. 98; 41–47.

    CAS  Google Scholar 

  • Jellinck PH, Kaufmann M, Gottfried-Blackmore A, McEwen BS, Jones G, Bulloch K (2007) Selective conversion by microglia of dehydroepiandrosterone to 5-androstenediol-A steroid with inherent estrogenic properties. J. Steroid Biochem. Mol. Biol. 107; 156–162.

    CAS  Google Scholar 

  • Jia Q, Hong MF, Pan ZX, Orndorff S (2001) Quantitation of urine 17-ketosteroid sulfates and glucuronides by high performance liquid chromatography ion trap mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 750; 81–91.

    CAS  Google Scholar 

  • Johnson DW (2005) Ketosteroid profiling using Girard T derivatives and electrospray ionization tandem mass spectrometry: direct plasma analysis of androstenedione, 17-­hydroxyprogesterone and cortisol. Rapid Commun. Mass Spectrom. 19; 193–200.

    CAS  Google Scholar 

  • Jones AM, Honour JW (2006) Unusual results from immunoassays and the role of the clinical endocrinologist. Clin. Endocrinol. (Oxf.) 64; 234–244.

    Google Scholar 

  • Jones G, Makin HLJ (2000) Vitamin D: metabolites and analogs. In Modern Chromatographic Analysis of Vitamins (eds de Leenheeer AP, Lambert WE, van Bocxlaer JF) 3rd edn. Marcel Dekker, New York, pp. 75–141.

    Google Scholar 

  • Justova V, Starka L (1981) Separation of functional hydroxy metabolites of vitamin D 3 by thin layer chromatography. J. Chromatogr. 209; 337–340.

    CAS  Google Scholar 

  • Kagan MZ (2001) Normal-phase high-performance liquid chromatographic separations using ethoxynonafluorobutane as hexane alternative. I. Analytical and chiral applications. J. Chromatogr. A. 918; 292–302.

    Google Scholar 

  • Kakiyama G, Sadakiyo S, Iida T, Mushiake K, Goto T, Mano N, Goto J, Nambara T (2005) Chemical synthesis of 24-beta-D-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine. Chem. Phys. Lipids. 134; 141–150.

    CAS  Google Scholar 

  • Kamada JC, Maeda M, Tsuji A (1983) Fluorescence high-performance liquid chromatographic determination of free and conjugated bile acids in serum and bile using 1-bromoacetylpyrene as a pre-labeling reagent. J. Chromatogr. 272; 29–41.

    CAS  Google Scholar 

  • Kataoka H, Matsuura E, Mitani K (2007) Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 44; 160–165.

    CAS  Google Scholar 

  • Katayama M, Taniguchi H (1993) Determination of estrogens in plasma by high-performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5,6-dimeth-ylbenzimidazole. J. Chromatogr.-Biomed. Appl. 616; 317–322.

    CAS  Google Scholar 

  • Katayama M, Masuda Y, Taniguchi H (1993) Determination of corticosteroids in plasma by high-performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole. J. Chromatogr.-Biomed. Appl. 612; 33–39.

    CAS  Google Scholar 

  • Katayama M, Nakane R, Matsuda Y, Kaneko S, Hara I, Sato H (1998) Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after ­pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionohydrazide. Analyst. 123; 2339–2342.

    CAS  Google Scholar 

  • Katayama M, Matsuda Y, Shimokawa K, Kaneko S (2003) Simultaneous determination of 16 estrogens, dehydroepiandrosterone and their glucuronide and sulfate conjugates in serum using sodium cholate micelle capillary electrophoresis. Biomed. Chromatogr. 17; 263–267.

    CAS  Google Scholar 

  • Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Inoue K, Saito K, Nakazawa H (2004) Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry in the multi-shot mode for determination of estrogens in river water samples. J. Chromatogr. A. 1049; 1–8.

    CAS  Google Scholar 

  • Kawaguchi M, Ito R, Saito K, Nakazawa H (2006a) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J. Pharm. Biomed. Anal. 40; 500–508.

    CAS  Google Scholar 

  • Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006b) Dual derivatization-stir bar sorptive extraction - thermal desorption -gas chromatography-mass spectrometry for determination of 17beta-estradiol in water sample. J. Chromatogr. A. 1105; 140–147.

    CAS  Google Scholar 

  • Kawai Y, Miyoshi M, Moon JH, Terao J (2007) Detection of cholesteryl ester hydroperoxide isomers using gas chromatography - mass spectrometry combined with thin-layer chromatography blotting. Anal. Biochem. 360; 130–137.

    CAS  Google Scholar 

  • Kazihnitkova H, Tejkalova H, Benesova O, Bicikova M, Hill M, Hampl R (2004) Simultaneous determination of dehydroepiandrosterone, its 7-hydroxylated metabolites, and their sulfates in rat brain tissues. Steroids. 69; 667–674.

    CAS  Google Scholar 

  • Kessler MJ (1983) Quantitation of radiolabelled biological molecules by high-performance liquid chromatography. J. Chromatogr. 225; 209–217.

    Google Scholar 

  • Khan MA, Wang Y, Heidelberger S, Alvelius G, Liu S, Sjövall J, Griffiths WJ (2006) Analysis of derivatised steroids by matrix-assisted laser desorption/ionisation and post-source decay mass spectrometry. Steroids. 71; 42–53.

    CAS  Google Scholar 

  • Kicman A, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann. Clin. Biochem. 40; 321–356.

    CAS  Google Scholar 

  • Kim YS, Zhang H, Kim HY (2000) Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal. Biochem. 277; 187–195.

    CAS  Google Scholar 

  • Kintz P (2004) Value of hair analysis in postmortem toxicology. Forensic. Sci. Int. 142; 127–134.

    CAS  Google Scholar 

  • Kintz P, Villain M, Cirimele V (2006) Hair analysis for drug detection. Ther. Drug Monit. 28; 442–446.

    CAS  Google Scholar 

  • Kiuru PS, Wahala K (2006) Microwave-assisted synthesis of deuterium labeled estrogen fatty acid esters. Steroids. 71; 54–60.

    CAS  Google Scholar 

  • Knust U, Strowitzki T, Spiegelhalder B, Bartsch H, Owen RW (2007) Optimization of an isotope dilution gas chromatography/mass spectrometry method for the detection ojendogenous estrogen metabolites in urine samples. Rapid Commun. Mass Spectrom. 21; 2245–2254.

    CAS  Google Scholar 

  • Kotiyan PN, Vavia PR (2000) Stability indicating HPTLC method for the estimation of estradiol. J. Pharm. Biomed. Anal. 22; 667–671.

    CAS  Google Scholar 

  • Kuronen P, Volin P, Laitalainen T (1998) Reversed-phase high-performance liquid chromatographic screening method for serum steroids using retention index and diode-array detection. J. Chromatogr. B Biomed. Sci Appl. 718; 211–224.

    CAS  Google Scholar 

  • Kushnir MM, Neilson R, Roberts WL, Rockwood AL (2004) Cortisol and cortisone analysis in serum and plasma by atmospheric pressure photoionization tandem mass spectrometry. Clin. Biochem. 37; 357–362.

    CAS  Google Scholar 

  • Kuuranne T, Vahermo M, Leinonen A, Kostiainen R (2000) Electrospray and atmospheric pressure ionization tandem mass spectrometric behaviour of eight anabolic steroid glucuronides. J. Am. Soc. Mass Spectrom. 11; 722–730.

    CAS  Google Scholar 

  • Kuuranne T, Aitio O, Vahermo M, Elovaara E, Kostiainen R (2002) Enzyme-assisted synthesis and structure characterization of glucuronide conjugates of methyltestosterone (17alpha-methylandrost-4-en-17beta-ol-3-|one) and nandrolone (estr-4-en-17beta-ol-3-one) metabolites. Bioconjug. Chem. 13; 194–199.

    CAS  Google Scholar 

  • Kuuranne T, Kurkela M, Thevis M, Schanzer W, Finel M, Kostiainen R (2003) Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. 31; 1117–1124.

    CAS  Google Scholar 

  • Labrie F, Belanger A, Belanger P, Berube R, Martel C, Cusan L, Gomez J, Candas B, Castiel I, Chaussade V, Deloche C, Leclaire J (2006) Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J. Steroid Biochem. Mol. Biol. 99; 182–188.

    CAS  Google Scholar 

  • Labrie F, Belanger A, Belanger P, Berube R, Martel C, Cusan L, Gomez J, Candas B, Chaussade V, Castiel I, Deloche C, Leclaire J (2007) Metabolism of DHEA in postmenopausal women ­following percutaneous administration. J. Steroid Biochem. Mol. Biol. 103; 178–188.

    CAS  Google Scholar 

  • Lacey JM, Minutti CZ, Magera MJ, Tauscher AL, Casetta B, McCann M, Lymp J, Hahn SH, Rinaldo P, Matern D (2004) Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 50; 621–625.

    CAS  Google Scholar 

  • Lagana A, Marino A (1991) General and selective isolation procedure for high-performance liquid chromatographic determination of anabolic steroids in tissues. J. Chromatogr. 588; 89–98.

    CAS  Google Scholar 

  • Lai CC, Tsai CH, Tsai FJ, Wu JY, Lin WD, Lee CC (2002) Rapid screening assay of congenital adrenal hyperplasia by measuring 17 alpha-hydroxyprogesterone with high-performance ­liquid chromatography/electrospray ionization tandem mass spectrometry from dried blood spots. J. Clin. Lab Anal. 16; 20–25.

    CAS  Google Scholar 

  • Lam S, Malikin G, Karmen A (1988) High-performance liquid chromatography of hydroxysteroids detected with post-column immobilized enzyme reactors. J. Chromatogr. 441; 81–87.

    CAS  Google Scholar 

  • Lamparczyk H, Zarzycki PK, Nowakowska J, Ochocka RJ (1994) Application of beta-cyclodextrin for the analysis of estrogenic steroids in human urine by high-performance liquid chromatography. Chromatographia. 38; 168–172.

    CAS  Google Scholar 

  • Larner JM, Shackleton CHL, Roitman E, et al. (1992) Measurement of estradiol-17-fatty acid esters in human tissues. J. Clin. Endocrinol. Metab. 75; 195–200.

    CAS  Google Scholar 

  • Larner JM, Pahuja SL, Shackleton CH, et al. (1993) The isolation and characterization of estradiol-fatty acid esters in human ovarian follicular fluid. Identification of an endogenous long-lived and potent family of estrogens. J. Biol. Chem. 268; 13893–13899.

