Total Syntheses of Kelsoene and Preussin

  • Birte Basler
  • Sebastian Brandes
  • Anja Spiegel
  • Thorsten Bach
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 243)

Abstract

Total syntheses of the natural products kelsoene and preussin are comprehensively reviewed. Kelsoene is a sesquiterpene with a unique tricyclo[6.2.0.02,6]decane skeleton. It contains six stereogenic centers the selective construction of which has been addressed differently in the five syntheses known to date. Three syntheses employ an intermolecular [2+2]-photocycloaddition reaction as key step. One synthesis is based on a homo-Favorskii rearrangement and one on an intramolecular [2+2]-photocycloaddition. Preussin is a pyrrolidine alkaloid with three stereogenic centers which are all located within the central heterocyclic core (C-2, C-3, C-5). So far, 18 total syntheses of preussin have been completed. Seven syntheses include the nucleophilic attack on an l-phenylalanine derived electrophile as key step, five use α-amino- or α-hydroxycarboxylic acids as chiral pool building blocks. Two syntheses are based on sugars as chiral starting materials and two are based on the desymmetrization of meso-compounds. In addition, there are two syntheses which use a chiral auxiliary to establish the first stereogenic element en route to preussin.

Keywords

Alkaloids Natural products Photochemistry Terpenes Total synthesis 

List of Abbreviations

Am

Amyl

ds

Diastereoselectivity

im

Imidazole

MSH

O-(Mesitylenesulfonyl)hydroxyl-amine

NOE

Nuclear Overhauser effect/enhancement

NOESY

Nuclear Overhauser enhancement spectroscopy

PPL

Pig pancreatic lipase

SES

Trimethylsilyl ethyl sulfonyl

TIBAL

Triisobutylaluminum

TPAP

Tetrapropylammonium perruthenate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    König GM, Wright AD (1997) J Org Chem 62:3837Google Scholar
  2. 2.
    Nabeta K, Yamamoto K, Hashimoto M, Koshino H, Funatsuki K, Katoh K (1998) J Chem Soc Chem Commun 1485Google Scholar
  3. 3.
    Warmers U, Wihstutz K, Bülow N, Fricke C, König WA (1998) Phytochemistry 49:1723Google Scholar
  4. 4.
    Warmers U, König WA (1999) Phytochemistry 52:1519Google Scholar
  5. 5.
    Nabeta K, Yamamoto M, Koshino H, Fukui H, Fukushi Y, Tahara S (1999) Biosci Biotechnol Biochem 63:1772Google Scholar
  6. 6.
    Nabeta K, Yamamoto M, Fukushima K, Katoh K (2000), J Chem Soc Perkin Trans 1:2703Google Scholar
  7. 7.
    Mehta G, Srinivas K (1999) Synlett 555Google Scholar
  8. 8.
    Mehta G, Srinivas K (1999) Tetrahedron Lett 40:4877Google Scholar
  9. 9.
    Fietz-Razavian S, Schulz S, Dix I, Jones PG (2001) J Chem Soc Chem Commun 2154Google Scholar
  10. 10.
    Fietz-Razavian S (2001) PhD thesis, Technische Universität BraunschweigGoogle Scholar
  11. 11.
    Piers E, Orellana A (2001) Synthesis 2138Google Scholar
  12. 12.
    Mehta G, Srinivas K (2001) Tetrahedron Lett 42:2855Google Scholar
  13. 13.
    Henry PM, Davies M, Ferguson G, Phillips S, Restivo R (1974) J Chem Soc Chem Commun 112Google Scholar
  14. 14.
    Ito Y, Hirao T, Saegusa T (1978) J Org Chem 43:1011Google Scholar
  15. 15.
    Dauben WG, Michno DM (1977) J Org Chem 42:682Google Scholar
  16. 16.
    Wolinsky J, Wolf H, Gibson T (1963) J Org Chem 28:274Google Scholar
  17. 17.
    Wolinsky J, Eustache EJ (1972) J Org Chem 37:3376Google Scholar
  18. 18.
    Magnus P, Roy G (1979) J Chem Soc Chem Comm 822Google Scholar
  19. 19.
    Magnus P, Roy G (1982) Organometallics 1:553Google Scholar
  20. 20.
    Taguchi H, Tanaka S, Yamamoto H, Nozaki H (1973) Tetrahedron Lett 2465Google Scholar
  21. 21.
    Lombardo L (1982) Tetrahedron Lett 23:4293Google Scholar
  22. 22.
    Lombardo L (1987) Org Synth 65:81Google Scholar
  23. 23.
    Zhang L, Koreeda M (2002) Org Lett 4:3755Google Scholar
  24. 24.
    Mann G, Muchall HM (1997) Cyclobutanes: synthesis by rearrangement of the carbon framework. In: de Meijere A (ed) Methods of organic chemistry (Houben-Weyl), 4th edn, vol E 17e. Thieme Verlag, Stuttgart, p 233Google Scholar
  25. 25.
    Wenkert E, Bakuzis P, Baumgarten RJ, Leicht CL, Schenk HP (1971) J Am Chem Soc 93:3208Google Scholar
  26. 26.
    Klinkmüller KD, Marschall H, Weyerstahl P (1975) Chem Ber 108:191Google Scholar
  27. 27.
    Erman WF, Treptow RS, Bakuzis P, Wenkert E (1971) J Am Chem Soc 93:657Google Scholar
  28. 28.
    Reetz MT, Kindler A (1995) J Organomet Chem 502:C5–C7Google Scholar
  29. 29.
    Koreeda M (2003) (personal communication)Google Scholar
  30. 30.
    Trost BM, Organ MG (1994) J Am Chem Soc 116:10320Google Scholar
  31. 31.
    Bach T, Pelkmann C, Harms K (1999) Tetrahedron Lett 40:2103Google Scholar
  32. 32.
    Bach T, Krüger C, Harms K (2000) Synthesis 305Google Scholar
  33. 33.
    Steiner G, Bach A, Bialojan S, Greger G, Hege HG, Höger T, Jochims K, Munschauer R, Neumann B Teschendorf HJ, Traut M, Unger L, Gross G (1998) Drugs Fut 23:191Google Scholar
  34. 34.
    Salomon RG, Coughlin DJ, Ghosh S, Zagorski MG (1982) J Am Chem Soc 104:998Google Scholar
  35. 35.
    Salomon RG, Ghosh S, Raychaudhuri SR, Miranti TS (1984) Tetrahedron Lett 25:3167Google Scholar
  36. 36.
    Steiner G, Munschauer R, Klebe G, Siggel L (1995) Heterocycles 40:319Google Scholar
  37. 37.
    Tietze LF, Beifuß U, Ruther M, Rühlmann A, Antel J, Sheldrick GM (1988) Angew Chem 100:1200; (1988) Angew Chem Int Ed 27:1186Google Scholar
  38. 38.
    Spiegel A (2002) PhD thesis, Technische Universität MünchenGoogle Scholar
  39. 39.
    Salomon RG, Sachinvala ND, Roy S, Basu B, Raychaudhuri SR, Miller DB, Sharma RB (1991) J Am Chem Soc 113:3085Google Scholar
  40. 40.
    Langer K, Mattay J, Heidbreder A, Möller M (1992) Liebigs Ann Chem 257Google Scholar
  41. 41.
    Bach T, Spiegel A (2002) Eur J Org Chem 645Google Scholar
  42. 42.
    Shizuri Y, Suyama K, Yamamura S (1986) J Chem Soc Chem Commun 63Google Scholar
  43. 43.
    Chu A, Mander LN (1988) Tetrahedron Lett 29:2727Google Scholar
  44. 44.
    Corey EJ, Guzman-Perez A, Loh TP (1994) J Am Chem Soc 116:3611Google Scholar
  45. 45.
    Míčková R, Syhora K (1965) Coll Czech Chem Comun 30:2771Google Scholar
  46. 46.
    Desai MC, Singh J, Chawla HPS, Dev S (1981) Tetrahedron 37:2935Google Scholar
  47. 47.
    Bach T, Spiegel A (2002) Synlett 1305Google Scholar
  48. 48.
    Lovey RG, Saksena AK, Girijavallabhan VM (1994) Tetrahedron Lett 35:6047Google Scholar
  49. 49.
    Morgan B, Dodds DR, Zaks A, Andrews DR, Klesse R (1997) J Org Chem 62:7736Google Scholar
  50. 50.
    Schwartz RE, Liesch J, Hensens O, Zitano L, Honeycutt S, Garrity G, Fromtling RA, Onishi J, Monaghan R (1988) J Antibiot 41:1774Google Scholar
  51. 51.
    Johnson JH, Phillipson DW, Kahle AD (1989) J Antibiot 42:1184Google Scholar
  52. 52.
    Kasahara K, Yoshida M, Eishima J, Takesako K, Beppu T, Horinouchi S (1997) J Antibiot 50:267Google Scholar
  53. 53.
    Achenbach TV, Slater EP, Brummerhop H, Bach T, Müller R (2000) Antimicrob Agents Chemother 44:2794Google Scholar
  54. 54.
    Okue M, Watanabe H, Kitahara T (2001) Tetrahedron 57:4107Google Scholar
  55. 55.
    Okue M, Watanabe H, Kasahara K, Yoshida M, Horinouchi S, Kitahara T (2002) Biosci Biotechnol Biochem 66:1093Google Scholar
  56. 56.
    Overhand M, Hecht SM (1994) J Org Chem 59:4721Google Scholar
  57. 57.
    McGrane PL, Livinghouse T (1993) J Am Chem Soc 115:11485Google Scholar
  58. 58.
    Veeresa G, Datta A (1998) Tetrahedron 54:15673Google Scholar
  59. 59.
    Krasiński A, Gruza H, Jurczak J (2001) Heterocycles 54:581Google Scholar
  60. 60.
    Lee K-Y, Kim Y-H, Oh C-Y, Ham W-H (2000) Org Lett 2:4041Google Scholar
  61. 61.
    Beier C, Schaumann E (1997) Synthesis 1296Google Scholar
  62. 62.
    Luly JR, Dellaria JF, Plattner JJ, Soderquist JL, Yi N (1987) J Org Chem 52:1487Google Scholar
  63. 63.
    Caldwell JJ, Craig D, East SP (2001) Synlett 1602Google Scholar
  64. 64.
    Kadota I, Saya S, Yamamoto Y (1997) Heterocycles 46:335Google Scholar
  65. 65.
    Pak CS, Lee GH (1991) J Org Chem 56:1128Google Scholar
  66. 66.
    Yoda H, Yamazaki H, Takabe K (1996) Tetrahedron Asymmetry 7:373Google Scholar
  67. 67.
    de Armas P, García-Tellado F, Marrero-Tellado JJ, Robles J (1998) Tetrahedron Lett 39:131Google Scholar
  68. 68.
    Dong H-Q, Lin G-Q (1997) Chin Chem Lett 8:693Google Scholar
  69. 69.
    Dong H-Q, Lin G-Q (1998) Chin J Chem 16:458Google Scholar
  70. 70.
    Hatakeyama S, Sakurai K, Takano S (1985) Chem Commun 1759Google Scholar
  71. 71.
    Hoffmann RW (2003) Angew Chem 115:1128; (2003) Angew Chem Int Ed 42:1096Google Scholar
  72. 72.
    Verma R, Ghosh SK (1997) Chem Commun 1601Google Scholar
  73. 73.
    Verma R, Ghosh SK (1999) J Chem Soc Perkin Trans 1:265Google Scholar
  74. 74.
    Deng W, Overman LE (1994) J Am Chem Soc 116:11241Google Scholar
  75. 75.
    Shimazaki M, Okazaki F, Nakajima F, Ishikawa T, Ohta A (1993) Heterocycles 36:1823Google Scholar
  76. 76.
    Kanazawa A, Gillet S, Delair P, Greene AE (1998) J Org Chem 63:4660Google Scholar
  77. 77.
    Hausherr A (2001) PhD thesis, Freie Universität BerlinGoogle Scholar
  78. 78.
    Paternò E, Chieffi G (1909) Gazz Chim Ital 39(1):341Google Scholar
  79. 79.
    Büchi G, Inman CG, Lipinsky ES (1954) J Am Chem Soc 76:4327Google Scholar
  80. 80.
    Freilich SC, Peters KS (1985) J Am Chem Soc 107:3819Google Scholar
  81. 81.
    Bach T, Jödicke K (1993) Chem Ber 126:2457Google Scholar
  82. 82.
    Bach T (1995) Liebigs Ann 855Google Scholar
  83. 83.
    Bach T (1996) Angew Chem 108:976; (1996) Angew Chem Int Ed 35:884Google Scholar
  84. 84.
    Bach T, Schröder J (1999) J Org Chem 64:1265Google Scholar
  85. 85.
    Bach T (1995) Liebigs Ann 1045Google Scholar
  86. 86.
    Bach T, Bergmann H, Brummerhop H, Lewis W, Harms K (2001) Chem Eur J 7:4512Google Scholar
  87. 87.
    Sobin BA, Tanner FW (1954) J Am Chem Soc 76:4053Google Scholar
  88. 88.
    Sakamoto K, Tsuji E, Abe F, Nakanishi T, Yamashita M, Shigematsu N, Izumi S, Okuhara M (1996) J Antibiot 49:37Google Scholar
  89. 89.
    Carpes MJS, Miranda PCML, Correia CRD (1997) Tetrahedron Lett 38:1869Google Scholar
  90. 90.
    Bach T, Brummerhop H (1998) Angew Chem 110:3577; (1998) Angew Chem Int Ed 37:3400Google Scholar
  91. 91.
    Bach T, Brummerhop H, Harms K (2000) Chem Eur J 6:3838Google Scholar
  92. 92.
    Ackermann J, Matthes M, Tamm C (1990) Helv Chim Acta 73:122Google Scholar
  93. 93.
    Matthes M, Tamm C (1991) Helv Chim Acta 74:1585Google Scholar
  94. 94.
    Hardegger E, Ott H (1955) Helv Chim Acta 38:312Google Scholar
  95. 95.
    Silverman RB, Levy MA (1980) J Org Chem 45:815Google Scholar
  96. 96.
    Shono T, Matsumura Y, Tsubata K, Sugihara Y, Yamane S-I, Kanazawa T, Aoki T (1982) J Am Chem Soc 104:6697Google Scholar
  97. 97.
    Dieter RK, Sharma RR (1996) J Org Chem 61:4180Google Scholar
  98. 98.
    Gassman PG, Burns SJ (1988) J Org Chem 53:5574Google Scholar
  99. 99.
    Bach T, Brummerhop H (1999) J Prakt Chem 341:312Google Scholar
  100. 100.
    Gaulon C, Dhal R, Dujardin G (2003) Synthesis 2269Google Scholar

Authors and Affiliations

  • Birte Basler
    • 1
  • Sebastian Brandes
    • 1
  • Anja Spiegel
    • 1
  • Thorsten Bach
    • 1
  1. 1.Lehrstuhl für Organische Chemie ITechnische Universität MünchenGarchingGermany

Personalised recommendations