Skip to main content

Electronic Spectroscopy and Photoreactivity of Transition Metal Complexes: Quantum Chemistry and Wave Packet Dynamics

  • Chapter
Transition Metal and Rare Earth Compounds

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 241))

Abstract

The most significant developments in quantum chemistry and wave packet dynamics providing the theoretical tools to study the electronic spectroscopy and photoreactivity of transition metal complexes are presented. The difficulties inherent to this class of molecules as well as the degree of maturity of the computational methods are discussed. Recent applications in transition metal coordination chemistry are selected to outline and to illustrate the necessity for a strong interplay between theory and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B3LYP:

Becke’s three parameters Lee, Yang, Parr functional

CASPT2:

Complete Active Space Perturbation Theory 2nd Order

CASSCF:

Complete Active Space SCF

CCSD:

Coupled Cluster Single Double

CCSD(T):

CCSD (Triple)

CI:

Configuration Interaction

DFT:

Density Functional Theory

EOM-CCSD:

Equation of Motion CCSD

MC-SCF:

Multiconfiguration-SCF

MP2:

Moller Plesset 2nd Order

MR-CI:

Multireference CI

MS-CASPT2:

Multistate CASPT2

RASSCF:

Restricted Active Space SCF

RHF:

Restricted Hartree Fock

SAC-CI:

Symmetry Adapted Cluster-CI

SCF:

Self Consistent Field

SS-CASPT2:

Singlestate CASPT2

TD-DFT:

Time Dependent-Density Functional Theory

Δ-SCF:

Delta-SCF

References

  1. Campagna S, Serroni S, Barigelletti F, Guest editors (2000) Coord Chem Rev Special Issue 13th International Symposium on Photochemistry and Photophysics of Coordination Compounds (Lipari, Italy 1999)

    Google Scholar 

  2. Coord Chem Rev (2002) Dick Stufkens Special Issue (Amsterdam, 2001) 230

    Google Scholar 

  3. Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G (1998) Science 282:919

    Google Scholar 

  4. Meyer TJ (1986) Pure Appl Chem 58:1193

    Google Scholar 

  5. Wrighton MS (1974) Chem Rev 74:401

    Google Scholar 

  6. Geoffroy GL, Wrighton MS (1979) In: Organometallic photochemistry. Academic Press, New York

    Google Scholar 

  7. Montiel-Palma V, Perutz RN, George MW, Jina OS, Sabo-Etienne S (2000) Chem Commun 13:1175; Abbott LC, Arnold CJ, Gordon KC, Hester RE, Moore JN, Perutz RN, Ye TQ (1999) Laser Chem 19:279; Bell SEJ, Rice JH, McGarvey JJ, Hester RE, Moore JN, Perutz RN, Ye TQ, Mizutani Y, Kitagawa T (1999) Laser Chem 19:271

    Google Scholar 

  8. Schlegel HB (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p 459

    Google Scholar 

  9. Hachey MRD, Daniel C (1998) Inorg Chem 37:1387

    Google Scholar 

  10. Pierloot K, Dumez B, Widmark P-O, Roos BO (1995) Theor Chim Acta 90:87

    Google Scholar 

  11. Pou-Amėrigo R, Merchan M, Nebot-Gill I, Widmark P-O, Roos BO (1995) Theor Chim Acta 92:149

    Google Scholar 

  12. Nooijen M, Lotrich V (2000) J Chem Phys 113:494

    Google Scholar 

  13. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Google Scholar 

  14. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Google Scholar 

  15. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Google Scholar 

  16. Hurley MM, Pacios LF, Christiansen PA, Ross RB, Ermler WC (1986) J Chem Phys 84:6840

    Google Scholar 

  17. Küche W, Dolg M, Stoll H, Preuss H (1991) Mol Phys 74:1245

    Google Scholar 

  18. LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WCJ (1987) Chem Phys 87:2812

    Google Scholar 

  19. Ross RB, Powers JM, Atashroo T, Ermler WC, LaJohn LA, Christiansen PA (1990) J Chem Phys 93:6654

    Google Scholar 

  20. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612

    Google Scholar 

  21. Barandiaran Z, Seijo L (1992) Can J Chem 70:409

    Google Scholar 

  22. Casarubios M, Seijo L (1998) J Mol Struct (THEOCHEM) 59:426

    Google Scholar 

  23. Casarubios M, Seijo L (1999) Chem Phys 110:784

    Google Scholar 

  24. Seijo L (1995) J Chem Phys 102:8078

    Google Scholar 

  25. Bossert J, Ben Amor N, Strich A, Daniel C (2001) Chem Phys Lett 342:617

    Google Scholar 

  26. Vallet V, Bossert J, Strich A, Daniel C (2003) Phys Chem Chem Phys 5:2948

    Google Scholar 

  27. Daniel C, Guillaumont D, Ribbing C, Minaev B (1999) J Phys Chem A 103:5766

    Google Scholar 

  28. Visscher L, Nieuwport WC (1994) Theor Chim Acta 88:447

    Google Scholar 

  29. EPCISO software: Vallet V, Maron L, Teichteil C, Flament JP (2000) J Chem Phys 113:1391

    Google Scholar 

  30. Kleinschmidt M, Tatchen J, Marian CM (2002) J Comp Chem 23:824

    Google Scholar 

  31. von Barth U (1979) Phys Rev A20:1693

    Google Scholar 

  32. von Barth U (1980) Phys Scr 21:585

    Google Scholar 

  33. Daul C, Güdel H-U, Weber J (1992) J Chem Phys 98:4023

    Google Scholar 

  34. Daul C, Baerends EJ, Vernooijs P (1994) Inorg Chem 33:3543

    Google Scholar 

  35. Lannoo M, Baraff GA, Schlüter M (1981) Phys Rev B24:943

    Google Scholar 

  36. Wood JH (1980) J Phys B At Mol Phys 13:1

    Google Scholar 

  37. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Google Scholar 

  38. Gross EKU, Kohn W (1990) Adv Quantum Chem 21:255

    Google Scholar 

  39. Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory. Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Casida ME (1995) Recent advances in density functional methods. World Scientific, Singapore

    Google Scholar 

  41. Roothan CCJ (1951) Rev Mod Phys 23:69

    Google Scholar 

  42. Roothan CCJ (1960) J Chem Phys 51:363

    Google Scholar 

  43. Roos BO (1972) Chem Phys Lett 15:153

    Google Scholar 

  44. Roos BO, Siegbahn PEM (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Plenum Press, New York, p 277

    Google Scholar 

  45. Shavitt I (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Plenum Press, New York, p 189

    Google Scholar 

  46. Siegbahn PEM (1977) Chem Phys 25:197

    Google Scholar 

  47. Roos BO (1983) In: Diercksen GHF, Wilson S (eds) Methods in computational physics. Reidel, Dordrecht, p 161

    Google Scholar 

  48. Werner H-J (1987) In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, Chichester, p 1

    Google Scholar 

  49. Shepard R (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry part II: the multiconfiguration SCF method. Wiley, Chichester

    Google Scholar 

  50. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803

    Google Scholar 

  51. Comeau DC, Bartlett RJ (1993) Chem Phys Lett 207:414

    Google Scholar 

  52. Geertsen J, Rittby M, Bartlett RJ (1989) Chem Phys Lett 164:57

    Google Scholar 

  53. Sekino H, Bartlett RJ (1984) Int J Quantum Chem Symp 18:255

    Google Scholar 

  54. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029

    Google Scholar 

  55. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:9335

    Google Scholar 

  56. Nakatsuji H (1978) Chem Phys Lett 59:362

    Google Scholar 

  57. Nakatsuji H (1979) Chem Phys Lett 67:329

    Google Scholar 

  58. Nakatsuji H (1979) Chem Phys Lett 67:334

    Google Scholar 

  59. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Google Scholar 

  60. Andersson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218

    Google Scholar 

  61. Andersson K, Roos BO, Malmqvist P-Å, Widmark P-O (1994) Chem Phys Lett 230:391

    Google Scholar 

  62. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299

    Google Scholar 

  63. MOLCAS 5.0 software (2000) University of Lund

    Google Scholar 

  64. GAUSSIAN software (1998) Carnegie Office Park, Pittsburgh PA USA

    Google Scholar 

  65. Werner H-J, Knowles PJ, Amos RD (2002) MOLPRO version 2002.1 software

    Google Scholar 

  66. Ahlrichs R et al. (2002) TURBOMOLE Program Package for ab initio electronic structure calculations version 5.5. Universität Karlsruhe, Physical Chemist, Karlsruhe, Germany

    Google Scholar 

  67. ACES II software: Stanton JF, Gauss J, Perera SA, Yau A, Watts JD, Nooijen M, Oliphant N, Szalay PG, Lauderdale WJ, Gwaltney SR, Beck S, Balkova A, Bernholdt DE, Baeck K-K, Rozyczko P, Sekino H, Hober C, Pittner J, Bartlett RJ (2002) Quantum Theory Project, University of Florida

    Google Scholar 

  68. Baerends EJ, Bickelhaupt FM, v Gisbergen SJA, Guerra CF, Snijders JG, Velde G, Ziegler T (2002) ADF version 2002.21 SCM Theoretical Chemistry. Vrije Universiteit, Amsterdam, The Netherlands

    Google Scholar 

  69. HONDO 8.5 software: Dupuis M et al. (1994) Electronic Structure System

    Google Scholar 

  70. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  71. Roos BO (1987) In: Lawley KP (ed) Advances in chemical physics; ab initio methods in quantum chemistry. Wiley, Chichester, p 399

    Google Scholar 

  72. Malmqvist P-Å, Rendell A, Roos BO (1990) J Phys Chem 94:5477

    Google Scholar 

  73. Roos BO, Andersson K (1995) Chem Phys Lett 245:215

    Google Scholar 

  74. Kühn O, Hachey MRD, Rohmer MM, Daniel C (2000) Chem Phys Lett 322:199

    Google Scholar 

  75. Cizek J (1969) J Chem Phys 45:4256

    Google Scholar 

  76. Coester F (1966) Nucl Phys 7:421

    Google Scholar 

  77. Paldus J, Cizek J, Shavitt I (1972) Phys Rev A 5:50

    Google Scholar 

  78. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2035

    Google Scholar 

  79. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Google Scholar 

  80. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718

    Google Scholar 

  81. Nakatsuji H, Ehara M, Palmer MH, Guest MF (1992) J Chem Phys 97:2561

    Google Scholar 

  82. Oliphant N, Bartlett RJ (1994) J Am Chem Soc 116:4091

    Google Scholar 

  83. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261

    Google Scholar 

  84. Daul C (1994) Int J Quantum Chem Symp 52:867

    Google Scholar 

  85. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134

    Google Scholar 

  86. Casida ME (1996) In: Recent advances in density functional methods. World Scientific, Singapore

    Google Scholar 

  87. Casida ME (1996) In: Recent developments and applications of modern DFT. Elsevier Science, Amsterdam, p 391

    Google Scholar 

  88. Rosa A, Baerends EJ, Gisbergen SJA, van Lenthe E, Groeneveld JA, Snijders JG (1999) J Am Chem Soc 121:10356

    Google Scholar 

  89. Wakamatsu K, Nishimito K, Shibahara T (2000) Inorg Chem Commun 3:677

    Google Scholar 

  90. Van Gisbergen SJA, Groeneveld JA, Rosa A, Snijders JG, Baerends EJ (1999) J Phys Chem A 103:6835

    Google Scholar 

  91. Ricciardi G, Rosa A, van Gisbergen SJA, Baerends EJ (2000) J Phys Chem A 104:635

    Google Scholar 

  92. Rosa A, Ricciardi G, Baerends EJ, van Gisbergen SJA (2001) J Phys Chem A 105:3311

    Google Scholar 

  93. Ricciardi G, Rosa A, Baerends EJ (2001) J Phys Chem A 105:5242

    Google Scholar 

  94. Turki M, Daniel C, Záliš S, Vlček A Jr, van Slageren J, Stufkens DJ (2001) J Am Chem Soc 123:11431

    Google Scholar 

  95. Full J, Gonzalez L, Daniel C (2001) J Phys Chem A 105:184

    Google Scholar 

  96. Chermette H (1998) Coord Chem Rev 178/180:699

    Google Scholar 

  97. Pulay P (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p 1191

    Google Scholar 

  98. Shepard R (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p 345

    Google Scholar 

  99. Baerends EJ, Rosa A (1998) Coord Chem Rev 177:97

    Google Scholar 

  100. Caillie CV, Amos RD (2000) Chem Phys Lett 317:159

    Google Scholar 

  101. Worth GA, Hunt P, Robb MA (2003) J Phys Chem A 107:621

    Google Scholar 

  102. Sobolewski AL, Domcke W (2000) Chem Phys 259:181

    Google Scholar 

  103. Matsika S, Yarkony DR (2002) J Phys Chem A 106:2580

    Google Scholar 

  104. Finger K, Daniel C, Saalfranck P, Schmidt B (1996) J Phys Chem 100:3368

    Google Scholar 

  105. Heitz MC, Daniel C (1997) J Am Chem Soc 119:8269

    Google Scholar 

  106. Guillaumont D, Vlček A Jr, Daniel C (2001) J Phys Chem A 105:1107

    Google Scholar 

  107. Schinke R (1993) In: Photodissociation dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  108. Heller EJ (1981) Acc Chem Res 14:368

    Google Scholar 

  109. Kotzian M, Rösch N, Schröder H, Zerner MC (1989) J Am Chem Soc 111:7687

    Google Scholar 

  110. Pierloot K, Tsokos E, Vanquickenborne LG (1996) J Phys Chem 100:16545

    Google Scholar 

  111. Nakai H, Ohmari Y, Nakatsuji H (1991) J Chem Phys 95:8287

    Google Scholar 

  112. Sohn YS, Hendrickson DN, Gray HB (1971) J Am Chem Soc 93:3603

    Google Scholar 

  113. Vanquickenborne LG, Verhulst J (1983) J Am Chem Soc 105:1769

    Google Scholar 

  114. Pierloot K, Verhulst J, Verbeke P, Vanquickenborne LG (1989) Inorg Chem 28:3059

    Google Scholar 

  115. Pollak C, Rosa A, Baerends EJ (1997) J Am Chem Soc 121:10356

    Google Scholar 

  116. Blackney GB, Allen WF (1971) Inorg Chem 12:2763

    Google Scholar 

  117. Church SP, Poliakoff M, Timney JA, Turner JJ (1983) 22:3259

    Google Scholar 

  118. Heitz MC, Ribbing C, Daniel C (1997) J Chem Phys 106:1421

    Google Scholar 

  119. Daniel C (1992) J Am Chem Soc 114:1625

    Google Scholar 

  120. Meyer TJ, Caspar JV (1985) Chem Rev 85:187

    Google Scholar 

  121. Levenson RA, Gray HB (1975) J Am Chem Soc 97:6042

    Google Scholar 

  122. Rosa A, Ricciardi G, Baerends EJ, Stufkens DJ (1995) Inorg Chem 34:3425

    Google Scholar 

  123. Farrell IR, van Slageren J, Záliš S, Vlček A Jr (2001) Inorg Chim Acta 315:44

    Google Scholar 

  124. Guillaumont D, Daniel C, Vlček A Jr (2001) J Phys Chem A 105:1107

    Google Scholar 

  125. Záliš S, Vlček A Jr, Daniel C (2003) Collect Czech Commun 68:89

    Google Scholar 

  126. Stufkens DJ (1992) Comments Inorg Chem 13:359

    Google Scholar 

  127. Aarnts MP, Wilms MP, Peleen K, Fraanje J, Goubitz K, Hartl G, Stufkens DJ, Baerends EJ, Vlček A Jr (1996) Inorg Chem 35:5468

    Google Scholar 

  128. Aarnts MP, Stufkens DJ, Wilms MP, Baerends EJ, Vlček A Jr, Clark IP, George MW, Turner JJ (1996) Chem Eur J 2:1556

    Google Scholar 

  129. Nieuwenhuis HA, Stufkens DJ, Oskam A (1994) Inorg Chem 33:3212

    Google Scholar 

  130. Nieuwenhuis HA, Stufkens DJ, Oskam A, Vlček A Jr (1995) Inorg Chem 34:3879

    Google Scholar 

  131. Kleverlaan CJ, Martino DM, van Willigen H, Stufkens DJ, Oskam A (1996) J Phys Chem 100:18607

    Google Scholar 

  132. Kleverlaan CJ, Stufkens DJ, Clark IP, George MW, Turner JJ, Martino DM, van Willigen H, Vlček A Jr (1998) J Am Chem Soc 120:10871

    Google Scholar 

  133. Kleverlaan CJ, Stufkens DJ (1999) Inorg Chim Acta 284:61

    Google Scholar 

  134. Rossenaar BD, Lindsay E, Stufkens DJ, Vlček A Jr (1996) Inorg Chim Acta 250:5

    Google Scholar 

  135. Rossenaar BD, Stufkens DJ, Oskam A, Fraanje J, Goubitz K (1996) Inorg Chim Acta 247:215

    Google Scholar 

  136. Guillaumont D, Daniel C (1999) J Am Chem Soc 121:11733

    Google Scholar 

  137. Bruand-Cote I, Daniel C (2002) Chem A Eur J 8:1361

    Google Scholar 

  138. Ben Amor N, Záliš S, Daniel C (2004) J Phys Chem A (submitted)

    Google Scholar 

  139. Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Adv Photo Chem 17:1

    Google Scholar 

  140. Yersin H, Huber P, Wiedenhofer H (1994) Coord Chem Rev 132:35

    Google Scholar 

  141. Yersin H, Donges D (2001) In: Top Curr Chem, vol 214. Springer, Berlin Heidelberg New York

    Google Scholar 

  142. Pierloot K, Ceulemans A, Merchan M, Serrano-Andrés L (2000) J Phys Chem A 104:4374

    Google Scholar 

  143. Yersin H, Schützenmeier S, Wiedenhofer H, von Zelewsky A (1993) J Phys Chem 97:13496

    Google Scholar 

  144. Wiedenhofer H, Schützenmeier S, von Zelewsky A, Yersin H (1995) J Phys Chem 99:13385

    Google Scholar 

  145. King KA, Spellane PJ, Watts RJ (1985) J Am Chem Soc 107:1431

    Google Scholar 

  146. Colombo MG, Brunold TC, Riedener T, Gudel HU, Fortsch M, Burgi HB (1994) Inorg Chem 33:545

    Google Scholar 

  147. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704

    Google Scholar 

  148. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304

    Google Scholar 

  149. Finkenzeller WJ, Yersin H (2003) Chem Phys Lett 377:299

    Google Scholar 

  150. Hay PJ (2002) J Phys Chem A 106:1634

    Google Scholar 

  151. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151

    Google Scholar 

  152. Beck MT, Kiss P, Szalay T, Porzsolt EC, Bazsa G (1976) J Signal Am 4:131

    Google Scholar 

  153. Endo K, Saikawa M (1990) J Photo Sci 38:210

    Google Scholar 

  154. Ribbing C, Gilliams B, Pierloot K, Roos BO, Karlström G (1998) J Chem Phys 109:3145

    Google Scholar 

  155. Ribbing C, Daniel C (1994) J Chem Phys 100:6591

    Google Scholar 

  156. Eyring G, Schönherr T, Schmidtke HH (1983) Theor Chim Acta 64:83

    Google Scholar 

  157. Schönherr T (1997) Top Curr Chem 191:87

    Google Scholar 

  158. Ribbing C, Pierloot C, Ceulemans A (1998) Inorg Chem 37:5227

    Google Scholar 

  159. Atanasov MA, Schönherr T, Schmidtke HH (1987) Theor Chim Acta 71:59

    Google Scholar 

  160. Schönherr T, Eyring G, Linder R (1983) Z Naturforsch 38:736

    Google Scholar 

  161. Fatta AM, Lintvedt RL (1971) Inorg Chem 10:478

    Google Scholar 

  162. Stufkens DJ, van Outerstep JMW, Oskam A, Rossenaar BD, Stor GJ (1994) Coord Chem Rev 132:147

    Google Scholar 

  163. Rossenaar BD, Kleverlaan CJ, van de Ven MCE, Stufkens DJ, Vlček A Jr (1996) Chem Eur J 2:228

    Google Scholar 

  164. Farrell IR, Matousek P, Kleverlaan CJ, Vlček A Jr (2000) Chem Eur J 6:1386

    Google Scholar 

  165. Farrell IR, Vlček A Jr (2000) Coord Chem Rev 208:87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Daniel .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Daniel, C. Electronic Spectroscopy and Photoreactivity of Transition Metal Complexes: Quantum Chemistry and Wave Packet Dynamics. In: Transition Metal and Rare Earth Compounds. Topics in Current Chemistry, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96862

Download citation

  • DOI: https://doi.org/10.1007/b96862

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20948-5

  • Online ISBN: 978-3-540-39904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics