Skip to main content

Cell volume regulation: osmolytes, osmolyte transport, and signal transduction

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 148))

Abstract

In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems—channels and carriers alike—have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.

E. Kinne-Saffran deceased on December 6, 2002

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9:209–216

    PubMed  CAS  Google Scholar 

  • Aharonovitz O, Granot Y (1996) Stimulation of mitogen-activated protein kinase and Na+/H+ exchanger in human platelets. Differential effect of phorbol ester and vasopressin. J Biol Chem 271:16494–16499

    PubMed  CAS  Google Scholar 

  • Al Habori M (2001) Macromolecular crowding and its role as intracellular signalling of cell volume regulation. Int J Biochem Cell Biol 33:844–864

    Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789

    PubMed  CAS  Google Scholar 

  • Alper SL, Palfrey HC, DeRiemer SA, Greengard P (1980) Hormonal control of protein phosphorylation in turkey erythrocytes. Phosphorylation by cAMP-dependent and Ca2+-dependent protein kinases of distinct sites in goblin, a high molecular weight protein of the plasma membrane. J Biol Chem 255:11029–11039

    PubMed  CAS  Google Scholar 

  • Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839

    PubMed  CAS  Google Scholar 

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    PubMed  CAS  Google Scholar 

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) J Biol Chem 271:20246–20249

    PubMed  CAS  Google Scholar 

  • Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555

    PubMed  CAS  Google Scholar 

  • Atta MG, Dahl SC, Kwon HM, Handler JS (1999) Tyrosine kinase inhibitors and immunosuppressants perturb the myo-inositol but not the betaine cotransporter in isotonic and hypertonic MDCK cells. Kidney Int 55:956–962

    PubMed  CAS  Google Scholar 

  • Awayda MS, Subramanyam M (1998) Regulation of the epithelial Na+ channel by membrane tension. J Gen Physiol 112:97–111

    PubMed  CAS  Google Scholar 

  • Bagnasco S, Balaban R, Fales HM, Yang YM, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261:5872–5877

    PubMed  CAS  Google Scholar 

  • Bagnasco SM, Murphy HR, Bedford JJ, Burg MB (1988) Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. Am J Physiol 254:C788–C792

    PubMed  CAS  Google Scholar 

  • Bai L, Collins JF, Muller YL, Xu H, Kiela PR, Ghishan FK (1999) Characterization of cis-elements required for osmotic response of rat Na+/H+ exchanger-2 (NHE-2) gene. Am J Physiol 277:R1112–R1119

    PubMed  CAS  Google Scholar 

  • Banderali U, Roy G (1992a) Activation of K+ and Cl channels in MDCK cells during volume regulation in hypotonic media. J Membr Biol 126:219–234

    PubMed  CAS  Google Scholar 

  • Banderali U, Roy G (1992b) Anion channels for amino acids in MDCK cells. Am J Physiol 263:C1200–C1207.

    PubMed  CAS  Google Scholar 

  • Baquet A, Meijer AJ, Hue L (1991) Hepatocyte swelling increases inositol 1,4,5-trisphosphate, calcium and cyclic AMP concentration but antagonizes phosphorylase activation by Ca2+-dependent hormones. FEBS Lett 278:103–106

    PubMed  CAS  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80

    PubMed  CAS  Google Scholar 

  • Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, Hoffmann EK (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449

    PubMed  CAS  Google Scholar 

  • Bauernschmitt HG, Kinne RKH (1993) Metabolism of the “organic osmolyte” glycerophosphorylcholine in isolated rat inner medullary collecting duct cells. II. Regulation by extracellular osmolality. Biochim Biophys Acta 1150:25–34

    PubMed  CAS  Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258:C421–C428

    PubMed  CAS  Google Scholar 

  • Bear CE (1991) A K+-selective channel in the colonic carcinoma cell line: CaCo-2 is activated with membrane stretch. Biochim Biophys Acta 1069:267–272

    PubMed  CAS  Google Scholar 

  • Beck F, Dörge A, Rick R, Thurau K (1985) Osmoregulation of renal papillary cells. Pflugers Arch 405 Suppl 1, S28–S32

    PubMed  Google Scholar 

  • Beck FX, Burger-Kentischer A, Müller E (1998) Cellular response to osmotic stress in the renal medulla. Pflugers Arch 436:814–827

    PubMed  CAS  Google Scholar 

  • Bedford JJ, Bagnasco SM, Kador PF, Harris HW Jr., Burg MB (1987) Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J Biol Chem 262:14255–14259

    PubMed  CAS  Google Scholar 

  • Beetsch JW, Olson JE (1996) Hyperosmotic exposure alters total taurine quantity and cellular transport in rat astrocyte cultures. Biochim Biophys Acta 1290:141–148

    PubMed  Google Scholar 

  • Behrens R, Nolting A, Reimann F, Schwarz M, Waldschütz R, Pongs O (2002) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium β subunit family. FEBS Lett 474:99–106

    Google Scholar 

  • Bender AS, Norenberg MD (1994) Calcium dependence of hypo-osmotically induced potassium release in cultured astrocytes. J Neurosci 14:4237–4243

    PubMed  CAS  Google Scholar 

  • Bender AS, Mantelle LL, Norenberg MD (1994) Stimulation of calcium uptake in cultured astrocytes by hypo-osmotic stress-effect of cyclic AMP. Brain Res 645:27–35

    PubMed  CAS  Google Scholar 

  • Bender AS, Neary JT, Norenberg MD (1993) Role of phosphoinositide hydrolysis in astrocyte volume regulation. J Neurochem 61:1506–1514

    PubMed  CAS  Google Scholar 

  • Benos DJ, Fuller CM, Shlyonsky V Gh, Berdiev BK, Ismailov II (1997) Amiloride-sensitive Na+ channels: Insights and outlooks. News Physiol Sci 12:55–61

    CAS  Google Scholar 

  • Bertrand B, Wakabayashi S, Ikeda T, Pouysségur J, Shigekawa M (1994) The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. J Biol Chem 269:13703–13709

    PubMed  CAS  Google Scholar 

  • Bianchini L, L’Allemain G, Pouyssegur J (1997) The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272:271–279

    PubMed  CAS  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  • Bleich M, Riedemann N, Warth R, Kerstan D, Leipziger J, Hör M, van Driessche W, Greger R (1996) Ca2+ regulated K+ and nonselective cation channels in the basolateral membrane of rat colonic crypt base cells. Pflugers Arch 432:1011–1022

    PubMed  CAS  Google Scholar 

  • Boese SH, Glanville M, Gray MA, Simmons NL (2000) The swelling-activated anion conductance in the mouse renal inner medullary collecting duct cell line mIMCD-K2. J Membr Biol 177:51–64

    PubMed  CAS  Google Scholar 

  • Boese SH, Kinne RKH, Wehner F (1996a) Single-channel properties of swelling-activated anion conductance in rat inner medullary collecting duct cells. Am J Physiol 271:F1224–F1233

    PubMed  CAS  Google Scholar 

  • Boese SH, Wehner F, Kinne RKH (1996b) Taurine permeation through swelling-activated anion conductance in rat IMCD cells in primary culture. Am J Physiol 271:F498–F507

    PubMed  CAS  Google Scholar 

  • Böhmer C, Wagner CA, Beck S, Moschen I, Melzig J, Werner A, Lin J-T, Lang F, Wehner F (2000) The shrinkage-activated Na+ conductance of rat hepatocytes and its possible correlation to rENaC. Cell Physiol Biochem 10:187–194

    PubMed  Google Scholar 

  • Böhmer C, Wehner F (2001) The epithelial Na+ channel (ENaC) is related to the hypertonicity-induced Na+ conductance in rat hepatocytes. FEBS Lett 494:125–128

    PubMed  Google Scholar 

  • Bookstein C, Musch MW, DePaoli A, Xie Y, Villereal M, Rao MC, Chang EB (1994) A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem 269:29704–29709

    PubMed  CAS  Google Scholar 

  • Bookstein C, Xie Y, Rabenau K, Musch MW, McSwine RL, Rao MC, Chang EB (1997) Tissue distribution of Na+/H+ exchanger isoforms NHE2 and NHE4 in rat intestine and kidney. Am J Physiol 273:C1496–C1505

    PubMed  CAS  Google Scholar 

  • Boron WF (2001) Sodium-coupled bicarbonate transporters. JOP 2:176–181

    PubMed  CAS  Google Scholar 

  • Bowen JW (1992) Regulation of Na+-K+-ATPase expression in cultured renal cells by incubation in hypertonic medium. Am J Physiol 262:C845–C853

    PubMed  CAS  Google Scholar 

  • Brandsch M, Miyamoto Y, Ganapathy V, Leibach FH (1993) Regulation of taurine transport in human colon carcinoma cell lines (HT-29 and Caco-2) by protein kinase C. Am J Physiol 264:G939–G946

    PubMed  CAS  Google Scholar 

  • Brierley GP, Davis MH, Cragoe EJ Jr., Jung DW (1989) Kinetic properties of the Na+/H+ antiport of heart mitochondria. Biochemistry (Mosc) 28:4347–4354

    CAS  Google Scholar 

  • Brosius FC III, Alper SL, Garcia AM, Lodish HF (1989) The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem 264:7784–7787

    PubMed  CAS  Google Scholar 

  • Burg MB (1995) Molecular basis of osmotic regulation. Am J Physiol 268:F983–F996

    PubMed  CAS  Google Scholar 

  • Burg MB (1996) Coordinate regulation of organic osmolytes in renal cells. Kidney Int 49:1684–1685

    PubMed  CAS  Google Scholar 

  • Burg MB, Kador PF (1988) Sorbitol, osmoregulation, and the complications of diabetes. J Clin Invest 81:635–640

    PubMed  CAS  Google Scholar 

  • Burg MB, Kwon ED, Kültz D (1997) Regulation of gene expression by hypertonicity. Annu Rev Physiol 59:437–455

    PubMed  CAS  Google Scholar 

  • Burger-Kentischer A, Müller E, Neuhofer W, März J, Thurau K, Beck F (1999) Expression of aldose reductase, sorbitol dehydrogenase and Na+/myo-inositol and Na+/Cl-/betaine transporter mRNAs in individual cells of the kidney during changes in the diuretic state. Pflugers Arch 437:248–254

    PubMed  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518

    PubMed  CAS  Google Scholar 

  • Burridge K, Zhong C (1997) Focal adhesion assembly. Trends Cell Biol 7:342–347

    PubMed  CAS  Google Scholar 

  • Busch AE, Maylie J (1993) MinK channels: A minimal channel protein with a maximal impact. Cell Physiol Biochem 3:270–276

    CAS  Google Scholar 

  • Busch AE, Suessbrich H (1997) Role of the ISK protein in the IminK channel complex. Trends Pharmacol Sci 18:26–29

    PubMed  CAS  Google Scholar 

  • Busch AE, Varnum M, Adelman JP, North RA (1992) Hypotonic solution increases the slowly activating potassium current ISK expressed in Xenopus oocytes. Biochem Biophys Res Commun 184:804–810

    PubMed  CAS  Google Scholar 

  • Buyse G, Voets T, Tytgat J, De Greef C, Droogmans G, Nilius B, Eggermont J (1997) Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J Biol Chem 272:3615–3621

    PubMed  CAS  Google Scholar 

  • Cammarata PR, Schafer G, Chen SW, Guo Z, Reeves RE (2002) Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells. Invest Ophthalmol Vis Sci 43:425–433

    PubMed  Google Scholar 

  • Capasso JM, Rivard CJ, Berl T (2001) Long-term adaptation of renal cells to hypertonicity: role of MAP kinases and Na-K-ATPase. Am J Physiol Renal Physiol 280, F768–F776

    PubMed  CAS  Google Scholar 

  • Caruso-Neves C, Lopes AG (2000) Sodium pumps in the Malpighian tubule of Rhodnius sp. An Acad Bras Cienc 72:407–412

    PubMed  CAS  Google Scholar 

  • Chan HC, Fu WO, Chung YW, Huang SJ, Chan PSF, Wong PYD (1994) Swelling-induced anion and cation conductances in human epididymal cells. J Physiol 478:449–460

    PubMed  CAS  Google Scholar 

  • Chan HC, Nelson DJ (1992) Chloride-dependent cation conductance activated during cellular shrinkage. Science 257:669–671

    PubMed  CAS  Google Scholar 

  • Chen JG, Coe M, McAteer JA, Kempson SA (1996a) Hypertonic activation and recovery of system A amino acid transport in renal MDCK cells. Am J Physiol 270:F419–F424

    PubMed  CAS  Google Scholar 

  • Chen Y, Simasko SM, Niggel J, Sigurdson WJ, Sachs F (1996b) Ca2+ uptake in GH3 cells during hypotonic swelling: the sensory role of stretch-activated ion channels. Am J Physiol 270:C1790–C1798

    PubMed  CAS  Google Scholar 

  • Chen L, Wang L, Jacob TJ (1999a) Association of intrinsic pICln with volume-activated Cl current and volume regulation in a native epithelial cell. Am J Physiol 276:C182–C192

    PubMed  CAS  Google Scholar 

  • Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999b) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96:2514–2519

    PubMed  CAS  Google Scholar 

  • Chesney RW, Gusowski N, Dabbagh S (1985a) Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids. J Clin Invest 76:2213–2221

    PubMed  CAS  Google Scholar 

  • Chesney RW, Gusowski N, Dabbagh S, Theissen M, Padilla M, Diehl A (1985b) Factors affecting the transport of β-amino acids in rat renal brush-border membrane vesicles. The role of external chloride. Biochim Biophys Acta 812:702–712

    PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    PubMed  CAS  Google Scholar 

  • Chou CY, Shen MR, Hsu KS, Huang HY, Lin HC (1998) Involvement of PKC-α in regulatory volume decrease responses and activation of volume-sensitive chloride channels in human cervical cancer HT-3 cells. J Physiol 512: 435–448

    PubMed  CAS  Google Scholar 

  • Chow CW, Woodside M, Demaurex N, Yu FH, Plant P, Rotin D, Grinstein S, Orlowski J (1999) Proline-rich motifs of the Na+/H+ exchanger 2 isoform. Binding of Src homology domain 3 and role in apical targeting in epithelia. J Biol Chem 274:10481–10488

    PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330:66–68

    PubMed  CAS  Google Scholar 

  • Christensen O, Hoffmann EK (1992) Cell swelling activates K+ and Cl channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J Membr Biol 129:13–36

    PubMed  CAS  Google Scholar 

  • Christensen O, Simon M, Randlev T (1989) Anion channels in a leaky epithelium. A patch-clamp study of choroid plexus. Pflugers Arch 415:37–46

    PubMed  CAS  Google Scholar 

  • Civan MM, Coca-Prados M, Peterson-Yantorno K (1994a) Pathways signaling the regulatory volume decrease of cultured nonpigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci 35:2876–2886

    PubMed  CAS  Google Scholar 

  • Civan MM, Marano CW, Matschinsky FW, Peterson-Yantorno K (1994b) Prolonged incubation with elevated glucose inhibits the regulatory response to shrinkage of cultured human retinal pigment epithelial cells. J Membr Biol 139:1–13

    PubMed  CAS  Google Scholar 

  • Civan MM, Coca-Prados M, Peterson-Yantorno K (1996) Regulatory volume increase of human nonpigmented ciliary epithelial cells. Exp Eye Res 62:627–639

    PubMed  CAS  Google Scholar 

  • Civan MM, Peterson-Yantorno K, Sánchez-Torres J, Coca-Prados M (1997) Potential contribution of epithelial Na+ channel to net secretion of aqueous humor. J Exp Zool 279:498–503

    PubMed  CAS  Google Scholar 

  • Clark EA, King WG, Brugge JS, Symons M, Hynes RO (1998) Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 142:573–586

    PubMed  CAS  Google Scholar 

  • Clemo HF, Baumgarten CM (1997) Swelling-activated Gd3+-sensitive cation current and cell volume regulation in rabbit ventricular myocytes. J Gen Physiol 110:297–312

    PubMed  CAS  Google Scholar 

  • Coca-Prados M, Sanchez-Torres J, Peterson-Yantorno K, Civan MM (1996) Association of ClC-3 channel with Cl transport by human nonpigmented ciliary epithelial cells. J Membr Biol 150:197–208

    PubMed  CAS  Google Scholar 

  • Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58:1674–1687

    PubMed  CAS  Google Scholar 

  • Cornet M, Ubl J, Kolb H-A (1993) Cytoskeleton and ion movements during volume regulation in cultured PC12 cells. J Membr Biol 133:161–170

    PubMed  CAS  Google Scholar 

  • Costa PMF, Fernandes PL, Ferreira HG, Ferreira KTG, Giraldez F (1987) Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda). J Physiol (Lond) 393:1–17

    CAS  Google Scholar 

  • Coulombe A, Coraboeuf E (1992) Large-conductance chloride channels of new-born rat cardiac myocytes are activated by hypotonic media. Pflugers Arch 422:143–150

    PubMed  CAS  Google Scholar 

  • Counillon L, Pouyssegur J (2000) The expanding family of eukaryotic Na+/H+ exchangers. J Biol Chem 275:1–4

    PubMed  CAS  Google Scholar 

  • Coupaye-Gerard B, Bookstein C, Duncan P, Chen XY, Smith PR, Musch M, Ernst SA, Chang EB, Kleyman TR (1996) Biosynthesis and cell surface delivery of the NHE1 isoform of Na+/H+ exchanger in A6 cells. Am J Physiol 271:C1639–C1645

    PubMed  CAS  Google Scholar 

  • Craelius W, Ross MJ, Harris DR, Chen VK, Palant CE (1993) Membrane currents controlled by physical forces in cultured mesangial cells. Kidney Int 43:535–543

    PubMed  CAS  Google Scholar 

  • Cunningham SA, Awayda MS, Bubien JK, Ismailov II, Arrate MP, Berdiev BK, Benos DJ, Fuller CM (1995) Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem 270:31016–31026

    PubMed  CAS  Google Scholar 

  • Cuppoletti J, Tewari KP, Sherry AM, Kupert EY, Malinowska DH (2001) ClC-2 Cl-channels in human lung epithelia: activation by arachidonic acid, amidation, and acid-activated omeprazole. Am J Physiol Cell Physiol 281:C46–C54

    PubMed  CAS  Google Scholar 

  • Curtis DR, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69:97–188

    PubMed  CAS  Google Scholar 

  • Czekay RP, Kinne-Saffran E, Kinne RKH (1994) Membrane traffic and sorbitol release during osmo-and volume regulation in isolated rat renal inner medullary collecting duct cells. Eur J Cell Biol 63:20–31

    PubMed  CAS  Google Scholar 

  • de Angelis E, Petronini PG, Borghetti P, Borghetti AF, Wheeler KP (1999) Induction of betaine-gamma-aminobutyric acid transport activity in porcine chondrocytes exposed to hypertonicity. J Physiol 518 (Pt 1), 187–194

    PubMed  Google Scholar 

  • Dermietzel R, Hwang TK, Buettner R, Hofer A, Dotzler E, Kremer M, Deutzmann R, Thinnes FP, Fishman GI, Spray DC, (1994) Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. Proc Natl Acad Sci USA 91:499–503

    PubMed  CAS  Google Scholar 

  • Deutsch C, Chen L-Q (1993) Heterologous expression of specific K+ channels in T lymphocytes: Functional consequences for volume regulation. Proc Natl Acad Sci USA 90:10036–10040

    PubMed  CAS  Google Scholar 

  • Devor DC, Frizzell RA (1998) Modulation of K+ channels by arachidonic acid in T84 cells. II. Activation of a Ca2+-independent K+ channel. Am J Physiol 274:C149–C160

    PubMed  CAS  Google Scholar 

  • Dezaki K, Tsumura T, Maeno E, Okada Y (2000) Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn J Physiol 50:235–241

    PubMed  CAS  Google Scholar 

  • Di Fulvio M, Lauf PK, Adragna NC (2001a) Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells. J Biol Chem 276:44534–44540

    PubMed  Google Scholar 

  • Di Fulvio M, Lincoln TM, Lauf PK, Adragna NC (2001b) Protein kinase G regulates potassium chloride cotransporter-3 expression in primary cultures of rat vascular smooth muscle cells. J Biol Chem 276:21046–21052

    PubMed  Google Scholar 

  • Donaldson PJ, Chen LK, Lewis SA (1989) Effects of serosal anion composition on the permeability properties of rabbit urinary bladder. Am J Physiol 256:F1125–F1134

    PubMed  CAS  Google Scholar 

  • Doroshenko P, Neher E (1992) Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol (Lond) 449:197–218

    CAS  Google Scholar 

  • Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    PubMed  CAS  Google Scholar 

  • Duan D, Ye L, Britton F, Horowitz B, Hume JR (2000) A novel anionic inward rectifier in native cardiac myocytes. Circ Res 86:E63–E71

    PubMed  CAS  Google Scholar 

  • Dubé L, Parent L, Sauvé R (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am J Physiol 259:F348–F356

    PubMed  Google Scholar 

  • Dubinsky WP, Mayorga-Wark O, Schultz SG (2000) Potassium channels in basolateral membrane vesicles from necturus enterocytes: stretch and ATP sensitivity. Am J Physiol Cell Physiol 279:C634–C638

    PubMed  CAS  Google Scholar 

  • Dudeja PK, Rao DD, Syed I, Joshi V, Dahdal RY, Gardner C, Risk MC, Schmidt L, Bavishi D, Kim KE, Harig JM, Goldstein JL, Layden TJ, Ramaswamy K (1996) Intestinal distribution of human Na+/H+ exchanger isoforms NHE-1, NHE-2, and NHE-3 mRNA. Am J Physiol 271:G483–G493

    PubMed  CAS  Google Scholar 

  • Dunbar LA, Caplan MJ (2000) The cell biology of ion pumps: sorting and regulation. Eur J Cell Biol 79:557–563

    PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    PubMed  CAS  Google Scholar 

  • Duzgun SA, Rasque H, Kito H, Azuma N, Li W, Basson MD, Gahtan V, Dudrick SJ, Sumpio BE (2000) Mitogen-activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions. J Cell Biochem 76:567–571

    PubMed  CAS  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    PubMed  CAS  Google Scholar 

  • Emma F, McManus M, Strange K (1997) Intracellular electrolytes regulate the volume set point of the organic osmolyte/anion channel VSOAC. Am J Physiol 272:C1766–C1775

    PubMed  CAS  Google Scholar 

  • Erickson GR, Alexopoulos LG, Guilak F (2001) Hyperosmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 34:1527–1535

    PubMed  CAS  Google Scholar 

  • Estevez AY, O’Regan MH, Song D, Phillis JW (1999) Hypo-osmotically induced amino acid release from the rat cerebral cortex: role of phospholipases and protein kinases. Brain Res 844:1–9

    PubMed  CAS  Google Scholar 

  • Falke LC, Misler S (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc Natl Acad Sci USA 86:3919–3923

    PubMed  CAS  Google Scholar 

  • Farrugia G, Rae J (1993) Effect of volume changes on a potassium current in rabbit corneal epithelial cells. Am J Physiol 264:C1238–C1245

    PubMed  CAS  Google Scholar 

  • Felipe A, Snyders DJ, Deal KK, Tamkun MM (1993) Influence of cloned voltage-gated K+ channel expression on alanine transport, Rb+ uptake, and cell volume. Am J Physiol 265:C1230–C1238

    PubMed  CAS  Google Scholar 

  • Feranchak AP, Berl T, Capasso J, Wojtaszek PA, Han J, Fitz JG (2001) p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J Clin Invest 108:1495–1504

    PubMed  CAS  Google Scholar 

  • Feranchak AP, Fitz JG, Roman RM (2000) Volume-sensitive purinergic signaling in human hepatocytes. J Hepatol 33:174–182

    PubMed  CAS  Google Scholar 

  • Feranchak AP, Roman RM, Doctor RB, Salter KD, Toker A, Fitz JG (1999) The lipid products of phosphoinositide 3-kinase contribute to regulation of cholangiocyte ATP and chloride transport. J Biol Chem 274:30979–30986

    PubMed  CAS  Google Scholar 

  • Feranchak AP, Roman RM, Schwiebert EM, Fitz JG (1998) Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release. J Biol Chem 273:14906–14911

    PubMed  CAS  Google Scholar 

  • Ferraris JD, Burg MB, Williams CK, Peters EM, Garcia-Perez A (1996) Betaine transporter cDNA cloning and effect of osmolytes on its mRNA induction. Am J Physiol 270:C650–C654

    PubMed  CAS  Google Scholar 

  • Fievet B, Gabillat N, Borgese F, Motais R (1995) Expression of band 3 anion exchanger induces chloride current and taurine transport: structure-function analysis. EMBO J 14:5158–5169

    PubMed  CAS  Google Scholar 

  • Fievet B, Perset F, Gabillat N, Guizouarn H, Borgese F, Ripoche P, Motais R (1998) Transport of uncharged organic solutes in Xenopus oocytes expressing red cell anion exchangers (AE1 s) Proc Natl Acad Sci USA 95:10996–11001

    PubMed  CAS  Google Scholar 

  • Filipovic D, Sackin H (1991) A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am J Physiol 260:F119–F129

    PubMed  CAS  Google Scholar 

  • Filipovic D, Sackin H (1992) Stretch-and volume-activated channels in isolated proximal tubule cells. Am J Physiol 262:F857–F870

    PubMed  CAS  Google Scholar 

  • Forlani G, Bossi E, Perego C, Giovannardi S, Peres A (2001) Three kinds of currents in the canine betaine-GABA transporter BGT-1 expressed in Xenopus laevis oocytes. Biochim Biophys Acta 1538:172–180

    PubMed  CAS  Google Scholar 

  • Fraser CL, Swanson RA (1994) Female sex hormones inhibit volume regulation in rat brain astrocyte culture. Am J Physiol 267:C909–C914

    PubMed  CAS  Google Scholar 

  • Fuller CM, Benos DJ (2000) Ca2+-activated Cl channels: a newly emerging anion transport family. News Physiol Sci 15:165–171

    PubMed  CAS  Google Scholar 

  • Fuller CM, Ji HL, Tousson AM, Elble RC, Pauli BU, Benos DJ (2001) Ca2+-activated Cl channels: a newly emerging anion transport family. Pflugers Arch 443 Suppl 1, S107–S110

    PubMed  CAS  Google Scholar 

  • Furlong TJ, Moriyama T, Spring KR (1991) Activation of osmolyte efflux from cultured renal papillary epithelial cells. J Membr Biol 123:269–277

    PubMed  CAS  Google Scholar 

  • Fürst J, Bazzini C, Jakab M, Meyer G, König M, Gschwentner M, Ritter M, Schmarda A, BottÀ G, Benz R, Deetjen P, Paulmichl M (2000a) Functional reconstitution of ICln in lipid bilayers. Pflugers Arch 440:100–115

    PubMed  Google Scholar 

  • Fürst J, Jakab M, Konig M, Ritter M, Gschwentner M, Rudzki J, Danzl J, Mayer M, Burtscher CM, Schirmer J, Maier B, Nairz M, Chwatal S, Paulmichl M (2000b) Structure and function of the ion channel ICln. Cell Physiol Biochem 10:329–334

    PubMed  Google Scholar 

  • Fyfe GK, Quinn A, Canessa CM (1998) Structure and function of the Mec-ENaC family of ion channels. Semin Nephrol 18:138–151

    PubMed  CAS  Google Scholar 

  • Gabbay KH (1973) The sorbitol pathway and the complications of diabetes. N Engl J Med 288:831–836

    Article  PubMed  CAS  Google Scholar 

  • Gamper N, Huber SM, Badawi K, Lang F (2000) Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pflugers Arch 441:281–286

    PubMed  CAS  Google Scholar 

  • Garavaglia L, Rodighiero S, Bertocchi C, Manfredi R, Fürst J, Gschwentner M, Ritter M, Bazzini C, Botta G, Jakab M, Meyer G, Paulmichl M (2002) ICln channels reconstituted in heart-lipid bilayer are selective to chloride. Pflugers Arch 443:748–753

    PubMed  CAS  Google Scholar 

  • Garcia-Calvo M, Knaus HG, McManus OB, Giangiacomo KM, Kaczorowski GJ, Garcia ML (1994) Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem 269:676–682

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes. Physiol Rev 71:1081–1115

    PubMed  CAS  Google Scholar 

  • Gardos G (2002) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654

    Google Scholar 

  • Garty H, Furlong TJ, Ellis DE, Spring KR (1991) Sorbitol permease: an apical membrane transporter in cultured renal papillary epithelial cells. Am J Physiol 260:F650–F656

    PubMed  CAS  Google Scholar 

  • Garty H, Palmer LG (1997) Epithelial sodium channels: Function, structure, and regulation. Physiol Rev 77:359–396

    PubMed  CAS  Google Scholar 

  • Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, Sepúlveda FV (1992) Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71:23–32

    PubMed  CAS  Google Scholar 

  • Gillen CM, Brill S, Payne JA, Forbush B, III (1996) Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human—A new member of the cation-chloride cotransporter family. J Biol Chem 271:16237–16244

    PubMed  CAS  Google Scholar 

  • Goetzl EJ, An S (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 12:1589–1598

    PubMed  CAS  Google Scholar 

  • Goldstein L, Davis EM (1994) Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am J Physiol 267:R426–R431

    PubMed  CAS  Google Scholar 

  • Goldstein L, Davis-Amaral EM, Musch MW (1996) Organic osmolyte channels: transport characteristics and regulation. Kidney Int 49:1690–1694

    PubMed  CAS  Google Scholar 

  • Good DW, Di Mari JF, Watts BA, III (2000) Hypo-osmolality stimulates Na+/H+ exchange and HCO3 absorption in thick ascending limb via PI 3-kinase. Am J Physiol Cell Physiol 279:C1443–C1454

    PubMed  CAS  Google Scholar 

  • Gosling M, Poyner DR, Smith JW (1996) Effects of arachidonic acid upon the volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J Physiol 493:613–623

    PubMed  CAS  Google Scholar 

  • Graf J, Haddad P, Häussinger D, Lang F (1988) Cell volume regulation in liver. Renal Physiol Biochem 11:202–220

    PubMed  CAS  Google Scholar 

  • Graf J, Häussinger D (1996) Ion transport in hepatocytes: Mechanisms and correlations to cell volume, hormone actions and metabolism. J Hepatol 24 Suppl. 1:53–77

    PubMed  CAS  Google Scholar 

  • Greger R (1996) The membrane transporters regulating epithelial NaCl secretion. Pflugers Arch 432:579–588

    PubMed  CAS  Google Scholar 

  • Grinstein S, Rothstein A, Cohen S (1985) Mechanism of osmotic activation of Na+/H+ exchange in rat thymic lymphocytes. J Gen Physiol 85:765–787

    PubMed  CAS  Google Scholar 

  • Grinstein S, Woodside M, Sardet C, Pouyssegur J, Rotin D (1992) Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J Biol Chem 267:23823–23828

    PubMed  CAS  Google Scholar 

  • Grinstein S, Woodside M, Waddell TK, Downey GP, Orlowski J, Pouyssegur J, Wong DC, Foskett JK (1993) Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. EMBO J 12:5209–5218

    PubMed  CAS  Google Scholar 

  • Gründer S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759–762

    PubMed  Google Scholar 

  • Grunewald RW, Kinne RKH (1989) Intracellular sorbitol content in isolated rat inner medullary collecting duct cells. Regulation by extracellular osmolarity. Pflugers Arch 414:178–184

    PubMed  CAS  Google Scholar 

  • Grunewald RW, Kinne RKH (1999) Osmoregulation in the mammalian kidney: the role of organic osmolytes. J Exp Zool 283:708–724

    PubMed  CAS  Google Scholar 

  • Grunewald JM, Grunewald RW, Kinne RKH (1993a) Ion content and cell volume in isolated collecting duct cells: effect of hypotonicity. Kidney Int 44:509–517

    PubMed  CAS  Google Scholar 

  • Grunewald RW, Weber II, Kinne-Saffran E, Kinne RKH (1993b) Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reaction. Biochim Biophys Acta 1225:39–47

    PubMed  CAS  Google Scholar 

  • Grunewald JM, Grunewald RW, Kinne RKH (1994) Regulation of ion content and cell volume in isolated rat renal IMCD cells under hypertonic conditions. Am J Physiol 267:F13–F19

    PubMed  CAS  Google Scholar 

  • Grunewald RW, Weber II, Kinne RKH (1995) Renal inner medullary sorbitol metabolism. Am J Physiol 269:F696–F701

    PubMed  CAS  Google Scholar 

  • Grunewald RW, Wagner M, Schubert I, Franz HE, Muller GA, Steffgen J (1998) Rat renal expression of mRNA coding for aldose reductase and sorbitol dehydrogenase and its osmotic regulation in inner medullary collecting duct cells. Cell Physiol Biochem 8:293–303

    PubMed  CAS  Google Scholar 

  • Gschwentner M, Nagl UO, Woll E, Schmarda A, Ritter M, Paulmichl M (1995) Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels. Pflugers Arch 430:464–470

    PubMed  CAS  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    PubMed  CAS  Google Scholar 

  • Guizouarn H, Gabillat N, Motais R, Borgese F (2001) Multiple transport functions of a red blood cell anion exchanger, tAE1: its role in cell volume regulation. J Physiol (Lond) 535:497–506

    CAS  Google Scholar 

  • Gusev GP, Sherstobitov AO (1996) An amiloride-sensitive, volume-dependent Na+ transport across the Lamprey (Lampetra fluviatilis) erythrocyte membrane. Gen Physiol Biophys 15:129–143

    PubMed  CAS  Google Scholar 

  • Haas M, Forbush B, III (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534

    PubMed  CAS  Google Scholar 

  • Hafting T, Sand O (2000) Purinergic activation of BK channels in clonal kidney cells (Vero cells) Acta Physiol Scand 170:99–109

    PubMed  CAS  Google Scholar 

  • Hager K, Hazama A, Kwon HM, Loo DD, Handler JS, Wright EM (1995) Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J Membr Biol 143:103–113

    PubMed  CAS  Google Scholar 

  • Hall AC, Bush PG (2001) The role of a swelling-activated taurine transport pathway in the regulation of articular chondrocyte volume. Pflugers Arch 442:771–781

    PubMed  CAS  Google Scholar 

  • Hall JA, Kirk J, Potts JR, Rae C, Kirk K (1996) Anion channel blockers inhibit swelling-activated anion, cation, and nonelectrolyte transport in HeLa cells. Am J Physiol 271:C579–C588

    PubMed  CAS  Google Scholar 

  • Hall SK, Zhang J, Lieberman M (1995) Cyclic AMP prevents activation of a swelling-induced chloride-sensitive conductance in chick heart cells. J Physiol 488:359–369

    PubMed  CAS  Google Scholar 

  • Hallows KR, Packman CH, Knauf PA (1991) Acute cell volume changes in anisotonic media affect F-actin content of HL-60 cells. Am J Physiol 261:C1154–C1161

    PubMed  CAS  Google Scholar 

  • Hammerman MR, Sacktor B, Daughaday WH (1980) myo-Inositol transport in renal brush border vesicles and it inhibition by D-glucose. Am J Physiol 239:F113–F120

    PubMed  CAS  Google Scholar 

  • Han X, Budreau AM, Chesney RW (1998) Molecular cloning and functional expression of an LLC-PK1 cell taurine transporter that is adaptively regulated by taurine. Adv Exp Med Biol 442:261–268

    PubMed  CAS  Google Scholar 

  • Handler JS, Kwon HM (2001) Cell and molecular biology of organic osmolyte accumulation in hypertonic renal cells. Nephron 87:106–110

    PubMed  CAS  Google Scholar 

  • Hardy SP, Goodfellow HR, Valverde MA, Gill DR, Sepulveda V, Higgins CF (1995) Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J 14:68–75

    PubMed  CAS  Google Scholar 

  • Häussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313:697–710

    PubMed  Google Scholar 

  • Häussinger D (1998) Osmoregulation of liver cell function: signalling, osmolytes and cell heterogeneity. Contrib Nephrol 123:185–204

    PubMed  Google Scholar 

  • Häussinger D, Hallbrucker C, Vom Dahl S, Decker S, Schweizer U, Lang F, Gerok W (1991) Cell volume is a major determinant of proteolysis control in liver. FEBS Lett 283:70–72

    PubMed  Google Scholar 

  • Hazama A, Okada Y (1988) Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J Physiol 402:687–702

    PubMed  CAS  Google Scholar 

  • Hazama A, Okada Y (1990) Involvement of Ca2+-induced Ca2+ release in the volume regulation of human epithelial cells exposed to a hypotonic medium. Biochem Biophys Res Commun 167:287–293

    PubMed  CAS  Google Scholar 

  • Hebert SC, Sun A (1988) Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH. Am J Physiol 255:F962–F969

    PubMed  CAS  Google Scholar 

  • Heinzinger H, van den Boom F, Tinel H, Wehner F (2001) In rat hepatocytes, the hypertonic activation of Na+ conductance and Na+-K+-2Cl symport—but not Na+-H+ antiport—is mediated by protein kinase C. J Physiol (Lond) 536:703–715

    CAS  Google Scholar 

  • Henson JH (1999) Relationships between the actin cytoskeleton and cell volume regulation. Microsc Res Tech 47:155–162

    PubMed  CAS  Google Scholar 

  • Hiki K, D’Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR (1999) Cloning, characterization, and chromosomal location of a novel human K+-Cl cotransporter. J Biol Chem 274: 10661–10667

    PubMed  CAS  Google Scholar 

  • Hirsch JR, Schlatter E (1997) Ca2+-dependent K+ channels in the cortical collecting duct of rat. Wien Klin Wochenschr 109:485–488

    PubMed  CAS  Google Scholar 

  • Hoffmann EK (1978) Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells. In Jorgensen CB, Skadhauge E (eds) Osmotic and volume regulation. Alfred Benzon Symposium XI., Munksgaard, Copenhagen, pp. 397–417

    Google Scholar 

  • Hoffmann EK, Dunham PB (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH (1994) On the similarity between the small Cl channel and the taurine channel activated after cell swelling in Ehrlich ascites tumor cells. Jpn J Physiol 44 Suppl 2:S49–S53

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO (1988) Mechanisms in volume regulation in Ehrlich ascites tumor cells. Renal Physiol Biochem 11:221–247

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Mills JW (1999) Membrane events involved in volume regulation. Curr Top Membr 48:123–196

    CAS  Google Scholar 

  • Hoffmann EK, Pedersen SF (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. Contrib Nephrol 123:50–78

    PubMed  CAS  Google Scholar 

  • Hoffmann EK, Simonsen LO, Lambert IH (1984) Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascites tumor cells. Role of internal Ca2+. J Membr Biol 78:211–222

    PubMed  CAS  Google Scholar 

  • Holtzman EJ, Kumar S, Faaland CA, Warner F, Logue PJ, Erickson SJ, Ricken G, Waldman J, Kumar S, Dunham PB (1998) Cloning, characterization, and gene organization of K-Cl cotransporter from pig and human kidney and C. elegans. Am J Physiol 275:F550–F564

    PubMed  CAS  Google Scholar 

  • Hoogerwerf WA, Tsao SC, Devuyst O, Levine SA, Yun CH, Yip JW, Cohen ME, Wilson PD, Lazenby AJ, Tse CM, Donowitz M (1996) NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am J Physiol 270:G29–G41

    PubMed  CAS  Google Scholar 

  • Hooley R, Yu CY, Symons M, Barber DL (1996) G α 13 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem 271:6152–6158

    PubMed  CAS  Google Scholar 

  • Horio M, Yamauchi A, Moriyama T, Imai E, Orita Y (1997) Osmotic regulation of amino acids and system A transport in Madin-Darby canine kidney cells. Am J Physiol 272:C804–C809

    PubMed  CAS  Google Scholar 

  • Huang R, Somjen GG (1997) Effects of hypertonia on voltage-gated ion currents in freshly isolated hippocampal neurons, and on synaptic currents in neurons in hippocampal slices. Brain Res 748:157–167

    PubMed  CAS  Google Scholar 

  • Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Arch 441:551–558

    PubMed  CAS  Google Scholar 

  • Hubert MD, Levitan I, Hoffman MM, Zraggen M, Hofreiter ME, Garber SS (2000) Modulation of volume regulated anion current by I(Cln) Biochim Biophys Acta 1466:105–114

    PubMed  CAS  Google Scholar 

  • Hume JR, Duan D, Collier ML, Yamazaki J, Horowitz B (2000) Anion transport in heart. Physiol Rev 80:31–81

    PubMed  CAS  Google Scholar 

  • Hunter M (1990) Stretch-activated channels in the basolateral membrane of single proximal cells of frog kidney. Pflugers Arch 416:448–453

    PubMed  CAS  Google Scholar 

  • Hurst AM, Hunter M (1990) Stretch-activated channels in single early distal tubule cells of the frog. J Physiol (Lond) 430:13–24

    CAS  Google Scholar 

  • Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    PubMed  CAS  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    PubMed  CAS  Google Scholar 

  • Isom LL, De Jongh KS, Catterall WA (1994) Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194

    PubMed  CAS  Google Scholar 

  • Itoh T, Yamauchi A, Miyai A, Yokoyama K, Kamada T, Ueda N, Fujiwara Y (1994) Mitogen-activated protein kinase and its activator are regulated by hypertonic stress in Madin-Darby canine kidney cells. J Clin Invest 93:2387–2392

    PubMed  CAS  Google Scholar 

  • Iwasa K, Tasaki I, Gibbons RC (1980) Swelling of nerve fibers associated with action potentials. Science 210:338–339

    PubMed  CAS  Google Scholar 

  • Jackson PS, Churchwell K, Ballatori N, Boyer JL, Strange K (1996) Swelling-activated anion conductance in skate hepatocytes: Regulation by cell Cl and ATP. Am J Physiol 270:C57–C66

    PubMed  CAS  Google Scholar 

  • Jackson PS, Morrison R, Strange K (1994) The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am J Physiol 267:C1203–C1209

    PubMed  CAS  Google Scholar 

  • Jackson PS, Strange K (1993) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol 265:C1489–C1500

    PubMed  CAS  Google Scholar 

  • Jackson PS, Strange K (1995a) Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J Gen Physiol 105:661–677

    PubMed  CAS  Google Scholar 

  • Jackson PS, Strange K (1995b) Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state. J Gen Physiol 105:643–660

    PubMed  CAS  Google Scholar 

  • Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511

    PubMed  CAS  Google Scholar 

  • Jalonen T (1993) Single-channel characteristics of the large-conductance anion channel in rat cortical astrocytes in primary culture. Glia 9:227–237

    PubMed  CAS  Google Scholar 

  • Jarolimek W, Lewen A, Misgeld U (1999) A furosemide-sensitive K+-Cl cotransporter counteracts intracellular Cl accumulation and depletion in cultured rat midbrain neurons. J Neurosci 19:4695–4704

    PubMed  CAS  Google Scholar 

  • Jensen BS, Jessen F, Hoffmann EK (1993) Na+, K+, Cl cotransport and its regulation in Ehrlich ascites tumor cells. Ca2+/calmodulin and protein kinase C dependent pathways. J Membr Biol 131:161–178

    PubMed  CAS  Google Scholar 

  • Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856

    PubMed  CAS  Google Scholar 

  • Jensen BS, Strobaek D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422

    PubMed  CAS  Google Scholar 

  • Jentsch TJ (1996) Chloride channels: A molecular perspective. Curr Opin Neurobiol 6:303–310

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Friedrich T, Schriever A, Yamada H (1999) The CLC chloride channel family. Pflugers Arch 437:783–795

    PubMed  CAS  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpeto marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514

    PubMed  CAS  Google Scholar 

  • Jiang L, Chernova MN, Alper SL (1997) Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. Am J Physiol 272, C191–C202

    PubMed  CAS  Google Scholar 

  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4 a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018

    PubMed  CAS  Google Scholar 

  • Jorgensen NK, Christensen S, Harbak H, Brown AM, Lambert IH, Hoffmann EK, Simonsen LO (1997) On the role of calcium in the regulatory volume decrease (RVD) response in Ehrlich mouse ascites tumor cells. J Membr Biol 157:281–299

    PubMed  CAS  Google Scholar 

  • Jorgensen NK, Lambert IH, Hoffmann EK (1996) Role of LTD4 in the regulatory volume decrease response in Ehrlich ascites tumor cells. J Membr Biol 151:159–173

    PubMed  CAS  Google Scholar 

  • Jorgensen NK, Petersen SF, Hoffmann EK (1999) Thrombin-, bradykinin-, and arachidonic acid-induced Ca2+ signaling in Ehrlich ascites tumor cells. Am J Physiol 276:C26–C37

    PubMed  CAS  Google Scholar 

  • Junankar PR, Kirk K (2000) Organic osmolyte channels: a comparative view. Cell Physiol Biochem 10:355–360

    PubMed  CAS  Google Scholar 

  • Kajimura M, O’Donnell ME, Curry FE (1997) Effect of cell shrinkage on permeability of cultured bovine aortic endothelia and frog mesenteric capillaries. J Physiol 503:413–425

    PubMed  CAS  Google Scholar 

  • Kanli H, Norderhus E (1998) Cell volume regulation in proximal renal tubules from trout (Salmo trutta) J Exp Biol 201 (Pt 9):1405–1419

    PubMed  CAS  Google Scholar 

  • Kashani AH, Chen BM, Grinnell AD (2001) Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins. J Physiol 530:243–252

    PubMed  CAS  Google Scholar 

  • Kawahara K (1990) A stretch-activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells. Pflugers Arch 415:624–629

    PubMed  CAS  Google Scholar 

  • Kawahara K, Ogawa A, Suzuki M (1991) Hypo-osmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am J Physiol 260:F27–F33

    PubMed  CAS  Google Scholar 

  • Kempson SA (1998) Differential activation of system A and betaine/GABA transport in MDCK cell membranes by hypertonic stress. Biochim Biophys Acta 1372:117–123

    PubMed  CAS  Google Scholar 

  • Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIK1 a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274:14838–14849

    PubMed  CAS  Google Scholar 

  • Kilic G, Fitz JG (2002) Heterotrimeric G-proteins activate Cl-channels through stimulation of a cyclooxygenase-dependent pathway in a model liver cell line. J Biol Chem 277:11721–11727

    PubMed  CAS  Google Scholar 

  • Kim D (1993) Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res 72:225–231

    PubMed  CAS  Google Scholar 

  • Kim D, Fu C (1993) Activation of a nonselective cation channel by swelling in atrial cells. J Membr Biol 135:27–37

    PubMed  CAS  Google Scholar 

  • Kim D, Sladek CD, Aguado-Velasco C, Mathiasen JR (1995) Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol 484 (Pt 3):643–660

    PubMed  CAS  Google Scholar 

  • Kim RD, Roth TP, Darling CE, Ricciardi R, Schaffer BK, Chari RS (2001) Hypo-osmotic stress stimulates growth in HepG2 cells via protein kinase B-dependent activation of activator protein-1. J Gastrointest Surg 5:546–555

    PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) Science 273: 245–248

    PubMed  CAS  Google Scholar 

  • Kinne RKH (1993) The role of organic osmolytes in osmoregulation: from bacteria to mammals. J Exp Zool 265:346–355

    PubMed  CAS  Google Scholar 

  • Kinne RKH (1998) Mechanisms of osmolyte release. Contrib Nephrol 123:34–49

    PubMed  CAS  Google Scholar 

  • Kinne RKH, Czekay RP, Grunewald JM, Mooren FC, Kinne-Saffran E (1993) Hypotonicity-evoked release of organic osmolytes from distal renal cells: systems, signals, and sidedness. Renal Physiol Biochem 16:66–78

    PubMed  CAS  Google Scholar 

  • Kinne RKH, Boese SH, Kinne-Saffran E, Ruhfus B, Tinel H, Wehner F (1996) Osmoregulation in the renal papilla: membranes, messengers and molecules. Kidney Int 49:1686–1689

    PubMed  CAS  Google Scholar 

  • Kinne RKH, Grunewald RW, Ruhfus B, Kinne-Saffran E (1997) Biochemistry and physiology of carbohydrates in the renal collecting duct. J Exp Zool 279:436–442

    PubMed  CAS  Google Scholar 

  • Kinne RKH, Tinel H, Kipp H, Kinne-Saffran E (2000) Regulation of sorbitol efflux in different renal medullary cells: similarities and diversities. Cell Physiol Biochem 10:371–378

    PubMed  CAS  Google Scholar 

  • Kinne RKH, Kipp H, Ruhfus B, Wehner F, Boese SH, Kinne-Saffran E (2001) Organic osmolyte channels in the renal medulla: Their properties and regulation. Am Zool 41:728–733

    CAS  Google Scholar 

  • Kinne RKH, Ruhfus B, Tinel H, Boese SH, Wehner F, Kinne-Saffran E (1995) Renal organic osmolytes: signal transduction pathways and release mechanisms. In de Santo NG, Capasso G (eds.) Acid-base and electrolyte balance. Molecular, cellular and clinical aspects. Istituto Italiano per gli Studi Filosofici, Cosenza, pp. 237–242

    Google Scholar 

  • Kinne-Saffran E, Kinne RKH (1997) Sorbitol uptake in plasma membrane vesicles isolated from immortalized rabbit TALH cells: activation by a Ca2+/calmodulin-dependent protein kinase. J Membr Biol 159:231–238

    PubMed  CAS  Google Scholar 

  • Kinnunen PK (2000) Lipid bilayers as osmotic response elements. Cell Physiol Biochem 10:243–250

    PubMed  CAS  Google Scholar 

  • Kirber MT, Ordway RW, Clapp LH, Walsh Jr. JV, Singer JJ (1992) Both membrane stretch and fatty acids directly activate large conductance Ca2+-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297:24–28

    PubMed  CAS  Google Scholar 

  • Kirk K (1997) Swelling-activated organic osmolyte channels. J. Membr. Biol. 158:1–16

    PubMed  CAS  Google Scholar 

  • Kirk K, Strange K (1998) Functional properties and physiological roles of organic solute channels. Annu Rev Physiol 60:719–739

    PubMed  CAS  Google Scholar 

  • Kirschner U, Tinel H, Rosin-Steiner S, Giffey A, Kinne RKH, Wehner F (1998) Single rat hepatocytes in primary culture as a model system for the study of regulatory volume increase (RVI) in liver. Nova Acta Leopold 306:299–303

    Google Scholar 

  • Kirschner U, Van Driessche W, Werner A, Wehner F (2003) Hypertonic activation of phospholemman in solitary rat hepatocytes in primary culture. FEBS Lett 537:151–156

    PubMed  CAS  Google Scholar 

  • Kizer N, Harter L, Hruska K, Alvarez U, Duncan R (1999) Volume regulatory decrease in UMR-106.01 cells is mediated by specific α1 subunits of L-type calcium channels. Cell Biochem Biophys 31:65–79

    PubMed  CAS  Google Scholar 

  • Klanke CA, Su YR, Callen DF, Wang Z, Meneton P, Baird N, Kandasamy RA, Orlowski J, Otterud BE, Leppert M, (1995) Molecular cloning and physical and genetic mapping of a novel human Na+/H+ exchanger (NHE5/SLC9A5) to chromosome 16q22.1. Genomics 25:615–622

    PubMed  CAS  Google Scholar 

  • Klein JD, Lamitina ST, O’Neill WC (1999) JNK is a volume-sensitive kinase that phosphorylates the Na-K-2Cl cotransporter in vitro. Am J Physiol 277:C425–C431

    PubMed  CAS  Google Scholar 

  • Klein M, Seeger P, Schuricht B, Alper SL, Schwab A (2000) Polarization of Na+/H+ and Cl/HCO3 exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Cohen P (1999) Activation of serum-and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339:319–328

    PubMed  CAS  Google Scholar 

  • Koch JP, Korbmacher C (1999) Osmotic shrinkage activates nonselective cation (NSC) channels in various cell types. J Membr Biol 168:131–139

    PubMed  CAS  Google Scholar 

  • Koch JP, Korbmacher C (2000) Mechanism of shrinkage activation of nonselective cation channels in M-1 mouse cortical collecting duct cells. J Membr Biol 177:231–242

    PubMed  CAS  Google Scholar 

  • Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    PubMed  Google Scholar 

  • Koomoa DL, Musch MW, Goldstein L (2002) Comparison of the osmolyte transport properties induced by trAE1 versus IClswell in Xenopus oocytes. J Membr Biol 185:57–63

    PubMed  CAS  Google Scholar 

  • Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    PubMed  CAS  Google Scholar 

  • Korbmacher C, Volk T, Segal AS, Boulpaep EL, Frömter E (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J Membr Biol 146:29–45

    PubMed  CAS  Google Scholar 

  • Kowdley GC, Ackerman SJ, Chen Z, Szabo G, Jones LR, Moorman JR (1997) Anion, cation, and zwitterion selectivity of phospholemman channel molecules. Biophys J 72:141–145

    PubMed  CAS  Google Scholar 

  • Krapivinsky GB, Ackerman MJ, Gordon EA, Krapivinsky LD, Clapham DE (1994) Molecular characterization of a swelling-induced chloride conductance regulatory protein, plCln. Cell 76:439–448

    PubMed  CAS  Google Scholar 

  • Krause U, Rider MH, Hue L (1996) Protein kinase signaling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepatocytes. J Biol Chem 271:16668–16673

    PubMed  CAS  Google Scholar 

  • Kregenow FM, Robbie DE, Orloff J (1976) Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am J Physiol 231:306–311

    PubMed  CAS  Google Scholar 

  • Kubitz R, Warth R, Allert N, Kunzelmann K, Greger R (1992) Small-conductance chloride channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pflugers Arch 421: 447–454

    PubMed  CAS  Google Scholar 

  • Kulanthaivel P, Cool DR, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapathy V (1991) Transport of taurine and its regulation by protein kinase C in the JAR human placental choriocarcinoma cell line. Biochem J 277 (Pt 1), 53–58

    PubMed  CAS  Google Scholar 

  • Kurashima K, D’Souza S, Szászi K, Ramjeesingh R, Orlowski J, Grinstein S (1999) The apical Na+/H+ exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem 274:29843–29849

    PubMed  CAS  Google Scholar 

  • Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of the cDNa for a Na+/myo-inositol cotransporter a hypertonicity stress protein. J Biol Chem 267:6297–6301

    PubMed  CAS  Google Scholar 

  • Laich A, Gschwentner M, Krick W, Nagl UO, Fürst J, Hofer S, Susanna A, Schmarda A, Deetjen P, Burckhardt G, Paulmichl M (1997) ICln a chloride channel cloned from kidney cells, is activated during regulatory volume decrease. Kidney Int 51:477–478

    PubMed  CAS  Google Scholar 

  • Lambert IH (1989) Leukotriene-D4 induced cell shrinkage in Ehrlich ascites tumor cells. J Membr Biol 108:165–176

    PubMed  CAS  Google Scholar 

  • Lambert IH, Hoffmann EK (1993) Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol 131:67–79

    PubMed  CAS  Google Scholar 

  • Lambert IH, Hoffmann EK (1994) Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J Membr Biol 142:289–298

    PubMed  CAS  Google Scholar 

  • Lambert IH, Hoffmann EK, Christensen P (1987) Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J Membr Biol 98:247–256

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998a) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Völkl H (1998b) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8:1–45

    PubMed  CAS  Google Scholar 

  • Lang F, Stehle T, Häussinger D (1989) Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflugers Arch 413:209–216

    PubMed  CAS  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813

    PubMed  CAS  Google Scholar 

  • Lapointe J-Y, Garneau L, Bell PD, Cardinal J (1990) Membrane crosstalk in the mammalian proximal tubule during alterations in transepithelial sodium transport. Am J Physiol 258:F339–F345

    PubMed  CAS  Google Scholar 

  • Larsen AK, Jensen BS, Hoffmann EK (1994) Activation of protein kinase C during cell volume regulation in Ehrlich mouse ascites tumor cells. Biochim Biophys Acta 1222:477–482

    PubMed  CAS  Google Scholar 

  • Lauf PK, Adragna NC (2000) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354

    PubMed  CAS  Google Scholar 

  • Lauf PK, Zhang J, Gagnon KB, Delpire E, Fyffe RE, Adragna NC (2001) K-Cl cotransport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-domain-truncated KCC1 cDNAs. Cell Physiol Biochem 11:143–160

    PubMed  CAS  Google Scholar 

  • Law RO (1998) The role of taurine in the regulation of brain cell volume in chronically hyponatraemic rats. Neurochem Int 33:467–472

    PubMed  CAS  Google Scholar 

  • Law RO (1999) Amino acid efflux and cell volume regulation in cerebrocortical minislices prepared from chronically hyponatraemic and hypernatraemic rats. Neurochem Int 35:423–430

    PubMed  CAS  Google Scholar 

  • Lawonn P, Hoffmann EK, Hougaard C, Wehner F (2003) A cell shrinkage-induced cation conductance with a novel pharmacology in Ehrlich-Lettre-ascites tumour cells. FEBS Lett (in press)

    Google Scholar 

  • Leibowich S, DeLong J, Civan MM (1988) Apical Na+ permeability of frog skin during serosal Cl replacement. J Membr Biol 102:121–130

    PubMed  CAS  Google Scholar 

  • Lemonnier L, Prevarskaya N, Shuba Y, Vanden Abeele F, Nilius B, Mazurier J, Skryma R (2002) Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J 16:222–224

    PubMed  CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol 279:F793–F801

    CAS  Google Scholar 

  • Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212

    PubMed  CAS  Google Scholar 

  • Lewis RA, Bursell JD, Kirk K (1996) Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes. J Membr Biol 149:103–111

    PubMed  CAS  Google Scholar 

  • Lewis RS, Cahalan MD (1995) Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653

    PubMed  CAS  Google Scholar 

  • Lewis RS, Ross PE, Cahalan MD (1993) Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol 101:801–826

    PubMed  CAS  Google Scholar 

  • Lewis SA, Butt AG, Bowler MJ, Leader JP, Macknight ADC (1985) Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J Membr Biol 83:119–137

    PubMed  CAS  Google Scholar 

  • Li CH, Breton S, Morrison R, Cannon CL, Emma F, Sanchez-Olea R, Bear C, Strange K (1998) Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes. J Gen Physiol 112:727–736

    PubMed  CAS  Google Scholar 

  • Li G, Liu Y, Olson JE (2002) Calcium/calmodulin-modulated chloride and taurine conductances in cultured rat astrocytes. Brain Res 925:1–8

    PubMed  CAS  Google Scholar 

  • Li Q, Jungmann V, Kiyatkin A, Low PS (1996) Prostaglandin E2 stimulates a Ca2+-dependent K+ channel in human erythrocytes and alters cell volume and filterability. J Biol Chem 271:18651–18656

    PubMed  CAS  Google Scholar 

  • Liedtke CM, Cole TS (2002) Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochim Biophys Acta 1589:77–88

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC) a candidate vertebrate osmoreceptor. Cell 103:525–535

    PubMed  CAS  Google Scholar 

  • Light DB, Mertins TM, Belongia JA, Witt CA (1997) 5-Lipoxygenase metabolites of arachidonic acid regulate volume decrease by mudpuppy red blood cells. J Membr Biol 158:229–239

    PubMed  CAS  Google Scholar 

  • Lima L, Cubillos S, Guerra A (2000) Regulation of high affinity taurine transport in goldfish and rat retinal cells. Adv Exp Med Biol 483:431–440

    PubMed  CAS  Google Scholar 

  • Ling BN, Webster CL, Eaton DC (1992) Eicosanoids modulate apical Ca2+-dependent K+ channels in cultured rabbit principal cells. Am J Physiol 263:F116–F126

    PubMed  CAS  Google Scholar 

  • Lock H, Valverde MA (2000) Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells. J Biol Chem 275:34849–34852

    PubMed  CAS  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726

    PubMed  CAS  Google Scholar 

  • Low SY, Rennie MJ, Taylor PM (1996) Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol 495:299–303

    PubMed  CAS  Google Scholar 

  • Low SY, Taylor PM (1998) Integrin and cytoskeletal involvement in signalling cell volume changes to glutamine transport in rat skeletal muscle. J Physiol 512:481–485

    PubMed  CAS  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    PubMed  CAS  Google Scholar 

  • Lucke B, McCutcheon M (1932) The living cell as an osmotic system and its permeability to water. Physiol Rev 12:68–139

    CAS  Google Scholar 

  • Lundgren DW, Moore RM, Collins PL, Moore JJ (1997) Hypotonic stress increases cyclooxygenase-2 expression and prostaglandin release from amnion-derived WISH cells. J Biol Chem 272:20118–20124

    PubMed  CAS  Google Scholar 

  • Ma TH, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol (Lond) 517:317–326

    CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1999a) Ca2+/Calmodulin kinase II and decreases in intracellular pH are required to activate K+ channels after substantial swelling in villus epithelial cells. J Membr Biol 172:59–66

    PubMed  CAS  Google Scholar 

  • MacLeod RJ, Hamilton JR (1999b) Increases in intracellular pH and Ca2+ are essential for K+ channel activation after modest “physiological” swelling in villus epithelial cells. J Membr Biol 172:47–58

    PubMed  CAS  Google Scholar 

  • Macri P, Breton S, Marsolais M, Lapointe JY, Laprade R (1997) Hypertonicity decreases basolateral K+ and Cl conductances in rabbit proximal convoluted tubule. J Membr Biol 155:229–237

    PubMed  CAS  Google Scholar 

  • Mähler S, Kinne-Saffran E, Fujisue H, Kinne RKH, Föllmann W (1998) Regulation of sorbitol content in cultured porcine urinary bladder epithelial cells. Am J Physiol 274:F342–F347

    PubMed  Google Scholar 

  • Marchenko SM, Sage SO (2000) Hyperosmotic but not hypo-osmotic stress evokes a rise in cytosolic Ca2+ concentration in endothelium of intact rat aorta. Exp Physiol 85:151–157

    PubMed  CAS  Google Scholar 

  • Margalit A, Livne AA, Funder J, Granot Y (1993a) Initiation of RVD response in human platelets: mechanical-biochemical transduction involves pertussis-toxin-sensitive G protein and phospholipase A2. J Membr Biol 136:303–311

    PubMed  CAS  Google Scholar 

  • Margalit A, Sofer Y, Grossman S, Reynaud D, Pace-Asciak CR, Livne AA (1993b) Hepoxilin A3 is the endogenous lipid mediator opposing hypotonic swelling of intact human platelets. Proc Natl Acad Sci USA 90:2589–2592

    PubMed  CAS  Google Scholar 

  • Marinelli RA, LaRusso NF (1997) Aquaporin water channels in liver: Their significance in bile formation. Hepatology 26:1081–1084

    PubMed  CAS  Google Scholar 

  • Marunaka Y, Niisato N, O’Brodovich H, Post M, Tanswell AK (1999) Roles of Ca2+ and protein tyrosine kinase in insulin action on cell volume via Na+ and K+ channels and Na+/K+/2Cl cotransporter in fetal rat alveolar type II pneumocyte. J Membr Biol 168:91–101

    PubMed  CAS  Google Scholar 

  • Mastrocola T, Lambert IH, Kramhoft B, Rugolo M, Hoffmann EK (1993) Volume regulation in human fibroblasts: role of Ca2+ and 5-lipoxygenase products in the activation of the Cl efflux. J Membr Biol 136:55–62

    PubMed  CAS  Google Scholar 

  • Matskevitch I, Wagner CA, Stegen C, Broer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F (1999) Functional characterization of the Betaine/gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem 274:16709–16716

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Yamauchi A, Nakanishi T, Sugiura T, Kitamura H, Horio M, Takamitsu Y, Ando A, Imai E, Hori M (1999) Response to hypertonicity in mesothelial cells: role of Na+/myo-inositol cotransporter. Nephrol Dial Transplant 14:1217–1223

    PubMed  CAS  Google Scholar 

  • Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S (1997) Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8:1–14

    PubMed  CAS  Google Scholar 

  • McCarty NA, O’Neil RG (1991) Calcium-dependent control of volume regulation in renal proximal tubule cells: I. Swelling-activated Ca2+ entry and release. J Membr Biol 123:149–160

    PubMed  CAS  Google Scholar 

  • Meier R, Thelen M, Hemmings BA (1998) Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J 17:7294–7303

    PubMed  CAS  Google Scholar 

  • Mercado A, Song LY, Vázquez N, Mount DB, Gamba G (2000) Functional comparison of the K+-Cl cotransporters KCC1 and KCC4. J Biol Chem 275:30326–30334

    PubMed  CAS  Google Scholar 

  • Meyer K, Korbmacher C (1996) Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells. J Gen Physiol 108:177–193

    PubMed  CAS  Google Scholar 

  • Mignen O, Le Gall C, Harvey BJ, Thomas S (1999) Volume regulation following hypotonic shock in isolated crypts of mouse distal colon. J Physiol 515:501–510

    PubMed  CAS  Google Scholar 

  • Minton AP (1994) Influence of macromolecular crowding on intracellular association reactions: possible role in volume regulation. In Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 181–190

    Google Scholar 

  • Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci USA 89:10504–10506

    PubMed  CAS  Google Scholar 

  • Mitchell CH, Zhang JJ, Wang L, Jacob TJ (1997) Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am J Physiol 272:C212–C222

    PubMed  CAS  Google Scholar 

  • Miyai A, Yamauchi A, Moriyama T, Kaneko T, Takenaka M, Sugiura T, Kitamura H, Ando A, Tohyama M, Shimada S, Imai E, Kamada T (1996) Expression of betaine transporter mRNA: its unique localization and rapid regulation in rat kidney. Kidney Int 50:819–827

    PubMed  CAS  Google Scholar 

  • Miyauchi A, Notoya K, Mikuni-Takagaki Y, Takagi Y, Goto M, Miki Y, Takano-Yamamoto T, Jinnai K, Takahashi K, Kumegawa M, Chihara K, Fujita T (2000) Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes. J Biol Chem 275:3335–3342

    PubMed  CAS  Google Scholar 

  • Moeckel GW, Lai LW, Guder WG, Kwon HM, Lien YH (1997) Kinetics and osmoregulation of Na+-and Cl-dependent betaine transporter in rat renal medulla. Am J Physiol 272:F100–F106

    PubMed  CAS  Google Scholar 

  • Mollerup J, Lambert IH (1998) Calyculin A modulates the kinetic constants for the Na+-coupled taurine transport in Ehrlich ascites tumor cells. Biochim Biophys Acta 1371:335–344

    PubMed  CAS  Google Scholar 

  • Mongin AA, Cai Z, Kimelberg HK (1999) Volume-dependent taurine release from cultured astrocytes requires permissive [Ca2+]i and calmodulin. Am J Physiol 277:C823–C832

    PubMed  CAS  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB (1991) Role of intracellular calcium in volume regulation by rabbit medullary thick ascending limb cells. Am J Physiol 260:F402–F409

    PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Guggino WB, Montrose MH (1991) Cellular differentiation regulates expression of Cl transport and cystic fibrosis transmembrane conductance regulator mRNA in human intestinal cells. J Biol Chem 266: 4495–4499

    PubMed  CAS  Google Scholar 

  • Mooren FC, Kinne RKH (1994) Intracellular calcium in primary cultures of rat renal inner medullary collecting duct cells during variations of extracellular osmolality. Pflugers Arch 427:463–472

    PubMed  CAS  Google Scholar 

  • Moorman JR, Ackerman SJ, Kowdley GC, Griffin MP, Mounsey JP, Chen ZH, Cala SE, O’Brian JJ, Szabo G, Jones LR (1995) Unitary anion currents through phospholemman channel molecules. Nature 377:737–740

    PubMed  CAS  Google Scholar 

  • Moorman JR, Jones LR (1998) Phospholemman: A cardiac taurine channel involved in regulation of cell volume. Adv Exp Med Biol 442:219–228

    PubMed  CAS  Google Scholar 

  • Moorman JR, Palmer CJ, John III JE, Durieux ME Jones LR (1992) Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem 267:14551–14554

    PubMed  CAS  Google Scholar 

  • Morales-Mulia M, Pasantes-Morales H, Morán J (2000) Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman. Biochim Biophys Acta 1496:252–260

    PubMed  CAS  Google Scholar 

  • Morales-Mulia S, Cardin V, Torres-Marquez ME Crevenna A, Pasantes-Morales H (2001) Influence of protein kinases on the osmosensitive release of taurine from cerebellar granule neurons. Neurochem Int 38:153–161

    PubMed  CAS  Google Scholar 

  • Morán J, Morales-Mulia M, Pasantes-Morales H (2001) Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim Biophys Acta 1538:313–320

    PubMed  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113:93–107

    PubMed  CAS  Google Scholar 

  • Motais R, Guizouarn H, Garcia-Romeu F (1991) Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems. Biochim Biophys Acta 1075:169–180

    PubMed  CAS  Google Scholar 

  • Motais R, Fievet B, Borgese F, Garcia-Romeu F (1997) Association of the band 3 protein with a volume-activated, anion and amino acid channel: a molecular approach. J Exp Biol 200:361–367

    PubMed  CAS  Google Scholar 

  • Mounsey JP, Lu KP, Patel MK, Chen ZH, Horne LT, John JE, III, Means AR, Jones LR, Moorman JR (1999) Modulation of Xenopus oocyte-expressed phospholemman-induced ion currents by co-expression of protein kinases. Biochim Biophys Acta 1451:305–318

    PubMed  CAS  Google Scholar 

  • Mount DB, Mercado A, Song L, Xu J, George AL, Jr., Delpire E, Gamba G (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 274:16355–16362

    PubMed  CAS  Google Scholar 

  • Mountian I, Chou KY, van Driessche W (1996) Electrolyte transport mechanisms involved in regulatory volume increase in C6 glioma cells. Am J Physiol 271:C1041–C1048

    PubMed  CAS  Google Scholar 

  • Musch MW, Goldstein L (1990) Hypotonicity stimulates phosphatidylcholine hydrolysis and generates diacylglycerol in erythrocytes. J Biol Chem 265:13055–13059

    PubMed  CAS  Google Scholar 

  • Musch MW, Leffingwell TR, Goldstein L (1994) Band 3 modulation and hypotonic-stimulated taurine efflux in skate erythrocytes. Am J Physiol 266:R65–R74

    PubMed  CAS  Google Scholar 

  • Musch MW, Luer CA, Davis-Amaral EM, Goldstein L (1997) Hypotonic stress induces translocation of the osmolyte channel protein pICln in embryonic skate (Raja eglanteria) heart. J Exp Zool 277:460–463

    PubMed  CAS  Google Scholar 

  • Musch MW, Davis-Amaral EM, Vandenburgh HH, Goldstein L (1998) Hypotonicity stimulates translocation of ICln in neonatal rat cardiac myocytes. Pflugers Arch 436:415–422

    PubMed  CAS  Google Scholar 

  • Muto S, Ohtaka A, Nemoto J, Kawakami K, Asano Y (1998) Effects of hyperosmolality on Na, K-ATPase gene expression in vascular smooth muscle cells. J Membr Biol 162:233–245

    PubMed  CAS  Google Scholar 

  • Nagasaki M, Ye L, Duan D, Horowitz B, Hume JR (2000) Intracellular cyclic AMP inhibits native and recombinant volume-regulated chloride channels from mammalian heart. J Physiol 523:705–717

    PubMed  CAS  Google Scholar 

  • Nakamura H, Huang SH, Takakura K (1996) High-affinity taurine uptake and its regulation by protein kinase C in human glioma cells. Adv Exp Med Biol 403:377–384

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Balaban RS, Burg MB (1988) Survey of osmolytes in renal cell lines. Am J Physiol 255:C181–C191

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Turner RJ, Burg MB (1989) Osmoregulatory changes in myo-inositol transport by renal cells. Proc Natl Acad Sci USA 86:6002–6006

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Turner RJ, Burg MB (1990) Osmoregulation of betaine transport in mammalian renal medullary cells. Am J Physiol 258:F1061–F1067

    PubMed  CAS  Google Scholar 

  • Napathorn S, Spring KR (1994) Further characterization of the sorbitol permease in PAP-HT25 cells. Am J Physiol 267:C514–C519

    PubMed  CAS  Google Scholar 

  • Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274:16973–16978

    PubMed  CAS  Google Scholar 

  • Nath SK, Hang CY, Levine SA, Yun CH, C., Montrose MH, Donowitz M, Tse CM (1996) Hyperosmolarity inhibits the Na+/H+ exchanger isoforms NHE2 and NHE3: An effect opposite to that on NHE1. Am J Physiol 270:G431–G441

    PubMed  CAS  Google Scholar 

  • Nelson DJ, Tien XY, Xie WW, Brasitus TA, Kaetzel MA, Dedman JR (1996) Shrinkage activates a nonselective conductance: involvement of a Walker-motif protein and PKC. Am J Physiol 270:C179–C191

    PubMed  CAS  Google Scholar 

  • Niemeyer MI, Cid LP, Barros LF, Sepulveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    PubMed  CAS  Google Scholar 

  • Niggli V, Andreoli C, Roy C, Mangeat P (1995) Identification of a phosphatidylinositol-4,5-bis-phosphate-binding domain in the N-terminal region of ezrin. FEBS Lett 376:172–176

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Nilius B, Sehrer J, Droogmans G (1994a) Permeation properties and modulation of volume-activated Cl-currents in human endothelial cells. Br J Pharmacol 112:1049–1056

    PubMed  CAS  Google Scholar 

  • Nilius B, Sehrer J, Viana F, De Greef C, Raeymaekers L, Eggermont J, Droogmans G (1994b) Volume-activated Cl currents in different mammalian nonexcitable cell types. Pflugers Arch 428:364–371

    PubMed  CAS  Google Scholar 

  • Nilius B, Sehrer J, De Smet P, van Driessche W, Droogmans G (1995) Volume regulation in a toad epithelial cell line: Role of coactivation of K+ and Cl channels. J Physiol (Lond) 487:367–378

    CAS  Google Scholar 

  • Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G (1997) Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68:69–119

    PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Voets T, Eggermont J, Droogmans G (1998) Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells. J Physiol 506:353–361

    PubMed  CAS  Google Scholar 

  • Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J Physiol (Lond) 516: 67–74

    CAS  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233

    PubMed  CAS  Google Scholar 

  • Noel J, Roux D, Pouysségur J (1996) Differential localization of Na+/H+ exchanger isoforms (NHE1 and NHE3) in polarized epithelial cell lines. J Cell Sci 109:929–939

    PubMed  CAS  Google Scholar 

  • Noulin JF, Brochiero E, Lapointe JY, Laprade R (1999) Two types of K+ channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine. Am J Physiol 277:F290–F297

    PubMed  CAS  Google Scholar 

  • Novak JE, Agranoff BW, Fisher SK (2000) Regulation of Myo-inositol homeostasis in differentiated human NT2-N neurons. Neurochem Res 25:561–566

    PubMed  CAS  Google Scholar 

  • O’Donnell ME, Martinez A, Sun D (1995) Endothelial Na-K-Cl cotransport regulation by tonicity and hormones: phosphorylation of cotransport protein. Am J Physiol 269:C1513–C1523

    PubMed  CAS  Google Scholar 

  • O’Flaherty L, Stapleton PP, Redmond HP, Bouchier-Hayes DJ (1997) Intestinal taurine transport: a review. Eur J Clin Invest 27:873–880

    PubMed  CAS  Google Scholar 

  • O’Neil RG, Leng L (1997) Osmo-mechanically sensitive phosphatidylinositol signaling regulates a Ca2+ influx channel in renal epithelial cells. Am J Physiol 273:F120–F128

    PubMed  CAS  Google Scholar 

  • Ohta M, Tanimoto T, Tanaka A (1990) Characterization of aldose reductase and aldehyde reductase from the medulla of rat kidney. Chem Pharm Bull (Tokyo) 38:1639–1643

    CAS  Google Scholar 

  • Ohtaka A, Muto S, Nemoto J, Kawakami K, Nagano K, Asano Y (1996) Hyperosmolality stimulates Na-K-ATPase gene expression in inner medullary collecting duct cells. Am J Physiol 270:F728–F738

    PubMed  CAS  Google Scholar 

  • Ohtsuyama M, Suzuki Y, Samman G, Sato F, Sato K (1993) Cell volume analysis of gramicidin-treated eccrine clear cells to study regulation of Cl channels. Am J Physiol 265:C1090–C1099

    PubMed  CAS  Google Scholar 

  • Oike M, Droogmans G, Nilius B (1994) The volume-activated chloride current in human endothelial cells depends on intracellular ATP. Pflugers Arch 427:184–186

    PubMed  CAS  Google Scholar 

  • Oike M, Kimura C, Koyama T, Yoshikawa M, Ito Y (2000) Hypotonic stress-induced dual Ca2+ responses in bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 279:H630–H638

    PubMed  CAS  Google Scholar 

  • Oiki S, Kubo M, Okada Y (1994) Mg2+ and ATP-dependence of volume-sensitive Cl channels in human epithelial cells. Jpn J Physiol 44:S77–S79

    PubMed  CAS  Google Scholar 

  • Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755–C789

    PubMed  CAS  Google Scholar 

  • Okada Y (1998) Cell volume-sensitive chloride channels. Contrib Nephrol 123:21–33

    PubMed  CAS  Google Scholar 

  • Okada Y, Hazama A (1989) Volume-regulatory ion channels in epithelial cells. News Physiol Sci 4:238–242

    Google Scholar 

  • Okada Y, Oiki S, Hazama A, Morishima S (1998) Criteria for the molecular identification of the volume-sensitive outwardly rectifying Cl channel. J Gen Physiol 112:365–367

    PubMed  CAS  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD) J Physiol (Lond) 532:3–16

    CAS  Google Scholar 

  • Oliet SH, Bourque CW (1993) Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364:341–343

    PubMed  CAS  Google Scholar 

  • Olson JE (1999) Osmolyte contents of cultured astrocytes grown in hypo-osmotic medium. Biochim Biophys Acta 1453:175–179

    PubMed  CAS  Google Scholar 

  • Ono S, Mougouris T, DuBose TD, Jr., Sansom SC (1994) ATP and calcium modulation of nonselective cation channels in IMCD cells. Am J Physiol 267:F558–F565

    PubMed  CAS  Google Scholar 

  • Orlic T, Loomis WH, Shreve A, Namiki S, Junger WG (2002) Hypertonicity increases cAMP in PMN and blocks oxidative burst by PKA-dependent and-independent mechanisms. Am J Physiol Cell Physiol 282:C1261–C1269

    PubMed  CAS  Google Scholar 

  • Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272:22373–22376

    PubMed  CAS  Google Scholar 

  • Pácha J, Frindt G, Sackin H, Palmer LG (1991) Apical maxi K channels in intercalated cells of CCT. Am J Physiol 261:F696–F705

    PubMed  Google Scholar 

  • Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130

    PubMed  CAS  Google Scholar 

  • Papakonstanti EA, Vardaki EA, Stournaras C (2000) Actin cytoskeleton: a signaling sensor in cell volume regulation. Cell Physiol Biochem 10:257–264

    PubMed  CAS  Google Scholar 

  • Papassotiriou J, Eggermont J, Droogmans G, Nilius B (2001) Ca2+-activated Cl channels in Ehrlich ascites tumor cells are distinct from mCLCA1:2 and 3. Pflugers Arch 442:273–279

    PubMed  CAS  Google Scholar 

  • Park K, Lee S, Elliott AC, Kim JS, Lee JH (2002) Swelling-induced Ca2+ release from intracellular calcium stores in rat submandibular gland acinar cells. J Membr Biol 186:165–176

    PubMed  CAS  Google Scholar 

  • Park K-P, Beck JS, Douglas IJ, Brown PD (1994) Ca2+-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland. J Membr Biol 141:193–201

    PubMed  CAS  Google Scholar 

  • Parker JC, Dunham PB, Minton AP (1995) Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells. J Gen Physiol 105:677–699

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Chacon E, Sanchez-Olea R, Moran J (1994a) Volume regulation in cultured neurons: pivotal role of taurine. Adv Exp Med Biol 359:317–323

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Murray RA, Sanchez-Olea R, Moran J (1994b) Regulatory volume decrease in cultured astrocytes. II. Permeability pathway to amino acids and polyols. Am J Physiol 266:C172–C178

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Cardin V, Tuz K (2000a) Signaling events during swelling and regulatory volume decrease. Neurochem Res 25:1301–1314

    PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Franco R, Torres-Marquez ME, Hernandez-Fonseca K, Ortega A (2000b) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem 10:361–370

    PubMed  CAS  Google Scholar 

  • Paulmichl M, Li Y, Wickman K, Ackerman M, Peralta E, Clapham D (1992) New mammalian chloride channel identified by expression cloning. Nature 356:238–241

    PubMed  CAS  Google Scholar 

  • Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525

    PubMed  CAS  Google Scholar 

  • Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K+-Cl cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103:481–491

    PubMed  CAS  Google Scholar 

  • Pedersen S, Hoffmann EK, Hougaard C, Lambert IH (2000) Cell shrinkage is essential in lysophosphatidic acid signaling in Ehrlich ascites tumor cells. J Membr Biol 173:19–29

    PubMed  CAS  Google Scholar 

  • Pedersen SF, Hoffmann EK, Mills JW (2001) The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 130:385–399

    PubMed  CAS  Google Scholar 

  • Pedersen SF, Kramhoft B, Jorgensen NK, Hoffmann EK (1996) Shrinkage-induced activation of the Na+/H+ exchanger in Ehrlich ascites tumor cells: mechanisms involved in the activation and a role for the exchanger in cell volume regulation. J Membr Biol 149:141–159

    PubMed  CAS  Google Scholar 

  • Pedersen SF, Prenen J, Droogmans G, Hoffmann EK, Nilius B (1998) Separate swelling-and Ca2+-activated anion currents in Ehrlich ascites tumor cells. J Membr Biol 163:97–110

    PubMed  CAS  Google Scholar 

  • Perlman DF, Goldstein L (1999) Organic osmolyte channels in cell volume regulation in vertebrates. J Exp Zool 283:725–733

    PubMed  CAS  Google Scholar 

  • Peters-Regehr T, Bode JG, Kubitz R, Häussinger D (1999) Organic osmolyte transport in quiescent and activated rat hepatic stellate cells (Ito cells) Hepatology 29:173–180

    PubMed  CAS  Google Scholar 

  • Petty CN, Lucero MT (1999) Characterization of a Na+-dependent betaine transporter with Cl channel properties in squid motor neurons. J Neurophysiol 81:1567–1574

    PubMed  CAS  Google Scholar 

  • Pon DC, Hill CE (1997) Existence, properties, and functional expression of “Maxi-K”-type, Ca2+-activated K+ channels in short-term cultured hepatocytes. J Cell Physiol 171:87–94

    PubMed  CAS  Google Scholar 

  • Popp R, Hoyer J, Gögelein H (1993) Mechanosensitive nonselective cation channels in the antiluminal membrane of cerebral capillaries (blood-brain barrier) EXS 66:101–105

    PubMed  CAS  Google Scholar 

  • Popp R, Hoyer J, Meyer J, Galla H-J, Gögelein H (1992) Stretch-activated nonselective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol (Lond) 454:435–449

    CAS  Google Scholar 

  • Porcellati F, Hosaka Y, Hlaing T, Togawa M, Larkin DD, Karihaloo A, Stevens MJ, Killen PD, Greene DA (1999) Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms. Am J Physiol 276:C1325–C1337

    PubMed  CAS  Google Scholar 

  • Preston AS, Yamauchi A, Kwon HM, Handler JS (1995) Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J Am Soc Nephrol 6:1559–1564

    PubMed  CAS  Google Scholar 

  • Qian X, Vinnakota S, Edwards C, Sarkar HK (2000) Molecular characterization of taurine transport in bovine aortic endothelial cells. Biochim Biophys Acta 1509:324–334

    PubMed  CAS  Google Scholar 

  • Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3 a new K-Cl cotransporter. Am J Physiol 277:C1210–C1219

    PubMed  CAS  Google Scholar 

  • Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S (1995) Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett 373:229–233

    PubMed  CAS  Google Scholar 

  • Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18:578–585

    PubMed  CAS  Google Scholar 

  • Renshaw MW, Toksoz D, Schwartz MA (1996) Involvement of the small GTPase rho in integrin-mediated activation of mitogen-activated protein kinase. J Biol Chem 271:21691–21694

    PubMed  CAS  Google Scholar 

  • Ritter M, Fürst J, Wöll E, Chwatal S, Gschwentner M, Lang F, Deetjen P, Paulmichl M (2001) Na+/H+ exchangers: Linking osmotic dysequilibrium to modified cell function. Cell Physiol Biochem 11:1–18

    PubMed  CAS  Google Scholar 

  • Ritter M, Steidl M, Lang F (1991) Inhibition of ion conductances by osmotic shrinkage of Madin-Darby canine kidney cells. Am J Physiol 261:C602–C607

    PubMed  CAS  Google Scholar 

  • Robson L, Hunter M (1994) Volume-activated, gadolinium-sensitive whole-cell currents in single proximal cells of frog kidney. Pflugers Arch 429:98–106

    PubMed  CAS  Google Scholar 

  • Roe MW, Moore AL, Lidofsky SD (2001) Purinergic-independent calcium signaling mediates recovery from hepatocellular swelling: implications for volume regulation. J Biol Chem 276:30871–30877

    PubMed  CAS  Google Scholar 

  • Roman R, Feranchak AP, Troetsch M, Dunkelberg JC, Kilic G, Schlenker T, Schaack J, Fitz JG (2002) Molecular characterization of volume-sensitive SKCa channels in human liver cell lines. Am J Physiol 282:G116–G122

    CAS  Google Scholar 

  • Roman RM, Bodily KO, Wang Y, Raymond JR, Fitz JG (1998) Activation of protein kinase C alpha couples cell volume to membrane Cl permeability in HTC hepatoma and Mz-ChA-1 cholangiocarcinoma cells. Hepatology 28:1073–1080

    PubMed  CAS  Google Scholar 

  • Roman RM, Smith RL, Feranchak AP, Clayton GH, Doctor RB, Fitz JG (2001) ClC-2 chloride channels contribute to HTC cell volume homeostasis. Am J Physiol 280:G344–G353

    CAS  Google Scholar 

  • Roy G (1995) Amino acid current through anion channels in cultured human glial cells. J Membr Biol 147:35–44

    PubMed  CAS  Google Scholar 

  • Roy G, Banderali U (1994) Channels for ions and amino acids in kidney cultured cells (MDCK) during volume regulation. J Exp Zool 268:121–126

    PubMed  CAS  Google Scholar 

  • Roy G, Malo C (1992) Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membr Biol 130:83–90

    PubMed  CAS  Google Scholar 

  • Ruhfus B, Kinne RKH (1996) Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway. Kidney Blood Press Res 19:317–324

    PubMed  CAS  Google Scholar 

  • Ruhfus B, Tinel H, Kinne RKH (1996) Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. Pflugers Arch 433:35–41

    PubMed  CAS  Google Scholar 

  • Ruhfus B, Bauernschmitt HG, Kinne RKH (1998) Properties of a polarized primary culture from rat renal inner medullary collecting duct (IMCD) cells. In Vitro Cell Dev Biol Anim 34:227–231

    PubMed  CAS  Google Scholar 

  • Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    PubMed  CAS  Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86:1731–1735

    PubMed  CAS  Google Scholar 

  • Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    PubMed  CAS  Google Scholar 

  • Saier MH, Jr (2000) Families of proteins forming transmembrane channels. J Membr Biol 175:165–180

    PubMed  CAS  Google Scholar 

  • Sajan MP, Bandyopadhyay G, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV (2002) Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochem J 362:665–674

    PubMed  CAS  Google Scholar 

  • Sakai H, Kakinoki B, Diener M, Takeguchi N (1996) Endogenous arachidonic acid inhibits hypotonically-activated Cl channels in isolated rat hepatocytes. Jpn J Physiol 46:311–318

    PubMed  CAS  Google Scholar 

  • Sanchez OR, Pasantes-Morales H, Lazaro A, Cereijido M (1991) Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK) J Membr Biol 121:1–9

    Google Scholar 

  • Sanchez-Olea R, Moran J, Schousboe A, Pasantes-Morales H (1991) Hypo-osmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci Lett 130:233–236

    PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83

    PubMed  CAS  Google Scholar 

  • Sardet C, Counillon L, Franchi A, Pouyssegur J (1990) Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science 247:723–726

    PubMed  CAS  Google Scholar 

  • Sardet C, Fafournoux P, Pouyssegur J (1991) Alpha-thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 266:19166–19171

    PubMed  CAS  Google Scholar 

  • Satsu H, Miyamoto Y, Shimizu M (1999) Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim Biophys Acta 1419:89–96

    PubMed  CAS  Google Scholar 

  • Schirmer T, Keller TA, Wang YF, Rosenbusch JP (1995) Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science 267:512–514

    PubMed  CAS  Google Scholar 

  • Schlatter E (1993) Regulation of ion channels in the cortical collecting duct. Renal Physiol Biochem 16:21–36

    PubMed  CAS  Google Scholar 

  • Schlatter E, Ankorina-Stark I, Cermak R, Haxelmans S, Kleta R, Hirsch JR (1997) Cell shrinkage activates a cation conductance in principal cells of rat cortical collecting duct. Cell Physiol Biochem 7:321–332

    CAS  Google Scholar 

  • Schliess F, Sinning R, Fischer R, Schmalenbach C, Häussinger D (1996) Calcium-dependent activation of Erk-1 and Erk-2 after hypo-osmotic astrocyte swelling. Biochem J 320:167–171

    PubMed  CAS  Google Scholar 

  • Schmidt-Rose T, Jentsch TJ (1997) Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci USA 94:7633–7638

    PubMed  CAS  Google Scholar 

  • Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A (2000) Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439:297–303

    PubMed  CAS  Google Scholar 

  • Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11:274–286

    PubMed  CAS  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363

    PubMed  CAS  Google Scholar 

  • Schumacher PA, Sakellaropoulos G, Phipps DJ, Schlichter LC (1995) Small-conductance chloride channels in human peripheral T lymphocytes. J Membr Biol 145:217–232

    PubMed  CAS  Google Scholar 

  • Schütt W, Sackin H (1997) A new technique for evaluating volume sensitivity of ion channels. Pflugers Arch 433:368–375

    PubMed  Google Scholar 

  • Schwab A, Oberleithner H (1996) Plasticity of renal epithelial cells: The way a potassium channel supports migration. Pflugers Arch 432:R87–R93

    PubMed  CAS  Google Scholar 

  • Schwab A, Westphale H-J, Wojnowski L, Wünsch S, Oberleithner H (1993) Spontaneously oscillating K+ channel activity in transformed Madin-Darby canine kidney cells. J Clin Invest 92:218–223

    PubMed  CAS  Google Scholar 

  • Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC (1999) Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch 438:330–337

    PubMed  CAS  Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    PubMed  CAS  Google Scholar 

  • Setiawan I, Henke G, Feng Y, Böhmer C, Vasilets LA, Schwarz W, Lang F (2002) Stimulation of Xenopus oocyte Na+,K+ ATPase by the serum and glucocorticoid-dependent kinase sgk1. Pflugers Arch 444:426–431

    PubMed  CAS  Google Scholar 

  • Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC (2001) Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J Physiol 537:347–362

    PubMed  CAS  Google Scholar 

  • Shen MR, Furla P, Chou CY, Ellory JC (2002) Myosin light chain kinase modulates hypotonicity-induced Ca2+ entry and Cl channel activity in human cervical cancer cells. Pflugers Arch 444:276–285

    PubMed  CAS  Google Scholar 

  • Shennan D, McNeillie S, Curran D (1994) The effect of a hypo-osmotic shock on amino acid efflux from lactating rat mammary tissue: stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels. Exp Physiol 79:797–808.

    PubMed  CAS  Google Scholar 

  • Shiga N, Wangemann P (1995) Ion selectivity of volume regulatory mechanisms present during a hypo-osmotic challenge in vestibular dark cells. Biochim Biophys Acta 1240:48–54

    PubMed  Google Scholar 

  • Shinozuka K, Tanaka N, Kawasaki K, Mizuno H, Kubota Y, Nakamura K, Hashimoto M, Kunitomo M (2001) Participation of ATP in cell volume regulation in the endothelium after hypotonic stress. Clin Exp Pharmacol Physiol 28:799–803

    PubMed  CAS  Google Scholar 

  • Shrode LD, Krump E, Grinstein S (1998) Activation of protein kinases upon volume changes: role in cellular homeostasis. Contrib Nephrol 123:79–93

    PubMed  CAS  Google Scholar 

  • Shrode LD, Rubie EA, Woodgett JR, Grinstein S (1997) Cytosolic alkalinization increases stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) activity and p38 mitogen-activated protein kinase activity by a calcium-independent mechanism. J Biol Chem 272:13653–13659

    PubMed  CAS  Google Scholar 

  • Siebens AW, Spring KR (1989) A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol 257:F937–F946

    PubMed  CAS  Google Scholar 

  • Sizeland PC, Chambers ST, Lever M, Bason LM, Robson RA (1993) Organic osmolytes in human and other mammalian kidneys. Kidney Int 43:448–453

    PubMed  CAS  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    PubMed  CAS  Google Scholar 

  • Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728

    PubMed  CAS  Google Scholar 

  • Soleimani M, Singh G, Bizal GL, Gullans SR, McAteer JA (1994) Na+/H+ exchanger isoforms NHE-2 and NHE-1 in inner medullary collecting duct cells. Expression, functional localization, and differential regulation. J Biol Chem 269:27973–27978

    PubMed  CAS  Google Scholar 

  • Staines HM, Godfrey EM, Lapaix F, Egee S, Thomas S, Ellory JC (2002) Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochim Biophys Acta 1561:98–108

    PubMed  CAS  Google Scholar 

  • Stegen C, Matskevich I, Wagner CA, Paulmichl M, Lang F, Broer S (2000) Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta 1467:91–100

    PubMed  CAS  Google Scholar 

  • Steidl M, Ritter M, Lang F (1991) Regulation of potassium conductance by prostaglandins in cultured renal epitheloid (Madin-Darby canine kidney) cells. Pflugers Arch 418:431–436

    PubMed  CAS  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    PubMed  CAS  Google Scholar 

  • Stoddard JS, Steinbach JH, Simchowitz L (1993) Whole cell Cl currents in human neutrophils induced by cell swelling. Am J Physiol 265:C156–C165

    PubMed  CAS  Google Scholar 

  • Stoner LC, Morley GE (1995) Effect of basolateral or apical hypo-osmolarity on apical maxi K channels of everted rat collecting tubule. Am J Physiol 268:F569–F580

    PubMed  CAS  Google Scholar 

  • Strange K (1992) Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 3:12–27

    PubMed  CAS  Google Scholar 

  • Strange K (1998) Molecular identity of the outwardly rectifying, swelling-activated anion channel: Time to reevaluate pICln. J Gen Physiol 111:617–622

    PubMed  CAS  Google Scholar 

  • Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270:C711–C730

    PubMed  CAS  Google Scholar 

  • Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR (1991) Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol 260:C784–C790

    PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4 a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    PubMed  CAS  Google Scholar 

  • Stühmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    PubMed  Google Scholar 

  • Stutzin A, Torres R, Oporto M, Pacheco P, Eguiguren AL, Cid LP, Sepulveda FV (1999) Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am J Physiol 277:C392–C402

    PubMed  CAS  Google Scholar 

  • Su W, Shmukler BE, Chernova MN, Stuart-Tilley AK, De Franceschi L, Brugnara C, Alper SL (1999) Mouse K-Cl cotransporter KCC1: cloning, mapping, pathological expression, and functional regulation. Am J Physiol 277:C899–C912

    PubMed  CAS  Google Scholar 

  • Sun AM, Liu Y, Dworkin LD, Tse CM, Donowitz M, Yip KP (1997) Na+/H+ exchanger isoform 2 (NHE2) is expressed in the apical membrane of the medullary thick ascending limb. J Membr Biol 160:85–90

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kawahara K, Ogawa A, Morita T, Kawaguchi Y, Kurihara S, Sakai O (1990) [Ca2+]i rises via G protein during regulatory volume decrease in rabbit proximal tubule cells. Am J Physiol 258:F690–F696

    PubMed  CAS  Google Scholar 

  • Suzuki M, Sato J, Kutsuwada K, Ooki G, Imai M (1999) Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem 274:6330–6335

    PubMed  CAS  Google Scholar 

  • Szaszi K, Grinstein S, Orlowski J, Kapus A (2000) Regulation of the epithelial Na+/H+ exchanger isoform by the cytoskeleton. Cell Physiol Biochem 10:265–272

    PubMed  CAS  Google Scholar 

  • Szászi K, Kurashima K, Kapus A, Paulsen A, Kaibuchi K, Grinstein S, Orlowski J (2000) RhoA and rho kinase regulate the epithelial Na+/H+ exchanger NHE3 — Role of myosin light chain phosphorylation. J Biol Chem 275:28599–28606

    PubMed  Google Scholar 

  • Taglietti V, Toselli M (1988) A study of stretch-activated channels in the membrane of frog oocytes: Interaction with Ca2+ ions. J Physiol (Lond) 407:311–328

    CAS  Google Scholar 

  • Tai KK, Wang KW, Goldstein SA, N (1997) MinK potassium channels are heteromultimeric complexes. J Biol Chem 272:1654–1658

    PubMed  CAS  Google Scholar 

  • Takenaka M, Bagnasco SM, Preston AS, Uchida S, Yamauchi A, Kwon HM, Handler JS (1995) The canine betaine gamma-amino-n-butyric acid transporter gene: diverse mRNA isoforms are regulated by hypertonicity and are expressed in a tissue-specific manner. Proc Natl Acad Sci USA 92:1072–1076

    PubMed  CAS  Google Scholar 

  • Takumi T, Ohkubo H, Nakanishi S (1989) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    Google Scholar 

  • Tamkun MM, Knoth KM, Walbridge JA, Kroemer H, Roden DM, Glover DM (1991) Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J 5:331–337

    PubMed  CAS  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch: A physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol 257:F347–F352

    PubMed  CAS  Google Scholar 

  • Terada Y, Inoshita S, Hanada S, Shimamura H, Kuwahara M, Ogawa W, Kasuga M, Sasaki S, Marumo F (2001) Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells. Kidney Int 60:553–567

    PubMed  CAS  Google Scholar 

  • Tewari KP, Malinowska DH, Sherry AM, Cuppoletti J (2000) PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am J Physiol Cell Physiol 279:C40–C50

    PubMed  CAS  Google Scholar 

  • Theodoropoulos PA, Stournaras C, Stoll B, Markogiannakis E, Lang F, Gravanis A, Häussinger D (1992) Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels. FEBS Lett 311:241–245

    PubMed  CAS  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    PubMed  CAS  Google Scholar 

  • Thinnes FP, Walter G, Hellmann KP, Hellmann T, Merker R, Kiafard Z, Eben-Brunnen J, Schwarzer C, Gotz H, Hilschmann N (2001) Gadolinium as an opener of the outwardly rectifying Cl channel (ORCC) Is there relevance for cystic fibrosis therapy? Pflugers Arch 443:S111–S116

    PubMed  CAS  Google Scholar 

  • Thoroed SM, Lauritzen L, Lambert IH, Hansen HS, Hoffmann EK (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J Membr Biol 160:47–58

    PubMed  CAS  Google Scholar 

  • Tilly BC, van den Berghe N, Tertoolen LG, Edixhoven MJ, de Jonge HR (1993) Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem 268:19919–19922

    PubMed  CAS  Google Scholar 

  • Tinel H, Petersen OH (2000) Transport across intracellular organelles. In Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology. Lippincott Williams and Wilkins, Philadelphia, pp 294–319

    Google Scholar 

  • Tinel H, Wehner F, Sauer H (1994) Intracellular Ca2+ release and Ca2+ influx during regulatory volume decrease in IMCD cells. Am J Physiol 267:F130–F138

    PubMed  CAS  Google Scholar 

  • Tinel H, Wehner F, Kinne RKH (1997) Arachidonic acid as a second messenger for hypotonicity-induced calcium transients in rat IMCD cells. Pflugers Arch 433:245–253

    PubMed  CAS  Google Scholar 

  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18:4999–5008

    PubMed  CAS  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2000) Calcium signalling during RVD of kidney cells. Cell Physiol Biochem 10:297–302

    PubMed  CAS  Google Scholar 

  • Tinel H, Kinne-Saffran E, Kinne RKH (2002) Calcium-induced calcium release participates in cell volume regulation of rabbit TALH cells. Pflugers Arch 443:754–761

    PubMed  CAS  Google Scholar 

  • Tominaga T, Barber DL (1998) Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 9:2287–2303

    PubMed  CAS  Google Scholar 

  • Tominaga T, Ishizaki T, Narumiya S, Barber DL (1998) p160ROCK mediates RhoA activation of Na-H exchange. EMBO J 17:4712–4722

    PubMed  CAS  Google Scholar 

  • Toro L, Wallner M, Meera P, Tanaka Y (1998) Maxi-KCa a unique member of the voltage-gated K channel superfamily. News Physiol Sci 13:112–117

    PubMed  CAS  Google Scholar 

  • Toyomoto T, Knutsen D, Soos G, Sato K (1997) Na-K-2Cl cotransporters are present and regulated in simian eccrine clear cells. Am J Physiol 273:R270–R277

    PubMed  CAS  Google Scholar 

  • Tse C-M, Levine SA, Yun CHC, Brant SR, Nath S, Pouysségur J, Donowitz M (1994) Molecular properties, kinetics and regulation of mammalian Na+/H+ exchangers. Cell Physiol Biochem 4:282–300

    CAS  Google Scholar 

  • Tsuganezawa H, Kobayashi K, Iyori M, Araki T, Koizumi A, Watanabe S, Kaneko A, Fukao T, Monkawa T, Yoshida T, Kim DK, Kanai Y, Endou H, Hayashi M, Saruta T (2001) A new member of the HCO3 transporter superfamily is an apical anion exchanger of α-intercalated cells in the kidney. J Biol Chem 276:8180–8189

    PubMed  CAS  Google Scholar 

  • Tsumura T, Oiki S, Ueda S, Okuma M, Okada Y (1996) Sensitivity of volume-sensitive Cl conductance in human epithelial cells to extracellular nucleotides. Am J Physiol 271:C1872–C1878

    PubMed  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflugers Arch 412:551–553

    PubMed  CAS  Google Scholar 

  • Uchida S, Nakanishi T, Kwon HM, Preston AS, Handler JS (1991) Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine. J Clin Invest 88:656–662

    PubMed  CAS  Google Scholar 

  • Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, Handler JS (1992) Molecular cloning of the cDNA for an MDCK cell Na+-and Cl-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci USA 89:8230–8234

    PubMed  CAS  Google Scholar 

  • Urbach V, Leguen I, O’Kelly I, Harvey BJ (1999) Mechanosensitive calcium entry and mobilization in renal A6 cells. J Membr Biol 168:29–37

    PubMed  CAS  Google Scholar 

  • Valverde MA, Díaz M, Sepúlveda FV, Gill DR, Hyde SC, Higgins CF (1992) Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 355:830–833

    PubMed  CAS  Google Scholar 

  • Van der Kaay J, Beck M, Gray A, Downes CP (1999) Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem 274:35963–35968

    PubMed  Google Scholar 

  • van Der Wijk T, Dorrestijn J, Narumiya S, Maassen JA, de Jonge HR, Tilly BC (1998) Osmotic swelling-induced activation of the extracellular-signal-regulated protein kinases Erk-1 and Erk-2 in intestine 407 cells involves the Ras/Raf-signalling pathway. Biochem J 331:863–869

    PubMed  Google Scholar 

  • van Der Wijk T, Tomassen SF, de Jonge HR, Tilly BC (2000) Signalling mechanisms involved in volume regulation of intestinal epithelial cells. Cell Physiol Biochem 10:289–296

    PubMed  Google Scholar 

  • van Driessche W, Erlij D (1994) Cell swelling activates a poorly selective monovalent cation channel in the apical membrane of toad urinary bladder. Pflugers Arch 428:1–8

    PubMed  Google Scholar 

  • van Driessche W, De Smet P, De Smedt H (1994) Poorly selective cation channels in the apical membrane of A6 cells. Pflugers Arch 426:387–395

    PubMed  Google Scholar 

  • Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, De Franceschi L, Capellini MD, Brugnara C, Alper SL (2002) cDNA cloning and functional characterization of the moese Ca2+-gated K+ channel, mIK1. J Biol Chem 273:21542–21553

    Google Scholar 

  • Vanoye CG, Reuss L (1999) Stretch-activated single K+ channels account for whole-cell currents elicited by swelling. Proc Natl Acad Sci USA 96:6511–6516

    PubMed  CAS  Google Scholar 

  • Verbalis JG (1994) Pathogenesis of hyponatremia in an experimental model of the syndrome of inappropriate antidiuresis. Am J Physiol 267:R1617–R1625

    PubMed  CAS  Google Scholar 

  • Verbalis JG, Drutarosky MD, Ertel RJ, Vollmer RR (1989) Adaptive responses to sustained volume expansion in hyponatraemic rats. J Endocrinol 122:421–431

    Article  PubMed  CAS  Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329

    PubMed  CAS  Google Scholar 

  • Vexler ZS, Symons M, Barber DL (1996) Activation of Na+-H+ exchange is necessary for RhoA-induced stress fiber formation. J Biol Chem 271:22281–22284

    PubMed  CAS  Google Scholar 

  • Viana F, de la PE, Pecson B, Schmidt RF, Belmonte C (2001) Swelling-activated calcium signalling in cultured mouse primary sensory neurons. Eur J Neurosci 13:722–734

    PubMed  CAS  Google Scholar 

  • Vieira LL, Lafuente E, Blum J, Cabantchik ZI (1997) Modulation of the swelling-activated amino acid channel of Leishmania major promastigotes by protein kinases. Mol Biochem Parasitol 90:449–461

    PubMed  CAS  Google Scholar 

  • Volk T, Frömter E, Korbmacher C (1995) Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc Natl Acad Sci USA 92:8478–8482

    PubMed  CAS  Google Scholar 

  • Völkl H, Lang F (2001) Electrophysiology of betaine transport in isolated perfused straight proximal tubule. Pflugers Arch 442:136–140

    PubMed  Google Scholar 

  • Vom Dahl S, Hallbrucker C, Lang F, Häussinger D (1991) Role of eicosanoids, inositol phosphates and extracellular Ca2+ in cell-volume regulation of rat liver. Eur J Biochem 198:73–83

    Google Scholar 

  • Vom Dahl S, Dombrowski F, Schmitt M, Schliess F, Pfeifer U, Häussinger D (2001) Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38MAPK activation. Biochem J 354:31–36

    Google Scholar 

  • von Weikersthal SF, Hickman ME, Hladky SB, Barrand MA (1997) Hypotonicity-induced changes in anion permeability of cultured rat brain endothelial cells. Biochim Biophys Acta 1325:99–107

    Google Scholar 

  • Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Bröer S, Moschen I, Albers A, Waldegger S, Tummler B, Egan ME, Geibel JP, Kandolf R, Lang F (2001) Effects of the serine/threonine kinase SGK1 on the epithelial Na+ channel (ENaC) and CFTR: implications for cystic fibrosis. Cell Physiol Biochem 11 209–218

    PubMed  CAS  Google Scholar 

  • Walaas SI, Czernik AJ, Olstad OK, Sletten K, Walaas O (1994) Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem J 304:635–640

    PubMed  CAS  Google Scholar 

  • Waldegger S, Barth P, Raber G, Lang F (1997) Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci USA 94:4440–4445

    PubMed  CAS  Google Scholar 

  • Wang K, Wondergem R (1991) Effects of hyperosmotic medium on hepatocyte volume, transmembrane potential and intracellular K+ activity. Biochim Biophys Acta 1069:187–196

    PubMed  CAS  Google Scholar 

  • Wang Y, Roman R, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci USA 93:12020–12025

    PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995) Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells. J Membr Biol 147:263–273

    PubMed  CAS  Google Scholar 

  • Wärntges S, Friedrich B, Henke G, Duranton C, Lang PA, Waldegger S, Meyermann R, Kuhl D, Speckmann EJ, Obermüller N, Witzgall R, Mack AF, Wagner HJ, Wagner A, Bröer S, Lang F (2002) Cerebral localization and regulation of the cell volume-sensitive serum-and glucocorticoid-dependent kinase SGK1. Pflugers Arch 443: 617–624

    PubMed  Google Scholar 

  • Warskulat U, Wettstein M, Häussinger D (1997a) Osmo-regulated taurine transport in H4IIE hepatoma cells and perfused rat liver. Biochem J 321:83–690

    Google Scholar 

  • Warskulat U, Zhang F, Häussinger D (1997b) Taurine is an osmolyte in rat liver macrophages (Kupffer cells) J Hepatol 26:1340–1347

    PubMed  CAS  Google Scholar 

  • Warth R, Hamm K, Bleich M, Kunzelmann E, Von Hahn T, Schreiber R, Ullrich E, Mengel M, Trautmann N, Kindle P, Schwab A, Greger R (1999) Molecular and functional characterization of the small Ca2+-regulated K+ channel (rSK4) of colonic crypts. Pflugers Arch 438:437–444

    PubMed  CAS  Google Scholar 

  • Watson AJ, Levine S, Donowitz M, Montrose MH (1992) Serum regulates Na+/H+ exchange in Caco-2 cells by a mechanism which is dependent on F-actin. J Biol Chem 267:956–962

    PubMed  CAS  Google Scholar 

  • Watson PA, Giger KE, Frankenfield CM (1991) Activation of adenylate cyclase during swelling of S49 cells in hypotonic medium is not involved in subsequent volume regulation. Mol Cell Biochem 104:51–56

    PubMed  CAS  Google Scholar 

  • Weaver YR, Kiessling K, Cossins AR (1999) Responses of the Na+/H+ exchanger of European flounder red blood cells to hypertonic, β-adrenergic and acidotic stimuli. J Exp Biol 202:21–32

    PubMed  CAS  Google Scholar 

  • Weekes J, Barry ST, Critchley DR (1996) Acidic phospholipids inhibit the intramolecular association between the N-and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem J 314:827–832

    PubMed  CAS  Google Scholar 

  • Wehner F (1998) Cell volume-regulated cation channels. Contrib Nephrol 123:8–20

    PubMed  CAS  Google Scholar 

  • Wehner F, Tinel H (1998) Role of Na+ conductance, Na+-H+ exchange, and Na+-K+-2Cl symport in the regulatory volume increase of rat hepatocytes. J Physiol (Lond) 506:127–142

    CAS  Google Scholar 

  • Wehner F, Tinel H (2000) Osmolyte and Na+ transport balances of rat hepatocytes as a function of hypertonic stress. Pflugers Arch 441:12–24

    PubMed  CAS  Google Scholar 

  • Wehner F, Sauer H, Kinne RKH (1995) Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J Gen Physiol 105:507–535

    PubMed  CAS  Google Scholar 

  • Wehner F, Tinel H, Kinne RKH (1997) Pharmacology of volume activated Na+ conductance in rat hepatocytes. Physiologist 40:A–4

    Google Scholar 

  • Wehner F, Lawonn P, Tinel H (2002a) Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2. Pflugers Arch 443:779–790

    PubMed  CAS  Google Scholar 

  • Wehner F, Olsen H, Bierhals K, Lin C-T, Waldmann H (2002b) Signal transduction in the hypertonic activation of rat hepatocyte Na+ conductance. FASEB J A56

    Google Scholar 

  • Weik C, Warskulat U, Bode J, Peters-Regehr T, Häussinger D (1998) Compatible organic osmolytes in rat liver sinusoidal endothelial cells. Hepatology 27:569–575

    PubMed  CAS  Google Scholar 

  • Weiss H, Lang F (1992) Ion channels activated by swelling of Madin Darby canine kidney (MDCK) cells. J Membr Biol 126:109–114

    PubMed  CAS  Google Scholar 

  • Weyand B, Warth R, Bleich M, Kerstan D, Nitschke R, Greger R (1998) Hypertonic cell shrinkage reduces the K+ conductance of rat colonic crypts. Pflugers Arch 436:227–232

    PubMed  CAS  Google Scholar 

  • Willumsen NJ, Davis CW, Boucher RC (1994) Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Invest 94: 779–787

    PubMed  CAS  Google Scholar 

  • Winpenny JP, Mathews CJ, Verdon B, Wardle CJ, C., Chambers JA, Harris A, Argent BE, Gray MA (1996) Volume-sensitive chloride currents in primary cultures of human fetal vas deferens epithelial cells. Pflugers Arch 432:644–654

    PubMed  CAS  Google Scholar 

  • Wirthensohn G, Lefrank S, Schmolke M, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256:F128–F135

    PubMed  CAS  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M, Flockerzi V (2000) Trp12 a novel Trp related protein from kidney. FEBS Lett 485:127–134

    PubMed  CAS  Google Scholar 

  • Wittels KA, Hubert EM, Musch MW, Goldstein L (2000) Osmolyte channel regulation by ionic strength in skate RBC. Am J Physiol Regul Integr Comp Physiol 279:R69–R76

    PubMed  CAS  Google Scholar 

  • Wojnowski L, Oberleithner H (1991) Hypertonicity in fused Madin-Darby canine kidney cells: transient rise in NaHCO3 followed by sustained KCl accumulation. Pflugers Arch 419:43–50

    PubMed  CAS  Google Scholar 

  • Wolff NA, Kinne R (1988) Taurine transport by rabbit kidney brush-border membranes: coupling to sodium, chloride, and the membrane potential. J Membr Biol 102:131–139

    PubMed  CAS  Google Scholar 

  • Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57:109–156

    PubMed  CAS  Google Scholar 

  • Wu X, Yang H, Iserovich P, Fischbarg J, Reinach PS (1997) Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J Membr Biol 158:127–136

    PubMed  CAS  Google Scholar 

  • Wymann MP, Pirola L (1998) Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1436:127–150

    PubMed  CAS  Google Scholar 

  • Xiong H, Li C, Garami E, Wang Y, Ramjeesingh M, Galley K, Bear CE (1999) ClC-2 activation modulates regulatory volume decrease. J Membr Biol 167:215–221

    PubMed  CAS  Google Scholar 

  • Xu B, Lu L (1994) Protein kinase A-regulated Cl channel in ML-1 human hematopoietic myeloblasts. J Membr Biol 142:65–75

    PubMed  CAS  Google Scholar 

  • Xu WX, Kim SJ, So I, Kang TM, Rhee JC, Kim KW (1997) Volume-sensitive chloride current activated by hypo-osmotic swelling in antral gastric myocytes of the guinea-pig. Pflugers Arch 435:9–19

    PubMed  CAS  Google Scholar 

  • Yamaguchi DT, Green J, Kleeman CR, Muallem S (1989) Characterization of volume-sensitive, calcium-permeating pathways in the osteosarcoma cell line UMR-106-01. J Biol Chem 264:4383–4390

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Suzuki H (1996) Two types of stretch-activated channel activities in guinea-pig gastric smooth muscle cells. Jpn J Physiol 46:337–345

    PubMed  CAS  Google Scholar 

  • Yamashita T, Yamauchi A, Miyai A, Taniguchi M, Yoshimine T, Tohyama M (1999) Neuroprotective role of Na+/myo-inositol cotransporter against veratridine cytotoxicity. J Neurochem 72:1864–1870

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Kwon HM, Uchida S, Preston AS, Handler JS (1991) Myo-inositol and betaine transporters regulated by tonicity are basolateral in MDCK cells. Am J Physiol 261:F197–F202

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of a Na+-and Cl-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267:649–652

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Uchida S, Preston AS, Kwon HM, Handler JS (1993) Hypertonicity stimulates transcription of gene for Na+-myo-inositol cotransporter in MDCK cells. Am J Physiol 264:F20–F23

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Miyai A, Shimada S, Minami Y, Tohyama M, Imai E, Kamada T, Ueda N (1995) Localization and rapid regulation of Na+/myo-inositol cotransporter in rat kidney. J Clin Invest 96:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Burg MB (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol 257:F602–F607

    PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Yang X-C, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    PubMed  CAS  Google Scholar 

  • Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol 538:891–899

    PubMed  CAS  Google Scholar 

  • Yordy MR, Bowen JW (1993) Na,K-ATPase expression and cell volume during hypertonic stress in human renal cells. Kidney Int 43:940–948

    PubMed  CAS  Google Scholar 

  • Yorek MA, Dunlap JA, Lowe WL, Jr (1999) Osmotic regulation of the Na+/myo-inositol cotransporter and postinduction normalization. Kidney Int 55:215–224

    PubMed  CAS  Google Scholar 

  • Yu W-G, Sokabe M (1997) Hypotonically induced whole-cell currents in A6 cells: relationship with cell volume and cytoplasmic Ca2+. Jpn J Physiol 47:553–565

    PubMed  CAS  Google Scholar 

  • Zablocki K, Miller SP, Garcia-Perez A, Burg MB (1991) Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC: choline phosphodiesterase. Proc Natl Acad Sci USA 88:7820–7824

    PubMed  CAS  Google Scholar 

  • Zelikovic I, Stejskal-Lorenz E, Lohstroh P, Budreau A, Chesney RW (1989) Anion dependence of taurine transport by rat renal brush-border membrane vesicles. Am J Physiol 256:F646–F655

    PubMed  CAS  Google Scholar 

  • Zelikovic I, Budreau-Patters A (1999) Cl and membrane potential dependence of amino acid transport across the rat renal brush border membrane. Mol Genet Metab 67:236–247

    PubMed  CAS  Google Scholar 

  • Zhang JJ, Jacob TJ, C (1997) Three different Cl channels in the bovine ciliary epithelium activated by hypotonic stress. J Physiol (Lond) 499:379–389

    CAS  Google Scholar 

  • Zhang MI, O’Neil RG (1996) An L-type calcium channel in renal epithelial cells. J Membr Biol 154:259–266

    PubMed  CAS  Google Scholar 

  • Zhang Z, Cohen DM (1996) NaCl but not urea activates p38 and jun kinase in mIMCD3 murine inner medullary cells. Am J Physiol 271:F1234–F1238

    PubMed  CAS  Google Scholar 

  • Zhou C, Agarwal N, Cammarata PR (1994) Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 2: Cloning of a 626 bp cDNA portion of a Na+/myo-inositol cotransporter, an osmotic shock protein. Invest Ophthalmol Vis Sci 35:1236–1242

    PubMed  CAS  Google Scholar 

  • Zhou C, Cammarata PR (1999) Characterization of the minimal osmotic response element of the bovine Na+/myo-inositol cotransporter gene. Exp Eye Res 68:137–142

    PubMed  CAS  Google Scholar 

  • Zhuang S, Hirai SI, Ohno S (2000) Hyperosmolality induces activation of cPKC and nPKC, a requirement for ERK1/2 activation in NIH/3T3 cells. Am J Physiol Cell Physiol 278:C102–C109

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wehner .

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., Kinne, R.K.H. (2003). Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-003-0009-x

Download citation

  • DOI: https://doi.org/10.1007/s10254-003-0009-x

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40136-0

  • Online ISBN: 978-3-540-44834-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics