Pasteurella multocida toxin as a tool for studying Gq signal transduction

  • B. A. WilsonEmail author
  • M. Ho
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 152)


Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C (PLC) signal transduction through its selective action on the Gαq subunit. This review summarizes what is currently known about the molecular action of PMT on Gq and the resulting cellular effects. Examples are presented illustrating the use of PMT as a powerful tool for dissecting the molecular mechanisms involving pertussis toxin (PT)-insensitive heterotrimeric G proteins.


Actin Stress Fiber Formation Atrophic Rhinitis Pasteurella Multocida Toxin 1AAR Activation P115 RhoGEF 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145PubMedCrossRefGoogle Scholar
  2. Aepfelbacher M, Essler M (2001) Disturbance of endothelial barrier function by bacterial toxins and atherogenic mediators: a role for Rho/Rho kinase. Cell Microbiol 3:649–658PubMedCrossRefGoogle Scholar
  3. Aktories K, Schmidt G, Just I (2000) Rho GTPases as targets of bacterial protein toxins. Biol Chem 381:421–426PubMedCrossRefGoogle Scholar
  4. Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK (2004) Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol 11:77–82PubMedCrossRefGoogle Scholar
  5. Baldwin MR, Pullinger GD, Lax AJ (2003) Pasteurella multocida toxin facilitates inositol phosphate formation by bombesin through tyrosine phosphorylation of G alpha q. J Biol Chem 278:32719–32725PubMedCrossRefGoogle Scholar
  6. Ballou LM, Cross ME, Huang S, McReynolds EM, Zhang BX, Lin RZ (2000) Differential regulation of the phosphatidylinositol 3-kinase/Akt and p70 S6 kinase pathways by α(1A)-adrenergic receptor in rat-1 fibroblasts. J Biol Chem 275:4803–4809PubMedCrossRefGoogle Scholar
  7. Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ (2001) Dual regulation of glycogen synthase kinase-3β by the α1A-adrenergic receptor. J Biol Chem 276:40910–40916PubMedCrossRefGoogle Scholar
  8. Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325PubMedCrossRefGoogle Scholar
  9. Berstein G, Blank JL, Jhon DY, Exton JH, Rhee SG, Ross EM (1992a) Phospholipase C-β1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70:411–418PubMedCrossRefGoogle Scholar
  10. Berstein G, Blank JL, Smrka AV, Higashijima T, Sternweis PC, Exton JH, Ross EM (1992b) Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase Cβ-1. J Biol Chem 267:8081–8088PubMedGoogle Scholar
  11. Buenemann M, Meyer T, Pott L, Hosey M (2000) Novel inhibition of Gβγ-activated potassium currents induced by M2 muscarinic receptors via a pertussis toxin-insensitive pathway. J Biol Chem 275:12537–12545CrossRefGoogle Scholar
  12. Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360:684–686PubMedCrossRefGoogle Scholar
  13. Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263:2577–2580PubMedGoogle Scholar
  14. Casey PJ, Fong HK, Simon MI, Gilman AG (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 265:2383–2390PubMedGoogle Scholar
  15. Chikumi H, Vazquez-Prado J, Servitja JM, Miyazaki H, Gutkind JS (2002) Potent activation of RhoA by Gα q and Gq-coupled receptors. J Biol Chem 277:27130–27134PubMedCrossRefGoogle Scholar
  16. Chrisp CE, Foged NT (1991) Induction of pneumonia in rabbits by use of a purified protein toxin from Pasteurella multocida. Am J Vet Res 52:56–61PubMedGoogle Scholar
  17. Deckmyn H, Van Geet C, Vermylen J (1993) Dual regulation of phospholipase C activity by G proteins. News Physiol Sci 8:61–63Google Scholar
  18. Donald AN, Wallace DJ, McKenzie S, Marley PD (2002) Phospholipase C-mediated signalling is not required for histamine-induced catecholamine secretion from bovine chromaffin cells. J Neurochem 81:1116–1129PubMedCrossRefGoogle Scholar
  19. Dudet LI, Chailler P, Dubreuil JD, Martineau-Doize B (1996) Pasteurella multocida toxin stimulates mitogenesis and cytoskeleton reorganization in Swiss 3T3 fibroblasts. J Cell Physiol 168:173–182PubMedCrossRefGoogle Scholar
  20. Dutt P, Kjoller L, Giel M, Hall A, Toksoz D (2002) Activated Gαq family members induce Rho GTPase activation and Rho-dependent actin filament assembly. FEBS Lett 531:565–569PubMedCrossRefGoogle Scholar
  21. Essler M, Hermann K, Amano M, Kaibuchi K, Heesemann J, Weber PC, Aepfelbacher M (1998) Pasteurella multocida toxin increases endothelial permeability via Rho kinase and myosin light chain phosphatase. J Immunol 161:5640–5646PubMedGoogle Scholar
  22. Felix R, Fleisch H, Frandsen PL (1992) Effect of Pasteurella multocida toxin on bone resorption in vitro. Infect Immun 60:4984–4988PubMedGoogle Scholar
  23. Fields TA, Casey PJ (1997) Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem J 321:561–571PubMedGoogle Scholar
  24. Foged NT (1992) Pasteurella multocida toxin. The characterisation of the toxin and its significance in the diagnosis and prevention of progressive atrophic rhinitis in pigs. APMIS Suppl 25:1–56PubMedGoogle Scholar
  25. Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 274:5868–5879PubMedCrossRefGoogle Scholar
  26. Gilbertson TA, Damak S, Margolskee RF (2000) The molecular physiology of taste transduction. Curr Opin Neurobiol 10:519–527PubMedCrossRefGoogle Scholar
  27. Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci 68:2467–2472PubMedCrossRefGoogle Scholar
  28. Gosau N, Fahimi-Vahid M, Michalek C, Schmidt M, Wieland T (2002) Signalling components involved in the coupling of α1-adrenoceptors to phospholipase D in neonatal rat cardiac myocytes. Naunyn Schmiedebergs Arch Pharmacol 365:468–476PubMedCrossRefGoogle Scholar
  29. Gratacap MP, Payrastre B, Nieswandt B, Offermanns S (2001) Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem 276:47906–47913PubMedGoogle Scholar
  30. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 280:2112–2114PubMedCrossRefGoogle Scholar
  31. Hepler JR, Kozasa T, Smrcka AV, Simon MI, Rhee SG, Sternweis PC, Gilman AG (1993) Purification from Sf9 cells and characterization of recombinant Gq α and G11 α. Activation of purified phospholipase C isozymes by G α subunits. J Biol Chem 268:14367–14375PubMedGoogle Scholar
  32. Higgins TE, Murphy AC, Staddon JM, Lax AJ, Rozengurt E (1992) Pasteurella multocida toxin is a potent inducer of anchorage-independent cell growth. Proc Natl Acad Sci USA 89:4240–4244PubMedCrossRefGoogle Scholar
  33. Ho MK, Wong YH (2001) G(z) signaling: emerging divergence from G(i) signaling. Oncogene 20:1615–1625PubMedCrossRefGoogle Scholar
  34. Imamura T, Vollenweider P, Egawa K, Clodi M, Ishibashi K, Nakashima N, Ugi S, Adams JW, Brown JH, Olefsky JM (1999) Gα-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol Cell Biol 19:6765–6774PubMedGoogle Scholar
  35. Imendra KG, Miyamoto T, Okada Y, Toda K (2002) Serotonin differentially modulates the electrical properties of different subsets of taste receptor cells in bullfrog. Eur J Neurosci 16:629–640PubMedCrossRefGoogle Scholar
  36. Jones DT, Masters SB, Bourne HR, Reed RR (1990) Biochemical characterization of three stimulatory GTP-binding proteins. The large and small forms of Gs and the olfactory-specific G-protein, Golf. J Biol Chem 265:2671–2676PubMedGoogle Scholar
  37. Jordan RW, Hamilton TD, Hayes CM, Patel D, Jones PH, Roe JM, Williams NA (2003) Modulation of the humoral immune response of swine and mice mediated by toxigenic Pasteurella multocida. FEMS Immunol Med Microbiol 39:51–59PubMedCrossRefGoogle Scholar
  38. Jutras I, Martineau-Doize B (1996) Stimulation of osteoclast-like cell formation by Pasteurella multocida toxin from hemopoietic progenitor cells in mouse bone marrow cultures. Can J Vet Res 60:34–39PubMedGoogle Scholar
  39. Katoh H, Aoki J, Yamaguchi Y, Kitano Y, Ichikawa A, Negishi M (1998) Constitutively active Gα12, Gα13, and Gαq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 273:28700–28707PubMedCrossRefGoogle Scholar
  40. Kimman TG, Lowik CW, van de Wee-Pals LJ, Thesingh CW, Defize P, Kamp EM, Bijvoet OL (1987) Stimulation of bone resorption by inflamed nasal mucosa, dermonecrotic toxin-containing conditioned medium from Pasteurella multocida, and purified dermonecrotic toxin from P. multocida. Infect Immun 55:2110–2116PubMedGoogle Scholar
  41. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC (1998) p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 280:2109–2111PubMedCrossRefGoogle Scholar
  42. Kurose H (2003) Gα12 and Gα13 as key regulatory mediator in signal transduction. Life Sci 74:155–161PubMedCrossRefGoogle Scholar
  43. Lacerda HM, Lax AJ, Rozengurt E (1996) Pasteurella multocida toxin, a potent intracellularly acting mitogen, induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem 271:439–445PubMedCrossRefGoogle Scholar
  44. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431–437PubMedCrossRefGoogle Scholar
  45. Lax AJ, Chanter N (1990) Cloning of the toxin gene from Pasteurella multocida and its role in atrophic rhinitis. J Gen Microbiol 136:81–87PubMedGoogle Scholar
  46. Lax AJ, Thomas W (2002) How bacteria could cause cancer: one step at a time. Trends Microbiol 10:293–299PubMedCrossRefGoogle Scholar
  47. Lei Q, Talley EM, Bayliss DA (2001) Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves Gαq family subunits, phospholipase C, and a readily diffusible messenger. J Biol Chem 276:16720–16730PubMedCrossRefGoogle Scholar
  48. Lin HY, Ballou LM, Lin RZ (2003) Stimulation of the α1A adrenergic receptor inhibits PDGF-induced PDGF β receptor Tyr751 phosphorylation and PI 3-kinase activation. FEBS Lett 540:106–110PubMedCrossRefGoogle Scholar
  49. Martineau-Doize B, Caya I, Gagne S, Jutras I, Dumas G (1993) Effects of Pasteurella multocida toxin on the osteoclast population of the rat. J Comp Pathol 108:81–91PubMedCrossRefGoogle Scholar
  50. Meyer T, Wellner-Kienitz MC, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J Biol Chem 276: 5650–5658.PubMedCrossRefGoogle Scholar
  51. Mullan PB, Lax AJ (1998) Pasteurella multocida toxin stimulates bone resorption by osteoclasts via interaction with osteoblasts. Calcif Tissue Int 63:340–345PubMedCrossRefGoogle Scholar
  52. Murphy AC, Rozengurt E (1992) Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4,5-bisphosphate hydrolysis by bombesin, vasopressin, and endothelin. Requirement for a functional G protein. J Biol Chem 267:25296–25303PubMedGoogle Scholar
  53. Ohnishi T, Horiguchi Y, Masuda M, Sugimoto N, Matsuda M (1998) Pasteurella multocida toxin and Bordetella bronchiseptica dermonecrotizing toxin elicit similar effects on cultured cells by different mechanisms. J Vet Med Sci 60:301–305PubMedCrossRefGoogle Scholar
  54. Okada Y, Fujiyama R, Miyamoto T, Sato T (2001) Saccharin activates cation conductance via inositol 1,4,5-trisphosphate production in a subset of isolated rod taste cells in the frog. Eur J Neurosci 13:308–314PubMedCrossRefGoogle Scholar
  55. Orth JH, Lang S, Aktories K (2004) Action of Pasteurella multocida toxin depends on the helical domain of Gαq. J Biol Chem 279:34150–34155PubMedCrossRefGoogle Scholar
  56. Park D, Jhon DY, Lee CW, Lee KH, Rhee SG (1993) Activation of phospholipase C isozymes by G protein β γ subunits. J Biol Chem 268:4573–4576PubMedGoogle Scholar
  57. Pennings AM, Storm PK (1984) A test in vero cell monolayers for toxin production by strains of Pasteurella multocida isolated from pigs suspected of having atrophic rhinitis. Vet Microbiol 9:503–508PubMedCrossRefGoogle Scholar
  58. Petersen SK (1990) The complete nucleotide sequence of the Pasteurella multocida toxin gene and evidence for a transcriptional repressor, TxaR. Mol Microbiol 4:821–830PubMedCrossRefGoogle Scholar
  59. Petersen SK, Foged NT (1989) Cloning and expression of the Pasteurella multocida toxin gene, toxA, in Escherichia coli. Infect Immun 57:3907–3913PubMedGoogle Scholar
  60. Pettit RK, Ackermann MR, Rimler RB (1993) Receptor-mediated binding of Pasteurella multocida dermonecrotic toxin to canine osteosarcoma and monkey kidney (vero) cells. Lab Invest 69:94–100PubMedGoogle Scholar
  61. Quick MW, Simon MI, Davidson N, Lester HA, Aragay AM (1994) Differential coupling of G protein α subunits to seven-helix receptors expressed in Xenopus oocytes. J Biol Chem 269:30164–30172PubMedGoogle Scholar
  62. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335PubMedGoogle Scholar
  63. Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396PubMedGoogle Scholar
  64. Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C (2001) Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39:27–41PubMedCrossRefGoogle Scholar
  65. Rozengurt E, Higgins T, Chanter N, Lax AJ, Staddon JM (1990) Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc Natl Acad Sci USA 87:123–127PubMedCrossRefGoogle Scholar
  66. Rutter JM, Luther PD (1984) Cell culture assay for toxigenic Pasteurella multocida from atrophic rhinitis of pigs. Vet Rec 114:393–396PubMedGoogle Scholar
  67. Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous α1-and β-adrenergic receptors in mouse cardiomyocytes. Circ Res 86:1047–1053PubMedGoogle Scholar
  68. Sabri A, Wilson BA, Steinberg SF (2002) Dual actions of the Gαq agonist Pasteurella multocida toxin to promote cardiomyocyte hypertrophy and enhance apoptosis susceptibility. Circ Res 90:850–857PubMedCrossRefGoogle Scholar
  69. Sadja R, Alagem N, Reuveny E (2003) Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Neuron 39:9–12PubMedCrossRefGoogle Scholar
  70. Sagi SA, Seasholtz TM, Kobiashvili M, Wilson BA, Toksoz D, Brown JH (2001) Physical and functional interactions of Gαq with Rho and its exchange factors. J Biol Chem 276:15445–15452PubMedCrossRefGoogle Scholar
  71. Sah VP, Seasholtz TM, Sagi SA, Brown JH (2000) The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 40:459–489PubMedCrossRefGoogle Scholar
  72. Schiavo G, van der Goot FG (2001) The bacterial toxin toolkit. Nature Rev Mol Cell Biol 2:530–537CrossRefGoogle Scholar
  73. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766PubMedGoogle Scholar
  74. Seo B, Choy EW, Maudsley S, Miller WE, Wilson BA, Luttrell LM (2000) Pasteurella multocida toxin stimulates mitogen-activated protein kinase via Gq/11-dependent transactivation of the epidermal growth factor receptor. J Biol Chem 275:2239–2245PubMedCrossRefGoogle Scholar
  75. Shime H, Ohnishi T, Nagao K, Oka K, Takao T, Horiguchi Y (2002) Association of Pasteurella multocida toxin with vimentin. Infect Immun 70:6460–6463PubMedCrossRefGoogle Scholar
  76. Sleight S, Wilson BA, Heimark DB, Larner J (2002) Gq/11 is involved in insulin-stimulated inositol phosphoglycan putative mediator generation in rat liver membranes: co-localization of Gq/11 with the insulin receptor in membrane vesicles. Biochem Biophys Res Commun 295:561–569PubMedCrossRefGoogle Scholar
  77. Smrcka AV, Sternweis PC (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C β by G protein α and βγ subunits. J Biol Chem 268:9667–9674PubMedGoogle Scholar
  78. Staddon JM, Chanter N, Lax AJ, Higgins TE, Rozengurt E (1990) Pasteurella multocida toxin, a potent mitogen, stimulates protein kinase C-dependent and-independent protein phosphorylation in Swiss 3T3 cells. J Biol Chem 265:11841–11848PubMedGoogle Scholar
  79. Staddon JM, Barker CJ, Murphy AC, Chanter N, Lax AJ, Michell RH, Rozengurt E (1991) Pasteurella multocida toxin, a potent mitogen, increases inositol 1,4,5-trisphosphate and mobilizes Ca2+ in Swiss 3T3 cells. J Biol Chem 266:4840–4847PubMedGoogle Scholar
  80. Staddon JM, Bouzyk MM, Rozengurt E (1992) Interconversion of GRP78/BiP. A novel event in the action of Pasteurella multocida toxin, bombesin, and platelet-derived growth factor. J Biol Chem 267:25239–25245PubMedGoogle Scholar
  81. Sterner-Kock A, Lanske B, Uberschar S, Atkinson MJ (1995) Effects of the Pasteurella multocida toxin on osteoblastic cells in vitro. Vet Pathol 32:274–279PubMedCrossRefGoogle Scholar
  82. Sternweis PC, Smrcka AV (1992) Regulation of phospholipase C by G proteins. Trends Biol Sci 17:502–506CrossRefGoogle Scholar
  83. Thomas W, Pullinger GD, Lax AJ, Rozengurt E (2001) Escherichia coli cytotoxic necrotizing factor and Pasteurella multocida toxin induce focal adhesion kinase autophosphorylation and Src association. Infect Immun 69:5931–5935PubMedCrossRefGoogle Scholar
  84. Umemori H, Inoue T, Kume S, Sekiyama N, Nagao M, Itoh H, Nakanishi S, Mikoshiba K, Yamamoto T (1997) Activation of the G protein Gq/11 through tyrosine phosphorylation of the alpha subunit. Science 276:1878–1881PubMedCrossRefGoogle Scholar
  85. Umemori H, Hayashi T, Inoue T, Nakanishi S, Mikoshiba K, Yamamoto T (1999) Involvement of protein tyrosine phosphatases in activation of the trimeric G protein Gq/11. Oncogene 18:7399–7402PubMedCrossRefGoogle Scholar
  86. Van Dop C, Yamanaka G, Steinberg F, Sekura RD, Manclark CR, Stryer L, Bourne HR (1984a) ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem 259: 23–26PubMedGoogle Scholar
  87. Van Dop C, Tsubokawa M, Bourne HR, Ramachandran J (1984b) Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259:696–698PubMedGoogle Scholar
  88. Vogt S, Grosse R, Schultz G, Offermanns S (2003) Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J Biol Chem 278:28743–28749PubMedCrossRefGoogle Scholar
  89. Wilson BA, Salyers AA (2002) Ecology and physiology of infectious bacteria—implications for biotechnology. Curr Opin Biotechnol 13:267–274PubMedCrossRefGoogle Scholar
  90. Wilson BA, Zhu X, Ho M, Lu L (1997) Pasteurella multocida toxin activates the inositol triphosphate signaling pathway in Xenopus oocytes via Gqα-coupled phospholipase C-β1. J Biol Chem 272:1268–1275PubMedCrossRefGoogle Scholar
  91. Wilson BA, Aminova LR, Ponferrada VG, Ho M (2000) Differential modulation and subsequent blockade of mitogenic signaling and cell cycle progression by Pasteurella multocida toxin. Infect Immun 68:4531–4538PubMedCrossRefGoogle Scholar
  92. Wu D, Katz A, Simon MI (1993) Activation of phospholipase C β2 by the α and βγ subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA 90:5297–5301PubMedCrossRefGoogle Scholar
  93. Zywietz A, Gohla A, Schmelz M, Schultz G, Offermanns S (2001) Pleiotropic effects of Pasteurella multocida toxin are mediated by Gq-dependent and-independent mechanisms. Involvement of Gq but not G11. J Biol Chem 276:3840–3845PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations