Skip to main content

Waveguide Fabrication Techniques

  • Chapter
  • First Online:
Integrated Optics

In Chapter 3, the theoretical considerations relevant to various types of waveguides were discussed. In every case, waveguiding depended on the difference in the index of refraction between the waveguiding region and the surrounding media. A great many techniques have been devised for producing that required index difference. Each method has particular advantages and disadvantages, and no single method can be said to be clearly superior. The choice of a specific technique of waveguide fabrication depends on the desired application, and on the facilities available. In this Chapter, various methods of waveguide fabrication are reviewed, and their inherent features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.K. Tien: Appl. Opt. 10, 2395 (1971)

    Article  ADS  Google Scholar 

  2. K.E. Wilson, E. Garmire, R.M. Silva, W.K. Stowell: J. Opt. Soc. Am. 71, 1560 (1981)

    Article  ADS  Google Scholar 

  3. R. Behrisch (ed.): Sputtering by Particle Bombardment I, Topics Appl. Phys., Vol. 47 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  4. F. Zernike: Fabrication and measurement of passive components, in Integrated Optics, T. Tamir (ed.) 2nd edn., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  5. J.D. Plummer, J.D. Deal, P.B. Griffin: Silicon VLSI Technology (Prentice Hall, Upper Saddle River, NJ 2000) pp. 539–555

    Google Scholar 

  6. A.B. Glaser, G.E. Subak-Sharpe: Integrated Circuit Engineering (Addison-Wesley. Reading, MA 1977) pp. 169–181

    Google Scholar 

  7. B.J.H. Stadler, A. Gopinath: Magneto-optical garnet films made by reactive sputtering. IEEE Transactions on Magnetics 36, 3957 (2000)

    Article  ADS  Google Scholar 

  8. Y.B. Choi, S.J. Park, K.S. Shin, K.T. Jeong, S.H. Cho, D.C. Moon: The planar light waveguide type optical amplifier fabricated by sputtering method. APCC/OECC’99. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, Volume: 2 (1999) pp. 1634–1635

    Article  Google Scholar 

  9. T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori: Neodymium-doped silica-based planar waveguide lasers. IEEE J. Lightwave Technol. 12, 436 (1994)

    Article  ADS  Google Scholar 

  10. M.P. Roe, M. Hempstead, J.L. Archambault, P.St.J. Russell, L. Dong: Strong photoinduced refractive index changes in RF-sputtered tantalum oxide planar waveguides. Conference on Lasers and Electro-Optics Europe (1994) p. 67

    Google Scholar 

  11. T.H. Hoekstra, P.V. Lambeck, H. Albers, T.J.A. Popma: Sputter-deposited erbium-doped yttrium oxide active optical waveguides. Electron. Lett. 29, 581 (1993)

    Article  Google Scholar 

  12. D. Ostrowsky, A. Jaques: Appl. Phys. Lett. 18, 556 (1971)

    Article  ADS  Google Scholar 

  13. K. Enbutsu, M. Hikita, S. Tomaru, M. Usui, S. Imamura, T. Maruno: Multimode optical waveguide fabricated by UV curved epoxy resin for optical interconnection. APCC/OECC’99. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, Vol.: 2 (1999) pp. 1648–1651

    Article  Google Scholar 

  14. T. Sosnowski, H. Weber: Appl. Phys. Lett. 21, 310 (1972)

    Article  ADS  Google Scholar 

  15. D.A. Ramey, J.T. Boyd: IEEE Trans. CAS-26, 1041 (1979)

    Article  Google Scholar 

  16. R. Reuter, H. Franke, C. Feger: Appl. Opt. 27, 4565 (1988)

    Article  ADS  Google Scholar 

  17. T. Arakawa, T. Hasegawa, M. Kawaga: Upt. Eng. 42, 898 (2003)

    ADS  Google Scholar 

  18. A. Neyer, T. Knoche, L. Müller: Electron. Lett. 29, 399 (1993)

    Article  Google Scholar 

  19. D.P. Prakash, D.V. Plant, D. Zhang, H.R. Fetterman: SPIE Proc. 1774, 118 (1993)

    Article  ADS  Google Scholar 

  20. P.K. Tien, G. Smolinsky, R. Martin: Appl. Opt. 11, 637 (1972)

    Article  ADS  Google Scholar 

  21. S.A. Campbell: The Science and Engineering of Microelectronic Fabrication, 2nd ed. (Oxford, New York 2001) pp. 39–65

    Google Scholar 

  22. J.L. Jackel, V. Ramaswamy, S.P. Lyman: Appl. Phys. Lett. 38, 509 (1981)

    Article  ADS  Google Scholar 

  23. Y. Liao, D. Chen, R. Lu, W. Wang: Photo. Technol. Lett. 8, 548 (1996)

    Article  ADS  Google Scholar 

  24. R. Twu, C. Huang, W. Wang: Micro. Opti. Technol. Lett. 48, 2312 (2006)

    Article  Google Scholar 

  25. J. Hukriede, D. Kip, E. Krataig: Photorefraction and thermal fixing in channel waveguides fabricated in lithium niobate by titanium and copper indiffusion. Conference Digest IEEE Conference on Lasers and Electro-Optics Europe (2000)

    Google Scholar 

  26. H.F. Taylor, W.E. Martin, D.B. Hall, V.N. Smiley: Appl. Phys. Lett. 21, 325 (1972)

    Article  ADS  Google Scholar 

  27. W.E. Martin, D.B. Hall: Appl. Phys. Lett. 21, 325 (1972)

    Article  ADS  Google Scholar 

  28. E.M. Zolatov. V.A. Kiselyov, A.M. Prokhorov, E.A. Sacherbakov: Determination of characteristics of diffused optical waveguides. OSA Topical Meeting on Integrated Optics, Salt Lake City, UT (1978)

    Google Scholar 

  29. B.L. Booth: Optical interconnection polymers, in Polymers for Lightwave and Integrated Optics: Techniques and Applications, L.A. Hornak (ed.) (Dekker, New York 1992) p. 232

    Google Scholar 

  30. T. Izawa, H. Nakagome: Appl. Phys. Lett. 21, 584 (1972)

    Article  ADS  Google Scholar 

  31. R.C. Alfernes: Titanium-diffused lithium niobate waveguide devices, in Guided-Wave Optoelectronics, T. Tamir (ed.), 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) pp. 145–206, in particular, p. 148

    Google Scholar 

  32. A. Tervonen, S. Honkanen, P. Poyhonen, M. Tahkokorpi: SPIE Proc. 1794, 264 (1993) P. Masalkar, V. Rao, R. Sirohi: SPIE Proc. 1794, 271 (1993)

    Google Scholar 

  33. D.F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian: lon-exchanged waveguide add/drop filter. Electron. Lett. 37, 829 (2001)

    Article  Google Scholar 

  34. B. Buchold, E. Voges: Planar arrayed-waveguide grating multi/demultiplexers based on ion-exchanged waveguides in glass. IEE Colloquium on WDM Technology and Applications (Digest No. 1997/036) (1997) pp. 10/1–10/5

    Google Scholar 

  35. D. Nir, S. Ruschin, A. Hardy, D. Brooks: Proton-exchanged periodically segmented channel waveguides in lithium niobate. Electron. Lett. 31, 186 (1995)

    Article  Google Scholar 

  36. H. Ryssel, H. Glawisching (eds.): Ion Implantation, Springer Ser. Electrophys., Vols. 10 and 11 (Springer, Berlin, Heidelberg 1982 and 1983)

    Google Scholar 

  37. W.S. Johnson, J.F. Gibbons: Projected Range Statistics in Semiconductors (Standford Univ. Press, Standford, CA 1969)

    Google Scholar 

  38. R. Standley, W.M. Gibson, J.W. Rodgers: Appl. Opt. 11, 1313 (1972)

    Article  ADS  Google Scholar 

  39. E. Garmire, H. Stoll, A. Yariv, R.G. Hunsperger: Appl. Phys. Lett. 21, 87 (1972)

    Article  ADS  Google Scholar 

  40. M.A. Mentzer, R.G. Hunsperger, S. Sriram, J. Bartko, M.S. Wlodawski, J.M. Zavada, H.A. Jenkinson: Opt. Eng. 24, 225 (1985)

    Article  Google Scholar 

  41. M. Barnoski, R.G. Hunsperger, R. Wilson, G. Tangonan: J. Appl. Phys. 44, 1925 (1973)

    Article  ADS  Google Scholar 

  42. J. Zavada, H. Jenkinson, T. Gavanis, R.G. Hunsperger, M. Mentzer, D. Larson, J. Comas: SPIE Proc. 239, 157 (1980)

    Article  Google Scholar 

  43. J.P. Donnelley, A.G. Foyt, W.T. Lindley, G.W. Iseler: Solid State Electron, 13, 755 (1970)

    Article  ADS  Google Scholar 

  44. R.M. Alien, British Embassy, Washinton, DC 20008: Priv, Commun. (1976)

    Google Scholar 

  45. P. Bhattacharya: Semiconductor Optoelectronic Devices (Prentice-Hall, Englewood Cliffs, NJ 1944) pp. 133–137, 294–299

    Google Scholar 

  46. E. Garmire: Semiconductor components for monolithic applications, in Integrated Optics, T. Tamir (ed.), 2nd edn., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1979) Chap. 6, in particular, pp. 293–301

    Google Scholar 

  47. T. Moss, G. Hawkins: Infrared Phys. 1, 111 (1961)

    Article  ADS  Google Scholar 

  48. D. Hill: Phys. Rev. A 133, 866 (1963)

    Google Scholar 

  49. J. Shah, B.I. Miller, A.E. DiGiovanni: J. Appl. Phys. 43, 3436 (1972)

    Article  ADS  Google Scholar 

  50. J.T. Boyd: IEEE J. QE-8, 788 (1972)

    Article  Google Scholar 

  51. H.C. Casey Jr., D.D. Sell, M.B. Panish: Appl. Phys. Lett. 24, 633 (1974)

    Article  Google Scholar 

  52. V. Evtuhov, A. Yariv: IEEE Trans. MTT-23, 44 (1975)

    Article  Google Scholar 

  53. Zn.I. Alferov, V.M. Andreev, E.L. Portnoi, M.K. Trukn: Sov. Phys. – Semiconductors 3, 1107 (1970)

    Google Scholar 

  54. J.H. McFee, R.H. Nahory, M.A. Pollack, R.A. Logan: Appl. Phys. Lett. 23, 571 (1973)

    Article  ADS  Google Scholar 

  55. F.K. Reinhart, R.A. Logan, T.P. Lee: Appl. Phys. Lett. 24, 270 (1974)

    Article  ADS  Google Scholar 

  56. S.M. Jensen, M.K. Barnoski, R.G. Hunsperger, G.S. Kamath: J. Appl. Phys. 46, 3547 (1975)

    Article  ADS  Google Scholar 

  57. M.G. Craford, W.O. Groves: IEEE Proc. 61, 862 (1973)

    Article  Google Scholar 

  58. S. Kamath: Epitaxial GaAs-(GaAl)As layers for integrated optics. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  59. H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  60. C.M. Wolfe, G.E. Stillman, M. Melngallis: Epitaxial growth of InGaAs-GaAs for integrated optics. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  61. M. Kawabe: Appl. Phys. Lett. 26, 46 (1975)

    Article  ADS  Google Scholar 

  62. K. Nakajimi, A. Yamaguch, K. Akita, T. Kotani: J. Appl. Phys. 49, 5944 (1979)

    Article  ADS  Google Scholar 

  63. R.U. Martinelli: LEOS’88, Santa Clara, CA (1988) Digest p. 55

    Google Scholar 

  64. M.R.T. Pearson, P.E. Jessop, D.M. Bruce, S. Wallace, P. Mascher, J. Ojha: Fabrication of SiGe optical waveguides using VLSI processing techniques. IEEE J. Lightwave Tech. 19, 363 (2001)

    Article  ADS  Google Scholar 

  65. A.A. Chernov (ed.): Modern Crystallography III, Crystal Growth, Springer Ser. Solid-State Sci., Vol. 36 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  66. K. Ploog, K. Graf: Molecular Beam Epitaxy of III–V compounds, a Comprehensive Bibliography 1958–1983 (Springer, Berlin, Heidelberg 1984)

    Book  Google Scholar 

  67. M.A. Herman, H. Sitter: Molecular Beam Epitaxy, 2nd edn., Springer Ser. Mater. Sci., Vol. 7 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  68. W.T. Tsang: Appl. Phys. Lett. 38, 587 (1981)

    Article  ADS  Google Scholar 

  69. J.C.M. Hwang, J.V. DiLorenzo, P.E. Luscher, W.S. Knodle: Solid State Techn. 25, 166 (1982)

    Google Scholar 

  70. C. Goldstein, C. Stark, J. Emory, F. Gaberit, D. Bonnevie, F. Poingt, M. Lambert: J. Crystal Growth 120, 157 (1992)

    Article  ADS  Google Scholar 

  71. R.G. Walker, R.C. Goodfellow: Electron. Lett. 19, 590 (1983)

    Article  Google Scholar 

  72. T. Matsumoto, P. Bhattacharya, M.J. Ludowise: Appl. Phys. Lett. 42, 52 (1983)

    Article  ADS  Google Scholar 

  73. H. Ishiguro, T. Kawabata, S. Koike: Appl. Phys. Lett. 51, 12 (1987)

    Article  Google Scholar 

  74. H. Jvergensen: Microelectron. Eng. 18, 119 (1992)

    Article  Google Scholar 

  75. A. Yariv: Optical Electronics, 4th edn. (Holt, Rinehart and Winston, New York 1991) pp. 309–316

    Google Scholar 

  76. B.G. Streetman: Solid State Electronic Devices, 3rd edn. (Prentice-Hall, Englewood Cliffs. NJ 1990) p. 147

    Google Scholar 

  77. S.A. Campbell: The Science and Engineering of Microelectronic Fabrication, 2nd ed. (Oxford, New York, 2001) pp. 68–95

    Google Scholar 

  78. C. Boulas, S. Valertte, E. Parrens. A. Fournier: Low loss multimode waveguides on silicon substrate. Electron. Lett. 28, 1648 (1992)

    Article  Google Scholar 

  79. Q. Lai, P. Pliska, J. Schmid, W. Hunziker, H. Melchior: Formation of optical slab waveguides using thermal oxidation of SiO2. Electron. Lett. 29, 1648 (1992)

    Google Scholar 

  80. A.V. Tomov, V.V. Filippov, V.P. Bondarento: Pis’ma Zh. Tekh. Fiz 23, 86 (1997)

    Google Scholar 

  81. O.K. Sparacin, S.J. Spector, L.C. Kimerling: J. Lightwave Technol. 23, 2455 (2005)

    Article  ADS  Google Scholar 

  82. Y. Luo, D.C. Hall, L. Kou, O. Bium, H. Hou, L. Steingart, J.H. Jackson: Optical properties of AlGaAs heterostructure native oxide planar waveguides LEOS’99. IEEE

    Google Scholar 

  83. D.G. Deppe, D.L. Huffaker, H. Deng, C.C. Lin: Engineering Foundation Conference on High Speed Optoelectronic Devices for Communications and Interconnects, San Luis Obispo, CA (1994)

    Google Scholar 

  84. E. Spiller, R. Feder: X-ray lithography, in X-Ray Optics, H.-J. Queiser (ed.), Topics Appl. Phys., Vol. 22 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  85. R.A. Bartolini: Photoresits, in Holographic Recording Materials, ed. by H.M. Smith, Topics Appl. Phys., Vol. 20 (Springer, Berlin, Heidelberg 1977)

    Google Scholar 

  86. H.I. Bjelkhagen: Silver-Halide Recording Materials for Holography and Their Processing, 2nd edn., Springer Ser. Opt. Sci., Vol. 66 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  87. M.C. Rowland: The preparation and properties of gallium arsenide, in Gallium Arsenide Lasers, C.H. Gooch (ed.) (Wiley-Interscience, New York 1969) p. 166

    Google Scholar 

  88. S. Somekh, E. Garmire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Opt. 12, 455 (1973)

    Article  ADS  Google Scholar 

  89. A.R. Goodwin, D.H. Lovelace, P.R. Selway: Opto-Electron. 4, 311 (1972)

    Article  Google Scholar 

  90. M. Kawabe, S. Hirata, S. Namba: IEEE Trans. CAS-26, 1109 (1979)

    Article  Google Scholar 

  91. F.A. Blum, D.W. Shaw, W.C. Holton: Appl. Phys. Lett. 25, 116 (1974)

    Article  ADS  Google Scholar 

  92. H.F. Taylor, W.E. Martin, D.B. Hall, V.N. Smiley: Appl. Phys. Lett. 21, 95 (1972)

    Article  ADS  Google Scholar 

  93. S. Somek, E. Garmire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Opt. 13, 327 (1974)

    Article  ADS  Google Scholar 

  94. G. Li, K.A. Winick, H.C. Griffin, J.S. Hayden: Appl. Opt. 45, 1743 (2006)

    Article  ADS  Google Scholar 

  95. S.M. Sze: VLSI Technology, 2nd edn. (McGraw-Hill, New York 1988)

    Google Scholar 

  96. D.F. Barbe: Very Large Scale Integration (VLSI). 2nd edn., Springer Ser. Electrophys., Vol. 5 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  97. J.L. Jackel, R.E. Howard, E.L. Hu, S.P. Lyman: Appl. Phys. Lett. 38, 907 (1981)

    Article  ADS  Google Scholar 

  98. M.A. Bosch, L.A. Coldren, E. Good: Appl. Phys. Lett. 38, 264 (1981)

    Article  ADS  Google Scholar 

  99. K. Gamo: Mater. Sci. Eng. B: Solid-State Mater. for Adv. Techn. B 9, 307 (1991)

    Article  Google Scholar 

  100. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai and D.W. Prather: Opt. Express 11, 3555 (2003)

    Article  ADS  Google Scholar 

  101. H.F. Arrand, T.M. Benson, P. Sewell, A. Loni: J. Lumin. 80, 199 (1999)

    Article  Google Scholar 

  102. E.J. Teo, A.A.Bettiol, M.B.H. Breese1, P. Yang, G.Z. Mashanovich, W.R. Headley, G.T. Reed, D.J. Blackwood: Optics Express 16, 573 (2008)

    Google Scholar 

  103. K. Imai: Solid State Electron. 24 150 (1981)

    Article  ADS  Google Scholar 

  104. R.R. Gattass, L.R. Cerami, E. Mazur: Proc. Int. Workshop on Optical and Electronic Device Technology for Access Network, San Jose, CA, 51 (2005)

    Google Scholar 

  105. D.M. Krol, J.W. Chen, T. Huser, S.H. Risbud, J. Hayden: CLEO/Europe 2003 Conference on Lasers and Electro-Optics Europe, 346 (2003)

    Google Scholar 

  106. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Ksausz: Physical Review Letters 80, 4076 (1998)

    Article  ADS  Google Scholar 

  107. C.B. Schaffer, A. Brodeur, E. Mazur: Meas. Sci. Technol. 12 1784 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Waveguide Fabrication Techniques. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_4

Download citation

Publish with us

Policies and ethics