The Role of Molecular Vibrations in the Spin Crossover Phenomenon

  • Jean-Pierre TuchaguesEmail author
  • Azzedine Bousseksou
  • Gábor Molnár
  • John J. McGarvey
  • François Varret
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 235)


The prominent role of intra- and inter-molecular vibrations in the spin crossover phenomenon is outlined, based on the results obtained by the spin crossover community. The experimental results gained from various techniques (IR, Raman, X-ray diffraction, heat capacity, Mössbauer spectroscopy, synchrotron radiation techniques, etc.) and their interpretation are described. The contribution of theoretical models (thermodynamic and Ising-like electro-vibrational models) to the understanding of the relationship between the relative energies of the high-spin and low-spin states and molecular vibrations, especially when the high-spin and low-spin energy levels are close to each other, is stressed.


Spin crossover Spin-state equilibrium Vibrational properties Molecular vibrations Lattice dynamics Mass effect Isotope substitution IR and Raman spectroscopy Synchrotron radiation techniques Ising-like microscopic model Ising-like electro-vibrational model Macroscopic thermodynamic model 

List of Abbreviations and Symbols
















Density functional techniques


Extended X-ray absorption fine structure


Lamb-Mössbauer factor


Fourier transform infrared spectroscopy








Light induced excited spin state trapping






Nuclear forward scattering


Nuclear inelastic scattering










Partial vibrational density of states






Spin crossover


Debye temperature








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cambi L, Szegö L (1931) Ber Dtsch Chem Ges 64:259Google Scholar
  2. 2.
    Cambi L, Szegö L (1933) Ber Dtsch Chem Ges 66:656Google Scholar
  3. 3.
    König E (1987) Prog Inorg Chem 35:527Google Scholar
  4. 4.
    Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024Google Scholar
  5. 5.
    Gütlich P (1981) Struct Bond 44:83Google Scholar
  6. 6.
    Toftlund H (1989) Coord Chem Rev 94:67Google Scholar
  7. 7.
    Bousseksou A, McGarvey JJ, Varret F, Real JA, Tuchagues J-P, Dennis AC, Boillot ML (2000) Chem Phys Lett 318:409Google Scholar
  8. 8.
    Brehm G, Reiher M, Schneider S (2002) J Phys Chem A 106:12,024Google Scholar
  9. 9.
    Smit E, Manoun B, deWaal D (2001) J Raman Spectrosc 32:339Google Scholar
  10. 10.
    Moliner N, Salmon L, Capes L, Carmen Munoz M, Letard JF, Bousseksou A, Tuchagues J-P, McGarvey JJ, Dennis AC, Castro M, Burriel R, Real JA (2002) J Phys Chem B 106:4276Google Scholar
  11. 11.
    Molnar G, Niel V, Gaspar AB, Real JA, Zwick A, Bousseksou A, McGarvey JJ (2002) J Phys Chem B 106:9701Google Scholar
  12. 12.
    Zilverentant CL, van Albada GA, Bousseksou A, Haasnot JG, Reedijk J (2000) Inorg Chim Acta 303:287Google Scholar
  13. 13.
    Batschelet WH, Rose NJ (1983) Inorg Chem 22:2078, 2083Google Scholar
  14. 14.
    Takemoto JH, Hutchinson B (1972) Inorg Nucl Chem Lett 8:769Google Scholar
  15. 15.
    Takemoto JH, Hutchinson B (1973) Inorg Chem 12:705Google Scholar
  16. 16.
    Takemoto JH, Streusand B, Hutchinson B (1974) Spectrochim Acta 30:827Google Scholar
  17. 17.
    Hutchinson B, Hoffbauer M (1976) Spectrochim Acta A32:1785Google Scholar
  18. 18.
    Hoefer A (2000) PhD thesis, University of MainzGoogle Scholar
  19. 19.
    Dennis AC (2000) PhD thesis, Queen’s University BelfastGoogle Scholar
  20. 20.
    Jung J, Spiering H, Yu Z, Gütlich P (1995) Hypefine Interact 95:107Google Scholar
  21. 21.
    Paulsen H, Winkler H, Trautwein AX, Grünsteudel H, Rusanov V, Toftlund H (1999) Phys Rev B 59:975Google Scholar
  22. 22.
    Paulsen H, Grünsteudel H, Meyer-Klaucke W, Gerdau M, Grünsteudel HF, Chumakov AI, Rüffer R, Winkler H, Toftlund H, Trautwein AX (2001) Eur Phys J 23:463Google Scholar
  23. 23.
    Emanullah M, Linert W, Gutmann V (1995) Vib Spectrosc 9:265Google Scholar
  24. 24.
    Emanullah M, Renz F, El-Ayaan U, Wiesinger G, Linert W (1997) Vib Spectrosc 14:95Google Scholar
  25. 25.
    Müller EW, Ensling J, Spiering H, Gütlich P (1983) Inorg Chem 22:2074Google Scholar
  26. 26.
    Granjean F, Long GJ, Hutchinson BB, Ohlhausen L, Neill P, Holcomb JD (1989) Inorg Chem 28:4406Google Scholar
  27. 27.
    Fleisch J, Gütlich P, Hasselbach KM, Müller W (1976) Inorg Chem 15:958Google Scholar
  28. 28.
    Ferraro JR (1979) Coord Chem Rev 29:67Google Scholar
  29. 29.
    Molnár G, Niel V, Real J-A, Dubrovinsky L, Bousseksou A, McGarvey JJ (2003) J Phys Chem B 107:3149Google Scholar
  30. 30.
    Figg DC, Herber R, Potenza JA (1992) Inorg Chem 31:2111Google Scholar
  31. 31.
    Suemura N, Ohama M, Kaizaki S (2001) Chem Commun 1538Google Scholar
  32. 32.
    Tayagaki T, Tanaka K (2001) Phys Rev Lett 86:2886Google Scholar
  33. 33.
    Tayagaki T, Tanaka K (2001) J Luminesc 94/95:537Google Scholar
  34. 34.
    Molnar G, Bousseksou A, Zwick A, McGarvey JJ (2003) Chem Phys Lett 367:593Google Scholar
  35. 35.
    Brady C (2002) PhD thesis, Queen’s University BelfastGoogle Scholar
  36. 36.
    Zimmermann R, König E (1977) J Phys Chem Solids 38:779Google Scholar
  37. 37.
    Boukheddaden K, Varret F (1992) Hyperfine Interact 72:349Google Scholar
  38. 38.
    König E, Ritter G, Kulshreshtha SK (1985) Chem Rev 85:219Google Scholar
  39. 39.
    Yu Z, Schmitt G, Böres N, Spiering H, Gütlich P (1994) Hyperfine Interact 93:1459Google Scholar
  40. 40.
    Yousif A, Winkler H, Toftlund H, Trautwein AX, Herber RH (1989) J Phys Condens Matter 1:7103Google Scholar
  41. 41.
    Jung J (1995) PhD thesis, University of MainzGoogle Scholar
  42. 42.
    Floquet S, Salunke S, Boillot M-L, Clément R, Varret F, Boukheddaden K, Rivière E (2002) Chem Mater 14:4164Google Scholar
  43. 43.
    Grünsteudel H, Paulsen H, Meyer-Klaucke W, Winkler H, Trautwein AX, Grünsteudel HF, Baron AQR, Chumakov AI, Rüffer R Toftlund H (1998) Hyperfine Interact 113:311Google Scholar
  44. 44.
    Paulsen H, Benda R, Herta C, Schünemann V, Chumakov AI, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Phys Rev Lett 86:1351Google Scholar
  45. 45.
    Chumakov AI, Rüffer R (1998) Hyperfine Interact 113:59Google Scholar
  46. 46.
    Lübbers R, Nowitzke G, Goodwin HA, Wortmann G (1997) J Phys France 7:C2–651Google Scholar
  47. 47.
    Yokoyama T, Murakami Y, Kiguchi M, Komatsu T, Kojima N (1998) Phys Rev B 58:14328Google Scholar
  48. 48.
    König E (1991) Struct Bond 76:51Google Scholar
  49. 49.
    Sorai M (2001) Bull Chem Soc Jpn 74:2223Google Scholar
  50. 50.
    Sorai M, Seki S (1974) J Phys Chem Solids 35:555Google Scholar
  51. 51.
    Wajnflasz J (1970) Phys Stat Solid 40:537Google Scholar
  52. 52.
    Wajnflasz J, Pick R (1971) J Phys (Paris) 32:C1–91Google Scholar
  53. 53.
    Bari RA, Sivardière J (1972) Phys Rev 5:4446Google Scholar
  54. 54.
    Kambara T (1979) J Chem Phys 70:4199Google Scholar
  55. 55.
    Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65Google Scholar
  56. 56.
    Slichter CP, Drickamer HG (1972) J Chem Phys 56:2142Google Scholar
  57. 57.
    In the electro-vibrational models the electronic and vibrational contributions to the energy of the molecule are considered independently (Born-Oppenheimer approximation). This is at variance with the vibronic models where the energy states are described by vibronic wave-functions, i.e., non factorized in the electronic functions ⊗ vibration functions basis setGoogle Scholar
  58. 58.
    Bousseksou A, Constant-Machado H, Varret F (1995) J Phys I France 5:747Google Scholar
  59. 59.
    Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) J Phys I France 2:1381Google Scholar
  60. 60.
    Bousseksou A (1992) PhD thesis, University of Paris VIGoogle Scholar
  61. 61.
    The high gHS/gLS value (2189) is an average effective ratio of the degeneracies in the HS and LS states. This term writes: gHS/gLS=(gHS,elec/gLS,elec)(gHS,vib/gLS,vib). The term (gHS,vib/gLS,vib) is equal to ∠ I=1, number of modes (gi HS/gi LS). If we consider an average (gi HS,vib/gi LS,vib)=1.5 for each mode (usual observation), for the 15 modes of the octahedron this term is then equal to (1.5)15, leading to the gHS/gLS value of 5(1.5)15=2189Google Scholar
  62. 62.
    Gütlich P, Köppen H, Steinhäuser HG (1980) Chem Phys Lett 74:475Google Scholar
  63. 63.
    Bousseksou A, Tommasi L, Lemercier G, Varret F, Tuchagues J-P (1995) Chem Phys Lett 243:493Google Scholar
  64. 64.
    Real JA, Castro I, Bousseksou A, Verdaguer M, Buriel R, Linares J, Varret F (1997) Inorg Chem 36:455Google Scholar
  65. 65.
    Paulsen H. Private communicationGoogle Scholar
  66. 66.
    Bousseksou A, Verelst M, Constant-Machado H, Lemercier G, Tuchagues J-P, Varret F (1996) Inorg Chem 35:110Google Scholar
  67. 67.
    Bousseksou A, Salmon L, Varret F, Tuchagues J-P (1998) Chem Phys Lett 282:209Google Scholar
  68. 68.
    Moliner N, Muñoz M, Létard S, Salmon L, Tuchagues J-P, Bousseksou A, Real JA (2002) Inorg Chem 41:6997Google Scholar

Authors and Affiliations

  • Jean-Pierre Tuchagues
    • 1
    Email author
  • Azzedine Bousseksou
    • 1
  • Gábor Molnár
    • 1
  • John J. McGarvey
    • 2
  • François Varret
    • 3
  1. 1.Laboratoire de Chimie de CoordinationCNRS UPR 8241ToulouseFrance
  2. 2.School of ChemistryQueen’s University BelfastBelfastNorthern Ireland, UK
  3. 3.Laboratoire de Magnétisme et d’Optique de VersaillesCNRS UMR 8634VersaillesFrance

Personalised recommendations