    Google Scholar 

  • Lee KA, Volentine KK, Bahr JM (1998) Two steroidogenic pathways present in the chicken ovary: theca layer prefers delta 5 pathway and granulosa layer prefers delta 4 pathway. Domest. Anim. Endocrinol. 15; 1–8.

    CAS  Google Scholar 

  • Li YM, Chen LR, Qu Y (1993) Use of micellar mobile phases and an HPLC column switching system for direct injection determination of urinary free cortisol. J. Liquid Chromatogr. 16; 2583–2594.

    CAS  Google Scholar 

  • Li D, Dong M, Shim WJ, Kannan N (2007) Application of pressurized fluid extraction technique in the gas chromatography -mass spectrometry determination of sterols from marine sediment samples. J. Chromatogr. A. 1160; 64–70. 2007 May 16 [Epub ahead of print].

    Google Scholar 

  • Licea-Perez H, Wang S, Bowen CL, Yang E (2007) A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852; 69–76.

    CAS  Google Scholar 

  • Lida T, Nakamori R, Yabuta R, Yada S, Takagi Y, Mano N, Ikegawa S, Goto J, Nambara T (2002) Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties. Lipids. 37; 101–110.

    Google Scholar 

  • Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim. Biophys. Acta. 1761; 121–128.

    CAS  Google Scholar 

  • Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE (2004) Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J. Lipid Res. 45; 2287–2302.

    CAS  Google Scholar 

  • Lillington JM, Trafford DJH, Makin HLJ (1981) A rapid and simple method for the esterification of fatty acids and steroid carboxylic acids prior to gas-liquid chromatography. Clin. Chim. Acta. 111; 91–98.

    CAS  Google Scholar 

  • Lim YJ, Yong AB, Warne GL, Montalto J (1995) Urinary 17 alpha-hydroxyprogesterone in management of 21-hydroxylase deficiency. J. Paediatr. Child Health. 31; 47–50.

    CAS  Google Scholar 

  • Lisboa BP, Willig RP, Halket JM (1991) Improved separation of C 21 -steroids of wide polarity range by application of Sephadex LH-20, successive solvent systems and thin-layer reflectance spectrometry. J. Liquid Chromatogr. 14; 265–270.

    CAS  Google Scholar 

  • Liu S, Sjövall J, Griffiths WJ (2000) Analysis of oxosteroids by nano-electrospray mass spectrometry of their oximes. Rapid Commun. Mass Spectrom. 14; 390–400.

    CAS  Google Scholar 

  • Liu S, Griffiths WJ, Sjövall J (2003a) Capillary liquid chromatography/electrospray mass spectrometry for analysis of steroid sulfates in biological samples. Anal. Chem. 75; 791–797.

    CAS  Google Scholar 

  • Liu S, Sjövall J, Griffiths WJ (2003b) Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography – electrospray mass spectrometry. Anal. Chem. 75; 5835–5846.

    CAS  Google Scholar 

  • Lopez de Alda MJ, Barcelo D (2001) Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water. J. Chromatogr. A. 938; 145–153.

    CAS  Google Scholar 

  • Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol. Rev. 83; 965–1016.

    Google Scholar 

  • Lundmo P, Sunde E (1984) Rapid analysis of C19-steroid metabolism by high-performance liquid chromatography and in-line monitoring of radioactivity. J. Chromatogr. 308; 289–294.

    CAS  Google Scholar 

  • Luu-The V, Ferraris C, Duche D, Belanger P, Leclaire J, Labrie F (2007) Steroid metabolism and profile of steroidogenic gene expression in Episkin TM: high similarity with human epidermis. J. Steroid Biochem. Mol. Biol. 107; 30–36.

    CAS  Google Scholar 

  • MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72; 169–195.

    CAS  Google Scholar 

  • Magnusson MO, Sandstrom R (2004) Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18; 1089–1094.

    CAS  Google Scholar 

  • Magnusson MO, Sandstrom R (2004) Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18; 1089–1094.

    Google Scholar 

  • Makin HL, Trafford DJ, Taylor NF (2002) Mass fragmentography of cortisol and cortisone: preliminary studies on the development of a reference method. Collect. Czech. Chem. Comm. 67; 1–9.

    CAS  Google Scholar 

  • Makin HLJ, Heftmann E (1988) High-performance liquid chromatography of steroid hormones. In High-Performance Liquid Chromatography in Endocrinology (eds Makin HLJ, Newton R). Springer, Berlin/Heidelberg, Germany, pp.183–234.

    Google Scholar 

  • Marchand P, le Bizec B, Gade C, Monteau F, Andre F (2000) Ultra trace detection of a wide range of anabolic steroids in meat by gas chromatography coupled to mass spectrometry. J. Chromatogr. A. 867; 219–233.

    CAS  Google Scholar 

  • Martello S, Felli M, Chiarotti M (2007) Survey of nutritional supplements for selected illegal anabolic steroids and ephedrine using LC-MS/MS and GC-MS methods, respectively. Food Addit. Contain. 24; 258–265.

    CAS  Google Scholar 

  • Marwah A, Marwah P, Lardy H (2001) High-performance liquid chromatographic analysis of dehydroepiandrosterone. J. Chromatogr. A. 935; 279–296.

    CAS  Google Scholar 

  • Masse R, Wright LA (1996) Proposed definitive methods for measurement of plasma testosterone and 17alpha-hydroxyprogesterone. Clin. Biochem. 29; 321–331.

    CAS  Google Scholar 

  • Mata-Granados JM, Luque de Castro MD, Quesada Gomez JM (2008) Inappropriate serum levels of retinol, alpha-tocopherol, 25 hydroxyvitamin D3 and 24,25 dihydroxyvitamin D3 levels in healthy Spanish adults: simultaneous assessment by HPLC. Clin. Biochem. 41; 676–680.

    CAS  Google Scholar 

  • Matsunaga M, Ukena K, Tsutsui K (2002) Androgen biosynthesis in the quail brain. Brain. Res. 94; 180–185.

    Google Scholar 

  • Matsunaga M, Okuhara K, Ukena K, Tsutsui K (2004) Identification of 3beta,5beta-tetrahydro-progesterone, a progesterone metabolite, and its stimulatory action on preoptic neurons in the avian brain. Brain Res. 1007; 160–166.

    CAS  Google Scholar 

  • Maughan RJ (2005) Contamination of dietary supplements and positive drug tests in sport. J. Sports Sci. 23; 883–889.

    CAS  Google Scholar 

  • McBride JH, Rodgerson DO, Park SS, Reyes AF (1991) Rapid liquid-chromatographic method for simultaneous determination of plasma prednisone, prednisolone, and cortisol in pediatric renal-transplant recipients. Clin. Chem. 37; 643–646.

    CAS  Google Scholar 

  • McDonald M, Granelli K, Sjoberg P (2007) Rapid multi-residue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatography - electrospray ionization-tandem mass spectrometry. Anal. Chim. Acta. 588; 20–25. Epub Feb 7 2007.

    Google Scholar 

  • McLaughlin LG, Henion JD (1990) Determination of dexamethasone in bovine tissues by coupled-column normal-phase high-performance liquid chromatography and capillary gas chromatography - mass spectrometry. J. Chromatogr. 529; 1–19.

    CAS  Google Scholar 

  • Meffre D, Pianos A, Liere P, Eychenne B, Cambourg A, Schumacher M, Stein DG, Guennoun R (2007) Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography/mass spectrometry. Endocrinology. 148; 2505–2517.

    CAS  Google Scholar 

  • Meunier-Solere V, Maume D, Andre F, Le Bizec B (2005) Pitfalls in trimethylsilylation of anabolic steroids. New derivatisation approach for residue at ultra-trace level. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 816; 281–288.

    Google Scholar 

  • Miilunpohja M, Uphoff A, Somerharju P, Tiitinen A, Wahala K, Tikkanen MJ (2006) Fatty acid esterification of lipoprotein-associated estrone in human plasma and follicular fluid. J. Steroid Biochem. Mol. Biol. 100; 59–66. May 24 [Epub].

    Google Scholar 

  • Milewich L, Madden JD, Gomez-Sanchez CE (1992) 5-alpha-Androstane-3,17-dione in peripheral plasma of men and women. J. Steroid Biochem. Mol. Biol. 41; 185–190.

    CAS  Google Scholar 

  • Minami Y, Yokoi S, Setoyama M, Bando N, Takeda S, Kawai Y, Terao J (2007) Combination of TLC blotting and gas chromatography - mass spectrometry for analysis of peroxidized cholesterol. Lipids. 42; 1055–1063.

    CAS  Google Scholar 

  • Minutti CZ, Lacey JM, Magera MJ, Hahn SH, McCann M, Schulze A, Cheillan D, Dorche C, Chace DH, Lymp JF, Zimmerman D, Rinaldo P, Matern D (2004) Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 89; 3687–3693.

    CAS  Google Scholar 

  • Mishra A, Joy KP (2006) HPLC-electrochemical detection of ovarian estradiol-17beta and catecholestrogens in the catfish Heteropneustes fossilis: seasonal and periovulatory changes. Gen. Comp. Endocrinol. 145; 84–91.

    CAS  Google Scholar 

  • Miyamoto H, Yeh S, Lardy H, Messing E, Chang C (1998) Delta-5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proc. Natl. Acad. Sci. USA. 95; 11083–11088.

    CAS  Google Scholar 

  • Momose T, Maruyama J, Iida T, Goto J, Nambara T (1997a) Comparative abilities and optimal conditions for beta-glycosidase enzymes to hydrolyse the glucuronide, glucoside, and N-acetylglucosaminide conjugates of bile acids. Biol. Pharm. Bull. 20; 828–833.

    CAS  Google Scholar 

  • Momose T, Tsubaki T, Iida T, Nambara T (1997b) An improved synthesis of taurine- and glycine-conjugated bile acids. Lipids. 32; 775–778.

    CAS  Google Scholar 

  • Momose T, Mure M, Iida T, Goto J, Nambara T (1998) Method for the separation of the unconjugates and conjugates of chenodeoxycholic acid and deoxycholic acid by two-dimensional reversed-phase thin layer chromatography with methyl beta-cyclodextrin. J. Chromatogr. A. 811; 171–180.

    CAS  Google Scholar 

  • Morineau G, Gosling J, Patricot MC, Soliman H, Boudou P, al Halnak A, Le Brun G, Brerault JL, Julien R, Villette JM, Fiet J (1997) Convenient chromatographic prepurification step before measurement of urinary cortisol by radioimmunoassay. Clin. Chem. 43; 786–793.

    Google Scholar 

  • Muller C, Pompon D, Urban P, Morfin R (2006) Inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone by the human 11beta-hydroxysteroid dehydrogenase type 1. J. Steroid Biochem. Mol. Biol. 99; 215–222.

    CAS  Google Scholar 

  • Muñiz-Valencia R, Gonzalo-Lumbreras R, Santos-Montes A, Izquierdo-Hornillos R (2008a) Quantitative screening for steroids in animal feeding water using reversed phase LC with gradient elution. J. Sep. Sci. 31; 219–228.

    Google Scholar 

  • Muñiz-Valencia R, Ceballos-Magaña SG, Gonzalo-Lumbreras R, Santos-Montes A, Izquierdo-Hornillos RC (2008b) Sample preparation for the determination of steroids (corticoids and anabolics) in feed using LC. J. Sep. Sci. 31; 2303–2309.

    Google Scholar 

  • Murphy BE, Allison CM (2000) Determination of progesterone and some of its neuroactive ring A-reduced metabolites in human serum. J. Steroid Biochem. Mol. Biol. 74; 137–142.

    CAS  Google Scholar 

  • Murphy BEP (1971) “Sephadex” column chromatography as an adjunct to competitive binding assays of steroids. Nature New Biol. 232; 21–24.

    CAS  Google Scholar 

  • Murphy VE, Fittock RJ, Zarzycki PK, Delahunty MM, Smith R, Clifton VL (2007) Metabolism of synthetic steroids by the human placenta. Placenta. 28; 39–46.

    CAS  Google Scholar 

  • Musey PI, Collins DC, Preedy JRK (1978) Separation of estrogen conjugates by high pressure liquid chromatography. Steroids. 31; 583–592.

    CAS  Google Scholar 

  • Nahoul K (1994) Plasma 17-hydroxyprogesterone determination with two commercial immuno-assays. J. Steroid Biochem. Mol. Biol. 50; 197–203.

    CAS  Google Scholar 

  • Nakajima Y, Yamamoto S, Wakabayashi H, Shimada K (1995) High-performance liquid chromatographic determination of cholesterol and cholestanol in human serum by precolumn derivatization with 2-[2-(isocyanate)ethyl]-3-methyl-1,4-naphthoquinone combined with platinum catalyst reduction and electrochemical detection. Biol. Pharm. Bull. 18; 1762–1764.

    CAS  Google Scholar 

  • Nambara T, Goto J (1988) The Bile Acids - Chemistry, Physiology and Metabolism (eds Setchell KDR, Kritchevsky D, Nair PP). Plenum, New York, pp. 43–64.

    Google Scholar 

  • Neher R (1964) Steroid Chromatography. Elsevier, Amsterdam/London/New York.

    Google Scholar 

  • Nelson RE, Grebe SK, O’Kane DJ, Singh RJ (2004) Liquid chromatography -tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin. Chem. 50; 373–384.

    CAS  Google Scholar 

  • Neufeld E, Chayen R, Stern N (1998) Fluorescence derivatisation of urinary corticosteroids for high-performance liquid chromatographic analysis. J. Chromatogr. B Biomed. Sci. Appl. 718; 273–277.

    CAS  Google Scholar 

  • Ng BH, Yuen KH (2003) Determination of plasma testosterone using a simple liquid chromatographic method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793; 421–426.

    CAS  Google Scholar 

  • Nielen MW, Bovee TF, van Engelen MC, Rutgers P, Hamers AR, van Rhijn JH, Hoogenboom LR (2006) Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal. Chem. 78; 424–431.

    CAS  Google Scholar 

  • Nielen MW, Lasaroms JJ, Essers ML, Sanders MB, Heskamp HH, Bovee TF, van Rhijn JH, Groot MJ (2007) The ultimate veal calf reference experiment: hormone residue analysis data obtained by gas and liquid chromatography tandem mass spectrometry. Anal. Chim. Acta. 586; 30–34.

    CAS  Google Scholar 

  • Nikitas P, Pappa-Louisi A (2005) New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. J. Chromatogr. A. 1068; 279–287.

    CAS  Google Scholar 

  • Nilsson B (1983) Extraction and quantitation of cortisol by use of high-performance liquid affinity chromatography. J. Chromatogr. 276; 413–417.

    CAS  Google Scholar 

  • Nishio T, Higashi T, Funaishi A, Tanaka J, Shimada K (2007) Development and application of electrospray-active derivatization reagents for hydroxysteroids. J. Pharm. Biomed. Anal. 44; 786–795.

    CAS  Google Scholar 

  • Niwa T, Koshiyama T, Goto J, et al. (1993) High-performance liquid chromatographic separation of bile acid N-acetylglucosaminides. J. Liquid Chromatogr. 16; 331–341.

    CAS  Google Scholar 

  • Nobilis M, Pour M, Kunes J, Kopecky J, Kvetina J, Svoboda Z, Sladkova K, Vortel J (2001) High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-orientated derivatization. J. Pharm. Biomed. Anal. 24; 937–946.

    CAS  Google Scholar 

  • Noggle FT, Clark CR, Deruiter J (1990) Liquid chromatographic and mass spectral analysis of the anabolic 17-hydroxysteroid esters. J. Chromatogr. Sci. 28; 263–268.

    CAS  Google Scholar 

  • Noma J, Hayashi N, Sekiba K (1991) Automated direct high-performance liquid chromatographic assay for estetrol, estriol, cortisone and cortisol in serum and amniotic fluid. J. Chromatogr.-Biomed. Appl. 568; 35–44.

    CAS  Google Scholar 

  • Noppe H, Verheyden K, Gillis W, Courtheyn D, Vanthemsche P, De Brabander HF (2007) Multi-analyte approach for the determination of ng L(-1) levels of steroid hormones in unidentified aqueous samples. Anal. Chim. Acta. 586; 22–29.

    CAS  Google Scholar 

  • Noppe H, Le Bizec B, Verheyden K, De Brabander HF (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal. Chim. Acta. 611; 1–16.

    CAS  Google Scholar 

  • Nozaki O (2001) Steroid analysis for medical diagnosis. J. Chromatogr. A. 935; 267–278.

    CAS  Google Scholar 

  • Nozaki O, Ohata T, Obha Y, Moriyama H, Kato Y (1991) Determination of serum cortisol by reversed-phase liquid chromatography using precolumn sulphuric acid-ethanol fluorescence derivatization and column switching. J. Chromatogr.-Biomed. Appl. 570; 1–11.

    CAS  Google Scholar 

  • Nozaki O, Ohata T, Obha Y, Moriyama H, Kato Y (1992) Determination of urinary free cortisol by high performance liquid chromatography with sulphuric acid-ethanol derivatization and column switching. Biomed. Chromatogr. 6; 109–114.

    CAS  Google Scholar 

  • Numazawa M, Handa W (2006) Reduction of 1,4-dien-3-one steroids with LiAl2H4 or NaB2H4: stereospecific deuterium-labeling at the c-1alpha position of a 4-en-3-one steroid. Chem. Pharm. Bull. (Tokyo). 54; 554–556.

    CAS  Google Scholar 

  • Numazawa M, Konno T, Furihata R, et al. (1990) Determination of aromatization of 19-oxygenated 16-alpha-hydroxyandrostenedione with human placental microsomes by high-­performance liquid chromatography coupled with coulometric detection. J. Steroid Biochem. 36; 369–375.

    CAS  Google Scholar 

  • Ogawa M, Saito Y, Ueta I, Jinno K (2007) Fiber-packed needle for dynamic extraction of aromatic compounds. Anal. Bioanal. Chem. 388; 619–625.

    CAS  Google Scholar 

  • O’Hare MJ, Nice EC (1981) Analysis of steroid hormones in adrenal and testicular cells and tissues. In Steroid Analysis by HPLC - Recent Applications (ed Kautsky KP). Marcel Dekker, New York, pp. 277–322.

    Google Scholar 

  • O’Hare MJ, Nice EC, Magee-Brown R, et al. (1976) High-pressure liquid chromatography of steroids secreted by human adrenal and testis cells in monolayer culture. J. Chromatogr. 125; 357–367.

    Google Scholar 

  • O’Hare MJ, Nice EC, Capp M (1980) Reversed- and normal-phase high-performance liquid chromatography of 18-hydroxylated steroids and their derivatives. Comparison of selectivity, efficiency and recovery from biological samples. J. Chromatogr. 198; 23–29.

    Google Scholar 

  • Okumura T, Nakajima Y, Takamatsu T, Matsuoka M (1995) Column-switching high-performance liquid chromatographic system with laser-induced fluorimetric detector for direct, automated assay of salivary cortisol. J. Chromatogr. B Biomed. Appl. 670; 11–20.

    CAS  Google Scholar 

  • Oliveira OL, Koff WJ, Muraro F, Santos EB, Gomes Soares DF, Trindade VM (2008) Steroid 5-alpha reductase type 2 activity in biopsies from malignant and normal prostatic tissues. Clin. Chim. Acta. 391; 36–40.

    CAS  Google Scholar 

  • O’Shannessy DJ, Renwick AGC (1983) Extraction and separation of androstenedione from products of aromatase assays on micro-columns of magnesium oxide. J. Chromatogr. 278; 151.

    Google Scholar 

  • Paauw JD, Van Wyk L, Davis AT (1996) Assay for taurine conjugates of bile acids in serum by reverse-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 685; 171–175.

    CAS  Google Scholar 

  • Palermo M, Gomez-Sanchez C, Roitman E, Shackleton CH (1996) Quantitation of cortisol and related 3-oxo-4-ene steroids in urine using gas chromatography/mass spectrometry with stable isotope-labeled internal standards. Steroids. 61; 583–589.

    CAS  Google Scholar 

  • Parmentier G, Eyssen H (1977) Synthesis and characteristics of the specific monosulfates of chenodeoxycholate, deoxycholate and their taurine or glycine conjugates. Steroids. 30; 583–590.

    CAS  Google Scholar 

  • Parr MK, Geyer H, Reinhart U, Schanzer W (2004) Analytical strategies for the detection of non-labelled anabolic androgenic steroids in nutritional supplements. Food Addit. Contam. 21; 632–640.

    CAS  Google Scholar 

  • Parr MK, Geyer H, Hoffmann B, Kohler K, Mareck U, Schanzer W (2007) High amounts of 17-methylated anabolic-androgenic steroids in effervescent tablets on the dietary supplement market. Biomed. Chromatogr. 21; 164–168.

    CAS  Google Scholar 

  • Pasqualini JR, Chetrite GS (2006) Estradiol as an anti-aromatase agent in human breast cancer cells. J. Steroid Biochem. Mol. Biol. 98; 12–17.

    CAS  Google Scholar 

  • Pasqualini JR, Chetrite G (2008) The anti-aromatase effect of progesterone and of its natural metabolites 20alpha- and 5alpha-dihydroprogesterone in the MCF-7aro breast cancer cell line. Anticancer Res. 28; 2129–2133.

    CAS  Google Scholar 

  • Payne DW, Holtzclaw WD, Adashi EY (1989) A convenient, unified scheme for the differential extraction of conjugated and unconjugated serum C19 steroids on Sep-Pak C18-cartridges. J. Steroid Biochem. 33; 289–295.

    CAS  Google Scholar 

  • Pellett J, Lukulay P, Mao Y, Bowen W, Reed R, Ma M, Munger RC, Dolan JW, Wrisley L, Medwid K, Toltl NP, Chan CC, Skibic M, Biswas K, Wells KA, Snyder LR (2006) “Orthogonal” separations for reversed-phase liquid chromatography. J. Chromatogr. A. 1101; 122–135.

    CAS  Google Scholar 

  • Pena-Garcia-Brioles D, Gonzalo-Lumbreras R, Izquierdo-Hornillos R, Santos-Montes A (2004) Method development for betamethasone and dexamethasone by micellar liquid ­chromatography using cetyl trimethyl ammonium bromide and validation in tablets. Application to cocktails. J. Pharm. Biomed. Anal. 36; 65–71.

    Google Scholar 

  • Peng XD, Xu DH, Jin J, Mei XT, Lv JY, Xu SB (2007) Determination of a new active steroid by high performance liquid chromatography with laser-induced fluorescence detection following the pre-column derivatization. Int. J. Pharm. 337; 25–30.

    CAS  Google Scholar 

  • Perisic-Janjic NU, Djakovic-Sekulic TLj, Stojanovic SZ, Penov-Gasi KM (2005) HPTLC chromatography of androstene derivates. Application of normal phase thin-layer chromatographic retention data in QSAR studies. Steroids. 70; 137–144.

    Google Scholar 

  • Perona M, Pavan I (1993) Determination of anabolic steroid 19-nor-testosterone in bovine serum by GC-SIM-MS. J. Chromatogr. Sci. 31; 429–432.

    CAS  Google Scholar 

  • Petrovic M, Barcelo D (2002) Sample preparation and liquid chromatography mass spectrometry analysis of alkylphenolic compounds and steroid sex hormones in sediments. Scientific World J. 2; 1610–1616.

    CAS  Google Scholar 

  • Petrovic M, Tavazzi S, Barcelo D (2002) Column-switching system with restricted access pre-column packing for an integrated sample cleanup and liquid chromatographic – mass spectrometric analysis of alkylphenolic compounds and steroid sex hormones in sediment. J. Chromatogr. A. 971; 37–45.

    CAS  Google Scholar 

  • Pichon V (2007) Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A.1152; 41–53.

    CAS  Google Scholar 

  • Pinnella KD, Cranmer BK, Tessari JD, Cosma GN, Veeramachaneni DN (2001) Gas chromatographic determination of catecholestrogens following isolation by solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 758; 145–152.

    CAS  Google Scholar 

  • Poon GK, Jarman M, McCague R, et al. (1992) Identification of 4-hydroxyandrost-4-ene-3, 17-dione metabolites in prostatic cancer patients by liquid chromatography-mass spectrometry. J. Chromatogr. 576; 235–244.

    CAS  Google Scholar 

  • Porteous CE, Coldwell RD, Trafford DJH, et al. (1987) Recent developments in the measurement of vitamin D and its metabolites in human body fluids. J. Steroid Biochem. 28; 785–801.

    CAS  Google Scholar 

  • Pradhan DS, Yu Y, Soma KK (2008) Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain. J. Neurochem. 104; 244–253.

    CAS  Google Scholar 

  • Pujos E, Flament-Waton MM, Goetinck P, Grenier-Loustalot MF (2004) Optimizing the extraction and analysis of DHEA sulfate, corticosteroids and androgens in urine: application to a study of the influence of corticosteroid intake on urinary steroid profiles. Anal. Bioanal. Chem. 380; 524–536.

    CAS  Google Scholar 

  • Pujos E, Flament-Waton MM, Paisse O, Grenier-Loustalot MF (2005) Comparison of the analysis of corticosteroids using different techniques. Anal. Bioanal. Chem. 381; 244–254.

    CAS  Google Scholar 

  • Pulfer MK, Murphy RC (2004) Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J. Biol. Chem. 279; 26331–26338.

    CAS  Google Scholar 

  • Pulfer MK, Harrison K, Murphy RC (2004) Direct electrospray tandem Mass spectrometry of the unstable hydroperoxy bishemiacetal product derived from cholesterol ozonolysis. J. Am. Soc. Mass Spectrom. 15; 194–202.

    CAS  Google Scholar 

  • Purdon MP, Lehman-McKeeman LD (1997) Improved high-performance liquid chromatographic procedure for the separation and quantification of hydroxytestosterone metabolites. J. Pharmacol. Toxicol. Meth. 37; 67–73.

    CAS  Google Scholar 

  • Quesada JM, Mata-Granados JM, Luque De Castro MD (2004) Automated method for the determination of fat-soluble vitamins in serum. J. Steroid Biochem. Mol. Biol. 89–90; 473–477.

    Google Scholar 

  • Rambaud L, Monteau F, Deceuninck Y, Bichon E, Andre F, Le Bizec B (2007) Development and validation of a multi-residue method for the detection of a wide range of hormonal anabolic compounds in hair using gas chromatography – tandem mass spectrometry. Anal. Chim. Acta. 586; 93–104.

    CAS  Google Scholar 

  • Rauh M, Groschl M, Rascher W, Dorr HG (2006) Automated, fast and sensitive quantification of 17alpha-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line exaction. Steroids. 71; 450–458.

    CAS  Google Scholar 

  • Reddy S, Brownawell BJ (2005) Analysis of estrogens in sediment from a sewage-impacted urban estuary using high-performance liquid chromatography/time-of-flight mass spectrometry. Environ. Toxicol. Chem. 24; 1041–1047.

    CAS  Google Scholar 

  • Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz RE (2005) Direct quantification of total testosterone in human sera or plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HTLC-ACPI-MS/MS). Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.

    Google Scholar 

  • Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz RE (2005) Detection and quantification of androstenedione, progesterone and 17-hydroxyprogesterone in human serum/ plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.

    Google Scholar 

  • Reepmeyer JC, Brower JF, Ye H (2005) Separation and detection of the isomeric equine conjugated estrogens, equilin sulfate and delta8, 9-dehydroestrone sulfate, by liquid chromatography - electrospray – mass spectrometry using carbon-coated zirconia and porous graphitic carbon stationary phases. J. Chromatogr. A. 1083; 42–51.

    CAS  Google Scholar 

  • Riepe FG, Wonka S, Partsch CJ, Sippell WG (2001) Automated chromatographic system for the simultaneous measurement of plasma pregnenolone and 17-hydroxypregnenolone by radioim-munoassay. J. Chromatogr. B Biomed. Sci. Appl. 763; 99–106.

    CAS  Google Scholar 

  • Riepe FG, Krone N, Peter M, Sippell WG, Partsch CJ (2003) Chromatographic system for the simultaneous measurement of plasma 18-hydroxy-11-deoxycorticosterone and 18-hydroxycorticoster-one by radioimmunoassay: reference data for neonates and infants and its application in aldosterone-synthase deficiency. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 785; 293–301.

    CAS  Google Scholar 

  • Rizzolo A, Polesello S (1992) Chromatographic determination of vitamins in foods. J. Chromatogr. 624; 103–152.

    CAS  Google Scholar 

  • Robinzon B, Miller KK, Prough RA (2004) Biosynthesis of [3H] 7 alpha-hydroxy-, 7 beta-hydroxy-, and 7-oxo-dehydroepiandrosterone using pig liver microsomal fractions. Anal. Biochem. 333; 128–135.

    CAS  Google Scholar 

  • Rodrigues CM, Setchell KD (1996) Performance characteristics of reversed-phase bonded silica cartridges for serum bile acid extraction. Biomed. Chromatogr. 10; 1–5.

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2004) Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography – electrospray tandem mass spectrometry method. Anal. Chem. 76; 6998–7006.

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography – mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A. 1152; 97–115.

    CAS  Google Scholar 

  • Rossi SA, Johnson JV, Yost RA (1994) Short column gas chromatography/tandem mass spectrometry for the detection of underivatised anabolic steroids in urine. Biol. Mass Spectrom. 23; 131–139.

    CAS  Google Scholar 

  • Rouits E, Boisdron-Celle M, Morel A, Gamelin E (2003) Simple and sensitive high-performance liquid chromatography method for simultaneous determination of urinary free cortisol and 6beta-hydroxycortisol in routine practice. For CYP 3A4 activity evaluation in basal conditions and after grapefruit juice intake. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 793; 357–366.

    CAS  Google Scholar 

  • Rule G, Henion J (1999) High-throughput sample preparation and analysis using 96-well membrane solid-phase extraction and liquid chromatography – tandem mass spectrometry for the determination of steroids in human urine. J. Am. Soc. Mass Spectrom. 10; 1322–1327.

    CAS  Google Scholar 

  • Saegusa K, Suzuki E, Anjo T, et al. (1993) Determination of catechol and guaiacol estrogens in urine by capillary gas chromatography/mass spectrometry. Biomed. Chromatogr. 7; 172–176.

    CAS  Google Scholar 

  • Saito Y, Ueta I, Ogawa M, Hayashida M, Jinno K (2007) Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples. J. Pharm. Biomed. Anal. 44; 1–7.

    CAS  Google Scholar 

  • Samtani MN, Jusko WJ (2007) Quantification of dexamethasone and corticosterone in rat biofluids and fetal tissue using highly sensitive analytical methods: assay validation and application to a pharmacokinetic study. Biomed. Chromatogr. 21; 585–597.

    CAS  Google Scholar 

  • Sandhoff R, Brügger B, Jeckel D, Lehmann WD, Wieland FT (1999) Determination of cholesterol at the low picomole level by nano-electrospray ionization mass spectrometry. J. Lipid Res. 40; 126–132.

    CAS  Google Scholar 

  • Sasaki T, Iida T, Nambara T (2000) High-performance ion-pair chromatographic behaviour of conjugated bile acids with di-n-butylamine acetate. J. Chromatogr. A. 888; 93–102.

    CAS  Google Scholar 

  • Satyaswaroop PG, de la Osa EL, Gurpide E (1977) High pressure liquid chromatographic separation of C 18 and C 19 steroids. Steroids. 30; 139–145.

    CAS  Google Scholar 

  • Saugy M, Cardis C, Robinson N, Schweizer C (2000) Test methods: anabolics. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 14; 111–133.

    CAS  Google Scholar 

  • Scalia S (1990) Group separation of free and conjugated bile acid by pre-packed anion-exchange cartridges. J. Pharm. Biomed. Anal. 8; 253–241.

    Google Scholar 

  • Scherer C, Wachter U, Wudy SA (1998) Determination of testosterone in human hair by gas chromatography – selected ion monitoring mass spectrometry. Analyst. 123; 2661–2663.

    CAS  Google Scholar 

  • Schirpenbach C, Seiler L, Maser-Gluth C, Beuschlein F, Reincke M, Bidlingmaier M (2006) Automated chemiluminescence-immunoassay for aldosterone during dynamic testing: comparison to radioimmunoassays with and without extraction steps. Clin. Chem. 52; 1749–1755.

    CAS  Google Scholar 

  • Schmidt M, Kreutz M, Loffler G, Scholmerich J, Straub RH (2000) Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J. Endocrinol. 164; 161–169.

    CAS  Google Scholar 

  • Schmidt M, Weidler C, Naumann H, Anders S, Scholmerich J, Straub RH (2005) Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes – androstenedione and testosterone inhibit oestrogen formation and favour production of more potent 5a-reduced androgens. Arthr. Res. Ther. 7; R938–R948.

    CAS  Google Scholar 

  • Schmidt NA, Borburgh HJ, Penders TJ, Weykamp CW (1985) Steroid profiling – an update. Clin. Chem. 31; 637–639.

    CAS  Google Scholar 

  • Schoneshofer M, Dulce HJ (1979) Comparison of different high-performance liquid chromatographic systems for the purification of adrenal and gonadal steroids prior to immunoassay. J. Chromatogr. 164; 17–28.

    CAS  Google Scholar 

  • Schoneshofer M, Kager A, Weber B (1983) New “on-line” sample pre-treatment procedure for routine liquid chromatographic assay of low-concentration compounds in body fluids, illustrated by triamcinolone assay. Clin. Chem. 29; 1367–1371.

    CAS  Google Scholar 

  • Schoneshofer M, Kager A, Weber B, et al. (1985) Determination of urinary free cortisol by “on-line” liquid chromatography. Clin. Chem. 31; 564–568.

    CAS  Google Scholar 

  • Schoneshofer M, Kager A, Eisenschmid P, Heilmann P, Dhar TK, Weber B (1986) Automated liquid chromatographic determination of the 20-dihydro isomers of cortisol and cortisone in human urine. J. Chromatogr. 380; 267–274.

    CAS  Google Scholar 

  • Seamark DA, Trafford DJH, Makin HLJ (1980) The estimation of vitamin D and some metabolites in human plasma by mass fragmentography. Clin. Chim. Acta. 106; 51–62.

    CAS  Google Scholar 

  • Seki T, Yamaguchi Y (1984) New fluorimetric detection method of corticosteroids after high-performance liquid chromatography using post-column derivatization with benzamidine. J. Chromatogr. 305; 188–193.

    CAS  Google Scholar 

  • Senciall IR, Rahak S, Roberts R (1992) Corticosteroid side chain oxidations – II. Metabolism of 20-dihydro steroids and evidence for steroid acid formation by direct oxidation at C-21. J. Steroid Biochem. Mol. Biol. 41; 151–160.

    CAS  Google Scholar 

  • Setchell KD, Heubi JE (2006) Defects in bile acid biosynthesis – diagnosis and treatment. J. Pediatr. Gastroenterol. Nutr. 43 Suppl 1; S17-S22.

    Google Scholar 

  • Setchell KDR, Shackleton CHL (1973) The group separation of plasma and urinary steroids by column chromatography on Sephadex LH-20. Clin. Chim. Acta. 47; 381–388.

    CAS  Google Scholar 

  • Sevanian A, Berliner J, Peterson H (1991) Uptake, metabolism, and cytotoxicity of isomeric cholesterol-5–6-epoxides in rabbit aortic endothelial cells. J. Lipid Res. 32; 147–155.

    CAS  Google Scholar 

  • Shackleton C (2008) Genetic disorders of steroid metabolism diagnosed by mass spectrometry. In Laboratory Guide to the Methods in Biochemical Genetics (eds Blau N, Duran M, Gibson MK). Springer, Berlin/Heidelberg, Germany, p. 549.

    Google Scholar 

  • Shackleton CH (1983) Inborn errors of steroid biosynthesis: detection by a new mass-spectrometric method. Clin. Chem. 29; 246–249.

    CAS  Google Scholar 

  • Shackleton CH (1986) Profiling steroid hormones and urinary steroids. J. Chromatogr. 379; 91–156.

    CAS  Google Scholar 

  • Shackleton CH (1993) Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J. Steroid Biochem. Mol. Biol. 45; 127–140.

    CAS  Google Scholar 

  • Shackleton CH, Reid S (1989) Diagnosis of recessive X-linked ichthyosis: quantitative HPLC/ mass spectrometric analysis of plasma for cholesterol sulfate. Clin. Chem. 35; 1906–1910.

    CAS  Google Scholar 

  • Shackleton CH, Straub KM (1982) Direct analysis of steroid conjugates: the use of secondary ion mass spectrometry. Steroids. 40; 35–51.

    CAS  Google Scholar 

  • Shackleton CH, Chuang H, Kim J, de la Torre X, Segura J (1997) Electrospray mass spectrometry of testosterone esters: potential for use in doping control. Steroids. 62; 523–529.

    CAS  Google Scholar 

  • Shackleton CHL (1984) Steroid biosynthesis and catabolism in the fetus and neonate. In Biochemistry of Steroid Hormones (ed Makin HLJ) 2nd edn. Blackwell, Oxford, pp. 441–477.

    Google Scholar 

  • Shackleton CHL, Honour JW (1976) Simultaneous estimation of urinary steroids by semi-automated gas chromatography. Investigation of neo-natal infants and children with abnormal steroid synthesis. Clin. Chim. Acta. 69; 267–283.

    CAS  Google Scholar 

  • Shackleton CHL, Whitney JO (1980) Use of Sep-Pak cartridges for urinary steroid extractions: evaluation of the method for use prior to gas chromatographic analysis. Clin. Chim. Acta. 107; 231–243.

    CAS  Google Scholar 

  • Shackleton CHL, Roitman E, Monder C, Bradlow HL (1980a) Gas chromatographic and mass spectrometric analysis of urinary acidic metabolites of cortisol. Steroids. 36; 289–298.

    CAS  Google Scholar 

  • Shackleton CHL, Taylor NF, Honour JW (1980b) An atlas of gas chromatographic profiles of neutral urinary steroids. In Health and Disease. Packard-Becker B. V., Delft, The Netherlands.

    Google Scholar 

  • Shackleton CHL, Mattox VR, Honour JW (1983) Analysis of intact steroid conjugates by secondary ion mass spectrometry (including FABMS) and by gas chromatography. J. Steroid Biochem. 19; 209–217.

    CAS  Google Scholar 

  • Shackleton CHL, Kletke C, Wudy Spratt JH (1990a) Dehydroepiandrosterone sulfate quantification in serum using high-performance liquid chromatography/mass spectrometry and a deuter-ated internal standard: a technique suitable for routine use or as a reference method. Steroids. 55; 472–478.

    CAS  Google Scholar 

  • Shackleton CHL, Merdinck J, Lawson A (1990b) Steroid and bile acid analyses. In Mass Spectrometry in Biological Materials (ed McEwen C). Marcel Dekker, New York, pp. 297–377.

    Google Scholar 

  • Shareef A, Parnis CJ, Angove MJ, Wells JD, Johnson BB (2004) Suitability of N, O-bis(trimethylsilyl) trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide as derivatiza-tion reagents for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography – mass spectrometry. J. Chromatogr. A. 1026; 295–300.

    CAS  Google Scholar 

  • Shareef A, Angove MJ, Wells JD (2006) Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N, O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography – mass spectrometry. J. Chromatogr. A. 1108; 121–128.

    CAS  Google Scholar 

  • Shibasaki H, Tanabe C, Furuta T, Kasuya Y (2001) Hydrolysis of conjugated steroids by the combined use of beta-glucuronidase preparations from helix pomatia and ampullaria: determination of urinary cortisol and its metabolites. Steroids. 66; 795–801.

    CAS  Google Scholar 

  • Shibata N, Hayakawa T, Takada K, Hoshino N, Minouchi T, Yamaji A (1998) Simultaneous determination of glucocorticoids in plasma or urine by high-performance liquid chromatography with precolumn fluorimetricderivatization by 9-anthroyl nitrile. J. Chromatogr. B Biomed. Sci. Appl. 706; 191–199.

    CAS  Google Scholar 

  • Shimada K, Nonaka M (1991) Utility of cyclodextrin in mobile phase for high-performance liquid chromatography of C 21 steroids. J. Liquid Chromatogr. 14; 2109–2117.

    CAS  Google Scholar 

  • Shimada K, Tanaka T, Nambara T (1979) Studies on steroids. CL. Separation of catechol estrogens by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 178; 350–354.

    CAS  Google Scholar 

  • Shimada K, Xie F, Nambara T (1986) Studies on steroids. CCXIX. Separation and determination of 4-hydroxyoestriol monoglucuronides and monosulphates in biological fluids by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 378; 17–24.

    CAS  Google Scholar 

  • Shimada K, Komine Y, Mitamura K (1990) Retention behaviour of bile acid derivatives using cyclodextrin in the mobile phase in high-performance liquid chromatography. J. Chromatogr. Sci. 28; 331–335.

    CAS  Google Scholar 

  • Shimada K, Komine Y, Mitamura K (1991) High-performance liquid chromatographic separation of bile acid pyrenacyl esters with cyclodextrin-containing mobile phase. J. Chromatogr. 565; 111–118.

    CAS  Google Scholar 

  • Shimada K, Mitamura K, Ishitoya S, Hirakata K (1993) High-performance liquid chromatographic separation of sensitive fluorescent derivatives of bile acids with cyclodextrin-containing mobile phase. J. Chromatogr. 16; 3965–3976.

    CAS  Google Scholar 

  • Shimada K, Fukuda N, Nakagi T (1997) Studies on neurosteroids. V: separation and characterization of pregnenolone 3-stearate in rat brains using high-performance liquid chromatography. J. Chromatogr. Sci. 35; 71–74.

    CAS  Google Scholar 

  • Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A. 935; 141–172.

    CAS  Google Scholar 

  • Shoda J, Axelson M, Sjövall J (1993) Synthesis of potential C27-intermediates in bile acid biosynthesis and their deuterium-labeled analogs. Steroids. 58; 119–25.

    CAS  Google Scholar 

  • Shu PY, Chou SH, Lin CH (2003) Determination of corticosterone in rat and mouse plasma by gas chromatography – selected ion monitoring mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 783; 93–101.

    CAS  Google Scholar 

  • Sieber-Ruckstuhl NS, Boretti FS, Wenger M, Maser-Gluth C, Reusch CE (2006) Cortisol, aldoster-one, cortisol precursor, androgen and endogenous ACTH concentrations in dogs with pituitary-dependant hyperadrenocorticism treated with trilostane. Domest. Anim. Endocrinol. 31; 63–75.

    CAS  Google Scholar 

  • Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J. Biol. Chem. 273; 4883–4891.

    CAS  Google Scholar 

  • Simard M (2004) The biochemical investigation of Cushing syndrome. Neurosurg. Focus. 16; E4.

    Google Scholar 

  • Sinclair PA, Squires EJ, Raeside JI, Renaud R (2005) Synthesis of free and sulphoconjugated 16-androstene steroids by the Leydig cells of the mature domestic boar. J. Steroid Biochem. Mol. Biol. 96; 217–228.

    CAS  Google Scholar 

  • Singh G, Gutierrez A, Xu K, Blair IA (2000) Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 72; 3007–3013.

    CAS  Google Scholar 

  • Sjövall J (2004) Fifty years with bile acids and steroids in health and disease. Lipids. 39; 703–722.

    Google Scholar 

  • Smith KE, Ahmed F, Williams RAD, et al. (1994) Microbial transformations of steroids – VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. J. Steroid Biochem. Mol. Biol. 49; 93–100.

    CAS  Google Scholar 

  • Soldin OP, Guo T, Weiderpass E, Tractenberg RE, Hilakivi-Clarke L, Soldin SJ (2005) Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil. Steril. 84; 701–710.

    CAS  Google Scholar 

  • Soldin SJ, Soldin OP (2009) Steroid hormone analysis by tandem mass spectrometry. Clin. Chem. 55; 1061–1066.

    CAS  Google Scholar 

  • Souverain S, Rudaz S, Veuthey JL (2004) Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 141–156.

    CAS  Google Scholar 

  • Stanley SMR, Wilhelmi BS, Rodgers JP (1993) Immunoaffinity chromatography combined with gas chromatography – negative ion chemical ionisation mass spectrometry for the confirmation of flumethasone abuse in the equine. J. Chromatogr. Biomed. Appl. 614; 77–86.

    CAS  Google Scholar 

  • Starcevic B, DiStefano E, Wang C, Catlin DH (2003) Liquid chromatography-tandem mass spectrometry assay for human serum testosterone and trideuterated testosterone. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 792; 197–204.

    CAS  Google Scholar 

  • Stopforth A, Burger BV, Crouch AM, Sandra P (2007a) The analysis of estrone and 17beta-estradiol by stir bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry: application to urine samples after oral administration of conjugated equine estrogens. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 856; 156–164.

    CAS  Google Scholar 

  • Stopforth A, Grobbelaar CJ, Crouch AM, Sandra P (2007b) Quantification of testosterone and epites-tosterone in human urine samples by stir bar sorptive extraction – thermal desorption – gas chromatography/mass spectrometry: application to HIV-positive urine samples. J. Sep. Sci. 30; 257–265.

    CAS  Google Scholar 

  • Strahm E, Saudan C, Sottas PE, Mangin P, Saugy M (2007) Direct detection and quantification of 19-norandrosterone sulfate in human urine by liquid chromatography – linear ion trap mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 852; 491–496.

    CAS  Google Scholar 

  • Strasser GR, Varadi I (2000) Investigations of artifact peaks in sensitive high-performance liquid chromatography methods. J. Chromatogr. A. 869; 85–90.

    CAS  Google Scholar 

  • Street JM, Trafford DJH, Makin HLJ (1983) The quantitative estimation of bile acids and their conjugates in human biological fluids (review). J. Lipid Res. 24; 491–511.

    CAS  Google Scholar 

  • Street JM, Trafford DJH, Makin HLJ (1985) Extraction and fractionation of bile acids and their conjugates using pre-packed microparticulate silica cartridges (Sep-Pak SIL and Bond-Elut C18). J. Chromatogr. 343; 259.

    CAS  Google Scholar 

  • Street JM, Trafford DJH, Makin HLJ (1986) Capillary gas-liquid chromatography of glycine conjugated bile acids without prior hydrolysis. J. Lipid Res. 27; 208–214.

    CAS  Google Scholar 

  • Stute P, Gotte M, Kiesel L (2008) Differential effect of hormone therapy on EIS-sulfatase activity in non-malignant and cancerous breast cells in vitro. Breast Cancer Res. Treat. 108; 363–374.

    CAS  Google Scholar 

  • Su P, Zhang XX, Chang WB (2005) Development and application of a multi-target immunoaffinity column for the selective extraction of natural estrogens from pregnant women’s urine samples by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 816; 7–14.

    CAS  Google Scholar 

  • Su SY, Shiu GK, Simmons J., Viswanathan CT, Skelly JP (1992) High performance liquid chro-matographic analysis of 6 conjugated and unconjugated estrogens in serum. Biomed. Chromatogr. 6; 265–268.

    CAS  Google Scholar 

  • Sudo A (1990) Analysis of corticosterone in rat urine by high-performance liquidichromatogra-phy and fluorimetry using post-column reaction with sulphuric acid. J. Chromatogr. Biomed. Appl. 528; 453–458.

    CAS  Google Scholar 

  • Sulima A, Prisinzano TE, Spande T, Deschamps JR, Whittaker N, Hochberg Z, Jacobson AE, Rice KC (2005) A concise method for the preparation of deuterium-labeled cortisone: synthesis of [6, 7 -2H] cortisone. Steroids. 70; 763–769.

    CAS  Google Scholar 

  • Sumpter JP, Johnson AC (2006) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ. Sci. Technol. 39; 4321–4332.

    Google Scholar 

  • Suzuki E, Saegusa K, Matsuki Y, Nambara T (1993) Assay of enzymic O-methylation of catechol oestrogens by high-performance liquid chromatography with coulometric detection. J. Chromatogr. Biomed. Appl. 617; 221–225.

    CAS  Google Scholar 

  • Swartz ME (2005) UPLCTM: introduction and review. J. Liquid Chromatogr. Rel. Tech. 28; 1253–1263.

    CAS  Google Scholar 

  • Swinkels LMJW, Vanhoof HJC, Smals AGH, Benraad TJ (1992) Low ratio of androstenedione to testosterone in plasma and saliva of hirsute women. Clin. Chem. 38; 1819–1823.

    CAS  Google Scholar 

  • Szucs S, Sarvary A, Cain T, Adany R (2006) Method validation for the simultaneous determination of fecal sterols in surface waters by gas chromatography -mass spectrometry. J. Chromatogr. Sci. 44; 70–76.

    CAS  Google Scholar 

  • Szumski M, Buszewski B (2004) Molecularly imprinted polymers: a new tool for separation of steroid isomers. J. Sep. Sci. 27; 837–842.

    CAS  Google Scholar 

  • Tachibana S, Tanaka M (2001) Simultaneous determination of testosterone metabolites in liver microsomes using column-switching semi-microcolumn high-performance liquid chromatography. Anal. Biochem. 295; 248–256.

    CAS  Google Scholar 

  • Tai SS, Welch MJ (2004) Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope dilution liquid chromatography/ mass spectrometry and liquid chromatography/tandem mass spectrometry. Anal. Chem. 76; 1008–1014.

    CAS  Google Scholar 

  • Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 77; 6359–6363.

    CAS  Google Scholar 

  • Tai SS, Xu B, Sniegoski LT, Welch MJ (2006a) Development and evaluation of a candidate reference measurement procedure for the determination of 19-norandrosterone in human urine using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal. Chem. 78; 3393–3398.

    CAS  Google Scholar 

  • Tai SS, Xu B, Welch MJ (2006b) Development and evaluation of a candidate reference measurement procedure for the determination of progesterone in human serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal. Chem. 78; 6628–6633.

    CAS  Google Scholar 

  • Tai SS, Xu B, Welch MJ, Phinney KW (2007) Development and evaluation of a candidate reference measurement procedure for the determination of testosterone in human serum using isotope dilution liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 388; 1087–1094.

    CAS  Google Scholar 

  • Takanashi K, Honma T, Kashiwagi T, Honjo H, Yoshizawa I (2000) Detection and measurement of urinary 2-hydroxyestradiol 17-sulfate, a potential placental antioxidant during pregnancy. Clin. Chem. 46; 373–378.

    CAS  Google Scholar 

  • Takeda M, Maeda M, Tsuji A (1990) Chemiluminescence high-performance liquid chromatography of corticosteroids using lucigenin as post-column reagent. Biomed. Chromatogr. 4; 119–122.

    CAS  Google Scholar 

  • Tamvakopoulos CS, Neugebauer JM, Donnelly M, Griffin PR (2002) Analysis of betamethasone in rat plasma using automated solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Determination of plasma concentrations in rat following oral and intravenous administration. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 776; 161–168.

    CAS  Google Scholar 

  • Tanaka H, Putalun W, Tsuzaki C, Shoyama Y (1997) A simple determination of steroidal alkaloid glycosides by thin-layer chromatography immunostaining using monoclonal antibody against solamargine. FEBS Lett. 404; 279–282.

    CAS  Google Scholar 

  • Tang PW, Crone DL (1989) A new method for hydrolyzing sulfate and glucuronyl conjugates of steroids. Anal. Biochem. 182; 289–294.

    CAS  Google Scholar 

  • Taylor NF (2006) Urinary steroid profiling. Meth. Mol. Biol. 324; 159–175.

    CAS  Google Scholar 

  • Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography-tandem mass spectrometry method for urinary cortisol and cortisone. Clin. Chem. 48; 1511–1519.

    CAS  Google Scholar 

  • Tessier E, Neirinck L, Zhu Z (2003) High-performance liquid chromatographic mass spectromet-ric method for the determination of ursodeoxycholic acid and its glycine and taurine conjugates in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 798; 295–302.

    CAS  Google Scholar 

  • Thenot J-P, Horning E (1972) MO-TMS derivatives of human urinary steroids for GC and GC-MS studies. Anal. Lett. 5; 21–33.

    CAS  Google Scholar 

  • Thierry-Palmer M, Gray TK (1983) Separation of the hydroxylated metabolites of vitamin D 3 by high-performance thin-layer chromatography. J. Chromatogr. 262; 460–463.

    CAS  Google Scholar 

  • Thuyne WV, Delbeke FT (2005) Validation of a GC-MS screening method for anabolizing agents in aqueous nutritional supplements. J. Chromatogr. Sci. 43; 2–6.

    Google Scholar 

  • Tikkanen MJ, Vihma V, Jauhiainen M, Hockerstedt A, Helisten H, Kaamanen M (2002) Lipoprotein-associated estrogens. Cardiovasc. Res. 56; 184–188.

    CAS  Google Scholar 

  • Tomer KB, Moseley MA, Deterding LJ, Parker CE (1994) Capillary liquid chromatography/mass spectrometry. Mass Spectrom. Rev. 13; 431–457.

    CAS  Google Scholar 

  • Torchia EC, Labonte ED, Agellon LB (2001) Separation and quantitation of bile acids using an isocratic solvent system for high performance liquid chromatography coupled to an evaporative light scattering detector. Anal. Biochem. 298; 293–298.

    CAS  Google Scholar 

  • Torma A, Jaatinen TA, Kaihola HL, Koskinen P, Irjala K (1995) A method for measurement of free testosterone in premenopausal women involving equilibrium dialysis, chromatography, and radioimmunoassay. Steroids. 60; 285–289.

    CAS  Google Scholar 

  • Touber ME, van Engelen MC, Georgakopoulus C, van Rhijn JA, Nielen MW (2007) Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta. 586; 137–146.

    CAS  Google Scholar 

  • Tripodi V, Flor S, Carlucci A, Lucangioli S (2006) Simultaneous determination of natural and synthetic estrogens by EKC using a novel microemulsion. Electrophoresis. 27; 4431–4438.

    CAS  Google Scholar 

  • Tscherne RJ, Capitano G (1977) High-pressure liquid chromatographic separation of pharmaceutical compounds using a mobile phase containing silver nitrate. J. Chromatogr. 136; 337–341.

    CAS  Google Scholar 

  • Tseng YL, Kuo FH, Sun KH (2005) Quantification and profiling of 19-norandrosterone and 19-noretiocholanolone in human urine after consumption of a nutritional supplement and norsteroids. J. Anal. Toxicol. 29; 124–134.

    CAS  Google Scholar 

  • Tsikas D (2001) Affinity chromatography as a method for sample preparation in gas chromatography/mass spectrometry. J. Biochem. Biophys. Meth. 49; 705–731.

    CAS  Google Scholar 

  • Turpeinen U, Markkanen H, Valimaki M, Stenman UH (1997) Determination of urinary free cortisol by HPLC. Clin. Chem. 43; 1386–1391.

    CAS  Google Scholar 

  • Ueshiba H, Segawa M, Hayashi T, et al. (1991) Serum profiles of steroid hormones inpatients with Cushing’s Syndrome determined by a new HPLC/RIA method. Clin. Chem. 37; 1329–1333.

    CAS  Google Scholar 

  • Underwood RH, Bradwin GR, Moore TJ, et al. (1990) Semi-automated high-performance liquid chromatographic method for the simultaneous assay of plasma cortisol and 11-deoxycortisol in the metyrapone test. J. Chromatogr. Biomed. Appl. 526; 180–185.

    CAS  Google Scholar 

  • Une M, Harada J, Mikami T, Hoshita T (1996) High-performance liquid chromatographic separation of ultraviolet-absorbing bile alcohol derivatives. J. Chromatogr. B Biomed. Appl. 682; 157–161.

    CAS  Google Scholar 

  • Van der Hoeven RA, Hofte AJ, Frenay M, Irth H, Tjaden UR, van der Greef J, Rudolphi A, Boos KS, Marko Varga G, Edholm LE (1997) Liquid chromatography-mass spectrometry with online solid-phase extraction by restricted-access C18 precolumn for direct plasma and urine injection. J. Chromatogr. A. 762; 193–200.

    CAS  Google Scholar 

  • Van Eenoo P, Delbeke FT (2006) Metabolism and excretion of anabolic steroids in doping control – new steroids and new insights. J. Steroid Biochem. Mol. Biol. 101; 161–178.

    CAS  Google Scholar 

  • Van Herle AJ, Birnbaum JA, Slomowitz LA, Mayes D, Chandler DW, Rosenblit PD, Nissenson A (1998) Paper chromatography prior to cortisol RIA allows for accurate use of the dexamethasone suppression test in chronic renal failure. Nephron. 80; 79–84.

    CAS  Google Scholar 

  • van Hoof HJC, Swinkels LMJW, van Stevenhagen JJ, Vandenberg H, Ross HA, Benraad TJ (1993) Advantages of paper chromatography as a preparative step in the assay of 1, 25-dihydroxyvitamin D. J. Chromatogr. Biomed. Appl. 621; 33–39.

    CAS  Google Scholar 

  • Van Hoof HJ, van der Mooren MJ, Swinkels LM, Sweep CG, Merkus JM, Benraad TJ (1999) Female sex hormone replacement therapy increases serum free 1, 25-dihydroxyvitamin D3: a 1-year prospective study. Clin. Endocrinol. (Oxford). 50; 511–516.

    CAS  Google Scholar 

  • Van Thuyne W, Delbeke FT (2004) Validation of a GC-MS screening method for anabolizing agents in solid nutritional supplements. Biomed. Chromatogr. 18; 155–159.

    CAS  Google Scholar 

  • Van Uytfanghe K, Stockl D, Kaufman JM, Fiers T, De Leenheer A, Thienpont LM (2005) Validation of 5 routine assays for serum free testosterone with a candidate reference measurement procedure based on ultrafiltration and isotope dilution -gas chromatography -mass spectrometry. Clin. Biochem. 38; 253–261.

    CAS  Google Scholar 

  • Vanluchene E, Hinting A, Dhont M, Serreyn R, Vandekerkhove D (1990) Steroid determinations in human ovarian follicular fluid using capilllary gas chromatography. J. Steroid Biochem. 35; 83–89.

    CAS  Google Scholar 

  • Vanluchene E, Desutter P, Dhont M, Vandekerkhove D (1991) Steroid determinations in human ovarian follicular fluid using reversed phase liquid chromatography. J. Steroid Biochem. Mol. Biol. 39; 177–180.

    CAS  Google Scholar 

  • Vazquez BI, Feas X, Lolo M, Fente CA, Franco CM, Cepeda A (2005) Detection of synthetic corticosteroids in bovine urine by chemiluminescence high -performance liquid chromatography. Luminescence. 20; 197–204.

    CAS  Google Scholar 

  • Vermeulen A (2005) Hormonal cut-offs of partial androgen deficiency: a survey of androgen assays. J. Endocrinol. Invest. 28; 28–31.

    CAS  Google Scholar 

  • Visser SA, Smulders CJ, Gladdines WW, Irth H, van der Graaf PH, Danhof M (2000) High-performance liquid chromatography of the neuroactive steroids alphaxalone and pregnanolone in plasma using dansyl hydrazine as fluorescent label: application to a pharmacokinetic-pharmacodynamic study in rats. J. Chromatogr. B Biomed. Sci. Appl. 745; 357–363.

    CAS  Google Scholar 

  • Vogeser M, Briegel J, Jacob K (2001) Determination of serum cortisol by isotope-dilution liquid chromatography electrospray ionization tandem mass spectrometry with on-line extraction. Clin. Chem. Lab. Med. 39; 944–947.

    CAS  Google Scholar 

  • Volin P (1992) Simultaneous determination of serum cortisol and cortisone by reversed-phase liquid chromatography with ultraviolet detection. J. Chromatogr. Biomed. Appl. 584; 147–155.

    CAS  Google Scholar 

  • Volin P (1995) High-performance liquid chromatographic analysis of corticosteroids. J. Chromatogr. B Biomed. Appl. 671; 319–340.

    CAS  Google Scholar 

  • Volin P (2001) Analysis of steroidal lipids by gas and liquid chromatography. J. Chromatogr. A. 935; 125–140.

    CAS  Google Scholar 

  • Wade SE, Haegele AD (1991a) Corticosteroid analysis by HPLC-UV facilitated by use of an injector-mounted extraction column. J. Liquid Chromatogr. 14; 1257–1266.

    CAS  Google Scholar 

  • Wade SE, Haegele AD (1991b) Differential measurement of cortisol and cortisone in human saliva by HPLC with UV detection. J. Liquid Chromatogr. 14; 1813–1827.

    CAS  Google Scholar 

  • Wang D, Zhang M (2007) Rapid quantitation of testosterone hydroxyl metabolites by ultra-performance liquid chromatography and mass spectrometry. J. Chromatogr. B. 855; 290–294.

    CAS  Google Scholar 

  • Wang G, Hsieh Y, Cui X, Cheng KC, Korfmacher WA (2006) Ultra-performance liquid chroma-tography/tandem mass spectrometric determination of testosterone and its metabolites in in vitro samples. Rapid Commun. Mass Spectrom. 20; 2215–2221.

    CAS  Google Scholar 

  • Wang S, Xu Z, Fang G, Zhang Y, He J (2008) Separation and determination of estrone in environmental and drinking water using molecularly imprinted solid phase extraction coupled with HPLC. J. Sep. Sci. 31; 1181–1188.

    CAS  Google Scholar 

  • Wang Y, Hornshaw M, Alvelius G, Bodin K, Liu S, Sjövall J, Griffiths WJ (2006) Matrix-assisted laser desorption/ionization high-energy collision-induced dissociation of steroids: analysis of oxysterols in rat brain. Anal. Chem. 78; 164–173.

    CAS  Google Scholar 

  • Wang Y, Karu K, Griffiths WJ (2007) Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie. 89; 182–191.

    CAS  Google Scholar 

  • Watabe, Y, Kubo, T., Nishikawa, T., Fujita, T., Kaya, K., Hosoya, K (2006) Fully automated liquid chromatography – mass spectrometry determination of 17 beta-estradiol in river water. J. Chromatogr. A. 1120; 252.

    CAS  Google Scholar 

  • Watanabe K, Yoshizawa I (1985) Clinical analysis of steroids. XXXI. Assay of oestradiol 17-sulphate 4-hydroxylase activity by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 337; 114–120.

    CAS  Google Scholar 

  • Waxman DJ, Chang TK (2006) Thin-layer chromatography analysis of human CYP3A-catalyzed testosterone 6beta-hydroxylation. Meth. Mol. Biol. 320; 133–141.

    CAS  Google Scholar 

  • Webb R, Baxter G, McBride D, Nordblom GD, Shaw MP (1985) The measurement of testosterone and oestradiol-17beta using iodinated tracers and incorporating an affinity chromatography extraction procedure. J. Steroid Biochem. 23; 1043–1051.

    CAS  Google Scholar 

  • Wehling M, Losel R (2006) Non-genomic steroid homone effects: membrane or intracellular receptors? J. Steroid Biochem. Mol. Biol. 102; 180–183.

    CAS  Google Scholar 

  • Wei J-Q, Wei J-L, Zhou X-T (1990) Optimization of an isocratic reversed phase liquid chromato-graphic system for the separation of fourteen steroids using factorial design and computer simulation. Biomed Chromatogr. 4; 34–38.

    CAS  Google Scholar 

  • Weidolf LOG, Lee ED, Henion JD (1988) Determination of boldenone sulfoconjugate and related steroid sulfates in equine urine by high performance liquid chromatograph/tandem mass spectrometry. Biomed Environ Mass Spectrom. 15; 283–288.

    CAS  Google Scholar 

  • Weill-Engerer S, David JP, Sazdovitch V, Liere P, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2003) In vitro metabolism of dehydroepiandrosterone (DHEA) to 7alpha-hydroxy-DHEA and Delta5-androstene-3beta, 17beta-diol in specific regions of the aging brain from Alzheimer’s and non-demented patients. Brain Res. 969; 117–125.

    CAS  Google Scholar 

  • Wen Y, Zhou BS, Xu Y, Jin SW, Feng YQ (2006) Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. J. Chromatogr. A. 1133; 21–28.

    CAS  Google Scholar 

  • Wentworth P, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, Lerner RA (2003) Evidence for ozone formation in human atherosclerotic arteries. Science. 302; 1053–1056.

    CAS  Google Scholar 

  • Whalley PM, Bakes D, Grime K, Weaver RJ (2001) Rapid high-performance liquid chromato-graphic method for the separation of hydroxylated testosterone metabolites. J. Chromatogr. B Biomed. Sci. Appl. 760; 281–288.

    CAS  Google Scholar 

  • Wheeler MJ (2006) Measurement of androgens. Meth. Mol. Biol. 324; 197–211.

    CAS  Google Scholar 

  • Whorwood CB, Ueshiba H, Delbalzo P (1992) Plasma levels of C steroid glucuronides in pre-menopausal women with non-classical congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 42; 211–221.

    CAS  Google Scholar 

  • Wiebe PJ, Barr KJ, Buckingham KD (1991) A radioimmunoassay for the regulatory allylic steroid, 3-alpha-hydroxy-4-pregnen-20-one (3alphaHP). J. Steroid Biochem. Mol. Biol. 38; 505–512.

    CAS  Google Scholar 

  • Wolthers BG, Kraan GP (1999) Clinical applications of gas chromatography and gas chromatog-raphy-mass spectrometry of steroids. J. Chromatogr. A. 843; 247–274.

    CAS  Google Scholar 

  • Wong T, Shackleton CHL, Covey TR, Ellis G (1992) Identification of the steroids in neonatal plasma that interfere with 17a-hydroxyprogesterone radioimmuoassays. Clin. Chem. 38; 1830–1837.

    CAS  Google Scholar 

  • Wudy SA (1990) Synthetic procedures for the preparation of deuterium-labeled analogs of naturally occurring steroids. Steroids. 55; 463–471.

    CAS  Google Scholar 

  • Wudy SA, Hartmann MF (2004) Gas chromatography – mass spectrometry profiling of steroids in times of molecular biology. Harm. Metab. Res. 36; 415–422.

    CAS  Google Scholar 

  • Wudy SA, Hartmann M, Svoboda M (2000) Determination of 17-hydroxyprogesterone in plasma by stable isotope dilution/benchtop liquid chromatography – tandem mass spectrometry. Harm. Res. 53; 68–71.

    CAS  Google Scholar 

  • Wudy SA, Hartmann M, Solleder C, Homoki J (2001) Determination of 17alpha-hydroxypregnenolone in human plasma by routine isotope dilution mass spectrometry using benchtop gas chromatography -mass selective detection. Steroids. 66; 759–762.

    CAS  Google Scholar 

  • Wudy SA, Hartmann M, Homoki J (2002) Determination of 11-deoxycortisol (Reichstein’s compound S) in human plasma by clinical isotope dilution mass spectrometry using benchtop gas chromatography – mass selective detection. Steroids. 67; 851–857.

    CAS  Google Scholar 

  • Xu CL, Chu XG, Peng CF, Jin ZY, Wang LY (2006) Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 41; 616–621.

    CAS  Google Scholar 

  • Yamada H, Kuwahara Y, Takamatsu Y, Hayase T (2000) A new sensitive determination method of estradiol in plasma using peroxyoxalate ester chemiluminescence combined with an HPLC system. Biomed. Chromatogr. 14; 333–337.

    CAS  Google Scholar 

  • Yamada H, Yoshizawa K, Hayase T (2002) Sensitive determination method of estradiol in plasma using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B. 775; 209–213.

    CAS  Google Scholar 

  • Yamashita K, Kobayashi S, Tsukamoto S, Numazawa M (2007a) Synthesis of pyridine-­carboxylate derivatives of hydroxysteroids for liquid chromatography-electrospray ionization -mass spectrometry. Steroids. 72; 50–59.

    CAS  Google Scholar 

  • Yamashita K, Okuyama M, Watanabe Y, Honma S, Kobayashi S, Numazawa M (2007b) Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography -electrospray ionization tandem mass spectrometry. Steroids. 72; 819–827.

    CAS  Google Scholar 

  • Yang Y, Griffiths WJ, Nazer H, Sjövall J (1997) Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography -mass spectrometry using fast atom bombardment or electrospray ionisation and collision induced dissociation. Biomed. Chromatogr. 11; 240–255.

    CAS  Google Scholar 

  • Yang YJ, Lee J, Choi MH, Chung BC (2003) Direct determination of estriol 3-and 16-glucuronides in pregnancy urine by column-switching liquid chromatography with electrospray tandem mass spectrometry. Biomed. Chromatogr. 17; 219–225.

    CAS  Google Scholar 

  • Yoshitake T, Ishida J, Sonezaki S, Yamaguchi M (1992) High performance liquid chromatographic determination of 3alpha, 5beta-tetrahydroaldosterone and cortisol in human urine with fluorescence detection. Biomed. Chromatogr. 6; 217–221.

    CAS  Google Scholar 

  • Zaikin VG, Halket JM (2003) Derivatization in mass spectrometry – 2. Acylation. Eur. J. Mass Spectrom. 9; 421–434.

    CAS  Google Scholar 

  • Zaikin VG, Halket JM (2004) Derivatization in mass spectrometry – 4. Formation of cyclic derivatives. Eur. J. Mass Spectrom. 10; 555–568.

    CAS  Google Scholar 

  • Zaikin VG, Halket JM (2005) Derivatization in mass spectrometry – 6. Formation of mixed derivatives of polyfunctional compounds. Eur. J. Mass Spectrom. 11; 611–636.

    CAS  Google Scholar 

  • Zaikin VG, Halket JM (2006) Derivatization in mass spectrometry – 8. Soft ionization mass spectrometry of small molecules. Eur. J. Mass Spectrom. 12; 79–115.

    CAS  Google Scholar 

  • Zalata A, Hafez T, Verdonck L, Vermeulen L, Comhaire F (1995) Androgens in seminal plasma: markers of the surface epithelium of the male reproductive tract. Int. J. Androl. 18; 271–277.

    CAS  Google Scholar 

  • Zarzycki PK (2008) Simple horizontal chamber for thermostated micro-thin-layer chromatography. J. Chromatogr. A. 1187; 250–259.

    CAS  Google Scholar 

  • Zarzycki PK, Zarzycka MB (2008) Application of temperature-controlled micro planar chroma-tography for separation and quantification of testosterone and its derivatives. Anal. Bioanal. Chem. 391; 2219–2225.

    CAS  Google Scholar 

  • Zarzycki PK, Kulhanek KM, Smith R (2002) Chromatographic behaviour of selected steroids and their inclusion complexes with beta-cyclodextrin on octadecylsilica stationary phases with different carbon loads. J. Chromatogr. A. 955; 71–78.

    CAS  Google Scholar 

  • Zarzycki PK, Kulhanek KM, Smith R, Clifton VL (2006) Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations. J. Chromatogr. A. 1104; 203–208.

    CAS  Google Scholar 

  • Zemaitis MA, Kroboth PD (1998) Simplified procedure for measurement of serum dehydroepi-androsterone and its sulfate with gas chromatography – ion trap mass spectrometry and selected reaction monitoring. J. Chromatogr. B Biomed. Sci. Appl. 716; 19–26.

    CAS  Google Scholar 

  • Zhao M, Baker SD, Yan X, Zhao Y, Wright WW, Zirkin BR, Jarow JP (2004) Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids. 69; 721–726.

    CAS  Google Scholar 

  • Zhou LY, Wang DS, Senthilkumaran B, Yoshikuni M, Shibata Y, Kobayashi T, Sudhakumari CC, Nagahama Y (2005) Cloning, expression and characterization of three types of 17beta-hydroxysteroid dehydrogenases from the Nile tilapia, Oreochromis niloticus. J. Mol. Endocrinol. 35; 103–116.

    CAS  Google Scholar 

  • Zhou LY, Wang DS, Kobayashi T, Yano A, Paul-Prasanth B, Suzuki A, Sakai F, Nagahama Y (2007) A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology. 148; 4282–4291. 2007 June 14 [Epub ahead of print].

    CAS  Google Scholar 

  • Zomer G, Stavenuiter JF (1990) Synthesis of 13C-labeled steroid hormones. Steroids. 55; 440–442.

    CAS  Google Scholar 

  • Zuo Y, Zhang K, Lin Y (2007) Microwave-accelerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids. J. Chromatogr. A. 1148; 211–218.

    CAS  Google Scholar 

Download references

Acknowledgements

The support of the NIH to CHLS (recent grants 1S10 RR017854, R03 HD045302, R03 HD39707, R01HD38940) is acknowledged. WJG acknowledges the UK Biotechnology and Biological Science Research Council for financial support (grant no. BB/C511356/1 and BB/C515771/1). CHLS is grateful to Drs. Nigel Clarke and Mike Caulfield of Quest Diagnostics for describing their progress in developing MS/MS methods for routine commercial hormone measurement. The authors acknowledge the encouragement offered to them in this field by Professor Jan Sjövall at Karolinska Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh L. J. Makin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Makin, H.L.J., Honour, J.W., Shackleton, C.H.L., Griffiths, W.J. (2010). General Methods for the Extraction, Purification, and Measurement of Steroids by Chromatography and Mass Spectrometry. In: Makin, H., Gower, D. (eds) Steroid Analysis. Springer, Dordrecht. https://doi.org/10.1023/b135931_3

Download citation

Publish with us

Policies and ethics