Skip to main content

On the Competition Between Relaxation and Photoexcitations in Spin Crossover Solids under Continuous Irradiation

  • Chapter
Book cover Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

We report recent work on the competition between opposite kinetic processes: (i) photo-excitation (LIESST) and relaxation processes, and (ii) direct and reverse LIESST. The light-induced instability eventually occurring at the light-induced equilibrium temperature is attributed to a cooperative origin. The subsequent light-induced thermal hysteresis (LITH) and intensity threshold effect (LIOH) are adequately described through a mean-field macroscopic master equation assuming a linear photo-excitation term and a self-accelerated term for cooperative relaxation. Further analysis provides evidence for non-linear character of the photo-excitation terms, capable of inducing bistability in the light-driven quasi-static regime when the direct and reverse LIESST regimes compete. The behaviour of correlations under permanent photo-irradiation is also considered, both experimentally and theoretically, through a kinetic Ising-model including a photo-excitation term and accounting for both long- and short-range interactions. Paradoxical effects of light are reported, with various experimental features and theoretical model providing a qualitative explanation.

A novel instability effect is introduced, due to the non-linear competition between direct and reverse LIESST, for which the expected hysteresis with respect to wavelength is denoted Light Induced Spectral Hysteresis (LISH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SCO:

Spin crossover

btr:

4,4′-Bis(1,2,4-triazole)

LIESST:

Light-induced excited spin state trapping

LIMH:

Light-induced magnetic hysteresis

LIOH:

Light-induced optical hysteresis

LIPH:

Light-induced pressure hysteresis

LISH:

Light-induced spectral hysteresis

LITH:

Light-induced thermal hysteresis

LPTH:

Light-perturbed thermal hysteresis

T 1/2 :

Spin transition temperature

T 1/2 * :

Light-driven equilibrium temperature

α :

Self-acceleration factor of the relaxation rate (Hauser factor)

References

  1. Létard JF, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg Chem 37:4432

    Google Scholar 

  2. Désaix A, Roubeau O, Jeftic J, Haasnoot JG, Boukheddaden K, Codjovi E, Linarès J, Nogués M, Varret F (1998) Eur Phys J B 6:183

    Google Scholar 

  3. Menendez N, Varret F, Codjovi E, Boukheddaden K, Haasnoot JG (2000) Third TMR-TOSS meeting (Leiden, May 2000)

    Google Scholar 

  4. Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14,806

    Google Scholar 

  5. Varret F, Boukheddaden K, Jeftic J, Roubeau O (1999) ICMM ‘98 (Seignosse, France, Sept 1998). Proceedings: Mol Cryst Liq Cryst 335:561

    Google Scholar 

  6. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  7. Hauser A, Gütlich P, Spiering H (1986) Inorg Chem 25:4245

    Google Scholar 

  8. Hauser A (1992) Chem Phys Lett 192:65

    Google Scholar 

  9. Hauser A, Jeftic J, Romstedt H, Hinek R, Spiering H (1999) Coor Chem Rev 190/192:471–491

    Google Scholar 

  10. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 139:1

    Google Scholar 

  11. Decurtins S, Gütlich P, Hasselbach KM, Spiering H, Hauser A (1985) Inorg Chem 24:2174

    Google Scholar 

  12. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  13. Hauser A (1991) Coord Chem Rev 111:275

    Google Scholar 

  14. Hauser A (1991) J Chem Phys 94:2741

    Google Scholar 

  15. Gütlich P, Garcia Y, Woike T (2001) Coord Chem Rev 219/221:839

    Google Scholar 

  16. McGarvey JJ, Lawthers I (1982) J Chem Soc 906

    Google Scholar 

  17. Enachescu C, Linarès J, Varret F (2001) J Phys Condens Matter 13:2481

    Google Scholar 

  18. Ogawa Y, Koshihara S, Koshino K, Ogawa T, Urano C, Takagi H (2000) Phys Rev Lett 84:3181

    Google Scholar 

  19. Enachescu C, Constant H, Codjovi E, Linarès J, Boukheddaden K, Varret F (2001) J Phys Chem Solids 62:1409

    Google Scholar 

  20. Enachescu C, Oetliker U, Hauser A (2002) J Phys Chem 37:9540

    Google Scholar 

  21. Varret F, Boukheddaden K, Codjovi E, Linarès J (2000) 4th TMR-TOSS meeting (Bordeaux, May 2000)

    Google Scholar 

  22. Hoo B, Boukheddaden K, Varret F (2000) Eur Phys J B 17:449

    Google Scholar 

  23. Boukheddaden K, Shteto I, Hoo B, Varret F (2000) Phys Rev B 62:14,796

    Google Scholar 

  24. Boukheddaden K (2000), Thèse d’Habilitation, Université de Versailles

    Google Scholar 

  25. Boukheddaden K, Varret F, Salunke S, Linarès J, Codjovi E (2002) International Conference on Photo-Induced Phase Transitions (Tsukuba, Japan, Nov 2001), Proceedings: Phase Transitions 75:733

    Google Scholar 

  26. Ogawa Y, Ishikawa T, Koshihara S, Boukheddaden K, Varret F (2002) Phys Rev B 66:073104

    Google Scholar 

  27. Renz F, Spiering H, Goodwin H, Gütlich P (2000) Hyperfine Interact 126:155

    Google Scholar 

  28. Montant S, Chastanet G, Létard S, Marcen S, Létard JF, Freysz E (2002) Fifth TMR-TOSS Meeting (Seeheim, March 2002)

    Google Scholar 

  29. Shimamoto N, Ohkosi SK, Sato O, Hashimoto K (2002) Chem Lett 4:486

    Google Scholar 

  30. Hauser A (1995) Comments Inorg Chem 17:17

    Google Scholar 

  31. Martin JP, Zarembowitch J, Bousseksou A, Dworkin A, Haasnoot JG, Varret F (1994) Inorg Chem 18:2617

    Google Scholar 

  32. Constant-Machado H, Linarès J, Varret F, Haasnoot JG, Martin JP, Zarembowitch J, Dworkin A, Bousseksou A (1996) J Phys I France 6:1203

    Google Scholar 

  33. Jeftic J, Matsarki M, Hauser A, Goujon A, Codjovi E, Linarès J, Varret F (2001) Polyhedron 20:1599

    Google Scholar 

  34. Létard JF, Chastanet G, Nguyen O, Marcen S, Marchivie M, Guionneau P, Chasseau D, Gütlich P (2002) In: Verdaguer M, Linert W (eds) Monatshefte für Chemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Chastanet G, Enachescu C, Varret F, Ader JP, Létard JF (2002) Fifth TOSS Meeting (Seeheim, March 2002)

    Google Scholar 

  36. Varret F, Constant-Machado H, Dormann JL, Goujon A, Jeftic J, Nogués M, Bousseksou A, Klokishner S, Dolbecq A, Verdaguer M (1998) International Conference on Applied Mossbauer Effect, ICAME ‘97, Proceedings. Hyperfine Interact 113:37

    Google Scholar 

  37. Codjovi E, Morscheidt W, Jeftic J, Linarès J, Nogués M, Goujon A, Roubeau O, Constant-Machado H, Desaix A, Bousseksou A, Verdaguer M, Varret F (1999) Proceedings of ICMM ‘98 (Seignosse, France) Mol Cryst Liq Cryst 335:1295

    Google Scholar 

  38. Varret F, Nogués M, Goujon A (2001) In: Miller J, Drillon M (eds) Magnetism: molecules to materials, vol 2. Wiley WCH, pp 257–291

    Google Scholar 

  39. Roubeau O, Haasnoot JG, Codjovi E, Varret F, Reedjik J (2002) Chem Mater 14:2559

    Google Scholar 

  40. Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmas C, Kusz J, Gütlich P (1999) Coord Chem Rev 190/192:629

    Google Scholar 

  41. a) Wajnflasz J, Pick R (1971) J Phys Coll 32:C1–91; b) Bousseksou A, Nasser J, Linarès J, Boukheddaden K, Varret F (1992) J Phys I 2:1381

    Google Scholar 

  42. Real JA, Bolvin H, Bousseksou A, Dworkin A, Kahn O, Varret F, Zarembowitch J (1992) J Am Chem Soc 114:4650

    Google Scholar 

  43. Linarès J, Spiering H, Varret F (1999) Eur Phys J B 10:271

    Google Scholar 

  44. Doniach S (1978) J Chem Phys 68:11

    Google Scholar 

  45. Goujon A, Roubeau O, Varret F, Dolbecq A, Bleuzen A, Verdaguer M (2000) Eur Phys J B 14:115

    Google Scholar 

  46. Varret F, Goujon A, Boukheddaden K, Nogués M, Bleuzen A, Verdaguer M (2002) International Symposium on Cooperative Phenomena of Assembled Metal Complexes (Osaka, Japan, Nov 2001) Proceedings (2002). Mol Cryst Liq Cryst 379:333

    Google Scholar 

  47. Goujon A, Varret F, Escax V, Bleuzen A, Verdaguer M (2001) ICMM’00 (San Antonio, Texas) Proceedings (2001). Polyhedron 20:1347

    Google Scholar 

  48. Hôo B (2001) Thèse de Doctorat, Université de Versailles

    Google Scholar 

  49. Hauser A (1998) J Phys Chem Solids 59:1353

    Google Scholar 

  50. Garcia Y, Ksenofontov V, Levchenko G, Schmitt G, Gütlich P (2000) J Phys Chem B 104:5046

    Google Scholar 

  51. Codjovi E, Menendez N, Jeftic J, Varret F (2001) C R Acad Sci Paris 4:181

    Google Scholar 

  52. Varret F, Enachescu C, Boukheddaden K, Codjovi E, Linarès J (2002) Final TMR-TOSS Meeting (Seeheim, March 2002)

    Google Scholar 

  53. Koshihara S, Takahashi Y, Sakai H, Tokura Y, Luty T (1999) J Phys Chem B 103:2592

    Google Scholar 

  54. Romstedt H, Hauser A, Spiering H (1998) J Phys Chem Solids 59:265

    Google Scholar 

  55. Linarès J, Enachesu C, Boukheddaden K, Varret F (2003) Proceedings ICMM’02 (Valencia, Spain), Polyhedron 22:2453

    Google Scholar 

  56. Jeftic J, Hauser A (1997) J Phys Chem B 101:10,262

    Google Scholar 

  57. Bousseksou A, Molnar G, Tuchagues JP, Menendez N, Codjovi E, Varret F (2003) Compt Rend Acad Sci Paris (Chimie) 6:329

    Google Scholar 

  58. Varret F, Bleuzen A, Boukheddaden K, Bousseksou A, Codjovi E, Enachescu C, Goujon A, Linarès J, Menendez N, Verdaguer M (2003) Pure Appl Chem 74:2159

    Google Scholar 

  59. Boukheddaden K, Linarès J, Spiering H, Varret F (2000) Eur Phys J B 15:317

    Google Scholar 

  60. Willenbacher N, Spiering H (1988) J Phys C 21:1423; Spiering H, Willenbacher N (1989) J Phys Cond Matter 1:10,089

    Google Scholar 

  61. Bousseksou A, Constant-Machado H, Varret F (1995) J Phys I 5:747

    Google Scholar 

  62. Glauber RJ (1968) J Math Phys 4:294

    Google Scholar 

  63. Ludwig KF, Park B (1992) Phys Rev B 46:5079

    Google Scholar 

  64. Mamada H, Takano S (1968) J Phys Soc Japan 25:675

    Google Scholar 

Download references

Acknowledgements

We are indebted to A. Wack (LMOV) for technical assistance, to CNRS and Université for financial support, to NATO for the collaborative linkage grant between the Iasi and Versailles Universities, to the EC for Socrates Erasmus grants, for TRM-TOSS program (ERB-FMRX-CT98–0199), and for ESF action Molecular Magnetism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Varret .

Appendix. The dynamic Ising model in the presence of photo-excitation

Appendix. The dynamic Ising model in the presence of photo-excitation

1.1 Introduction

The aim of this section is to present the Ising-like model which is very often used to describe the static and dynamic properties of the spin-crossover (SC) systems. We are interested here in these properties under photo-excitation. In particular we will study the photo-excitation effect on the relaxation curve of the HS fraction in order to analyze their effect on the developments of the correlations during the relaxation.

1.2 Ising-Like Model

The microscopic models developed for cooperative spin-crossover solids are based on the Ising-like hamiltonian, following the pioneering works of Wajnsflasz and Pick and Bousseksou et al. [41a, 41b]. Such a two-state model can be viewed as a simple Ising model under a temperature-dependant ‘‘effective’’ field which accounts for the different degeneracies of the levels [44].

In the Ising like model, the two states associated with the eigenstates of the fictitious spin ±1, have different degeneracies, denoted respectively, g+ and g- . In the spin crossover systems, the eigenvalues +1 and −1 of the fictitious spin correspond to the high-spin (HS) and low-spin (LS) molecular states respectively.

The Ising-like hamiltonian including long- and short-range interactions [59] writes:

$$ H = - J{\sum\limits_{{\left\{ {i,j} \right\}}} {s_{i} s_{j} - \Delta _{{eff}} {\sum\limits_i {s_{i} } }} } $$
(11)

where: Δ eff =(1/2) k B T ln(g + /g ) −Δ+G <s> is the effective field, <s>= m is the net fictitious magnetization, J and G are the short- and long-range interactions associated with short- and long-range elastic effects [60] respectively. 2Δ is the energy difference E(HS)-E(LS) for isolated molecules. g + /g is the degeneracy ratio between the HS and LS states and T the temperature. The ratio g + /g may be quite large (up to a few thousands) because it involves both the spin degeneracies and the density of vibrational levels [61] in the two spin states.

The static properties of this model in the case J>0 and J<0 have been studied analytically in [59]: thermal hysteresis loops with simple and double transitions can occur, due to the competing effect of short-range ‘‘ferro-’’ or ‘‘anti-ferromagnetic’’ interaction and long-range ‘‘ferromagnetic’’ interactions. The phase diagram of this model has been obtained in [59, 41a], where the conditions of the occurrence of the first order transitions of the Ising-like model have been analyzed.

1.3 Master Equation

Now, we are interested in the dynamical properties of such cooperative SC systems. So as to do it, we use the well known general stochastic formalism developed by Glauber [62]. In this stochastic approach, the spin-flips s i →−s i are induced by the thermal bath, with transition rates W(s i ).

Following Glauber we consider P({s};t) the probability of observing the system in the configuration (s 1 , ..., s N )={s} at time t. The time evolution P({s};t) is given by the master equation:

$$ \frac{{\partial P{\left( {{\left\{ s \right\}};t} \right)}}} {{\partial t}} = - {\sum\limits_{j = 1}^N {W_{j} {\left( {s_{j} } \right)}P{\left( {{\left\{ s \right\}}_{j} ,s_{j} ;t} \right)}} } + {\sum\limits_{j = 1}^N {W_{j} {\left( { - s_{j} } \right)}P{\left( {{\left\{ s \right\}}_{j} , - s_{j} ;t} \right)}} } $$
(12)

In the last formula, {s}j denotes the configuration of all spins excepted spin s j and the expectation value of the j-th spin is defined as: \( {\left\langle {s_{j} } \right\rangle } = {\mathop \Sigma \limits_{{\left\{ s \right\}}} }s_{j} P{\left( {{\left\{ s \right\}};t} \right)}, \), where the sum is taken over all spin configurations.

The detailed balance condition at equilibrium writes as:

$$ \frac{{W_{i} (s_{i} )}} {{W_{i} ( - s_{i} )}} = \frac{{P_{e} {\left( {{\left\{ s \right\}}_{i} , - s_{i} } \right)}}} {{P_{e} {\left( {{\left\{ s \right\}}_{i} ,s_{i} } \right)}}} = \frac{{e^{{ - gs_{i} {\sum\limits_\alpha {s_{{i + \alpha }} - bs_{i} } }}} }} {{e^{{gs_{i} {\sum\limits_\alpha {s_{{i + \alpha }} + bsi} }}} }} $$
(13)

where P e (s 1 ,s 2 , ...s N ) ~ exp[-β E(s 1 ,...,s i , ...,s N ) ] is the equilibrium probability of finding the system with the energy E(s 1 ,...,s i , ...,s N ), i.e. in the spin configuration (s 1 ,s 2 , ...s N ).

1.4 The dynamic choice

Several dynamic choices leading to the same equilibrium states are possible according to Eq. 13 which only provides the ratio of the probabilities of opposite transition rates. We have established recently [4] that the choice suited to the spin-crossover systems (above the tunneling regime) was of the Arrhenius-type [63], because the dynamical process in these systems is thermally activated over an intra- and/or inter-molecular energy barrier (see Fig. 18), and this fact is strongly correlated to the sigmoidal character of the relaxation curves in these systems.

Fig 18
figure 18

Schematic representation of the potential wells of the (HS) and (LS) states of a spin crossover system. E H and E L denote their respective energies, and E a 0 is the intramolecular energy barrier due to the vibronic interaction

Let’s assume that E a 0 is the energy barrier corresponding to the saddle point energy of the double well configurational energy diagram of Fig. 18 when the HS and the LS fractions are equal, i.e. at equilibrium temperature. Therefore, we can re-write the Eq. 13 under the following form, which obeys the detailed balance equation:

$$ \frac{{W^{{{\text{Therm}}}}_{i} (s_{i} )}} {{W^{{{\text{Therm}}}}_{i} ( - s_{i} )}} = \frac{{e^{{ - \beta {\left( {E^{0}_{a} - E{\left( {s_{i} } \right)}} \right)}}} }} {{e^{{ - \beta {\left( {E^{0}_{a} - E{\left( { - s_{i} } \right)}} \right)}}} }} $$
(14)

where βE(s i ) = - g s i Σ α=1,q s i+α - b s i , with g=βJ, b=βΔ eff , and α runs over the neighbours. We choose for the transition rate the general form W Therm (s i ) ~ exp[-β (E a 0 – E(s i )], which can be re-written as:

$$ W^{{{\text{Therm}}}}_{i} {\left( {s_{i} } \right)} = \frac{1} {{2\tau }}{\left( {x - x's_{i} } \right)}{\prod\limits_{\alpha = 1}^q {{\left( {y - y's_{{i + \alpha }} } \right)}} } $$
(15)

with the following notations: x= coshb, y = coshg, x’ = sinhb, y’ = sinhg.

Under photo-excitation, which is assumed to induce only the LS→HS transitions, we must introduce an additional optical transition rate W Opt given by:

$$ W^{{{\text{Opt}}}}_{i} {\left( {s_{i} } \right)} = I_{0} \sigma {\left( {1 - s_{i} } \right)} $$
(16)

where I 0 is the intensity of the incident radiation and σ is the absorption cross-section, related to the quantum photo-process. σ is considered as independent of the lattice configuration {s}. Photo-excitation is considered here as a non-cooperative process, since it is written as a single site term. The exact formulation of the dynamic equations leads to the following evolution equations for the fictitious magnetization and the equal-time correlation:

$$ \frac{{{\text{d}}{\left\langle {s_{i} } \right\rangle }}} {{{\text{d}}t}} = \frac{{{\text{d}}m_{i} }} {{{\text{d}}t}} = - 2{\left\langle {s_{i} {\left[ {W^{{{\text{Therm}}}}_{i} {\left( {s_{i} } \right)} + W^{{{\text{Opt}}}}_{i} {\left( {s_{i} } \right)}} \right]}} \right\rangle }_{t} $$
(17)

and

$$ \frac{{{\text{d}}{\left\langle {s_{i} s{}_{j}} \right\rangle }}} {{{\text{d}}t}} = \frac{{{\text{d}}r_{{ij}} }} {{{\text{d}}t}} = - 4{\left\langle {s_{i} s_{j} {\left[ {W^{{{\text{Therm}}}}_{i} {\left( {s_{i} ,s_{j} } \right)} + W^{{{\text{Opt}}}}_{i} {\left( {s_{i} ,s_{j} } \right)}} \right]}} \right\rangle }_{t} $$
(18)

The right-hand sides of Eqs. 17, 18 involve the average of clusters of spins. In the present work, we are interested by the correlations effect during the transition, therefore we perform all calculations in the pair approximation. Indeed, in that case our approach represents the dynamical extension of the well known Bethe-Peierls approach of the equilibrium statistical mechanics. We now have to choose an explicit form for the probabilities P({s},t) as a function of the order parameters of the model and the spin variables (s 1 , s 2 ,...,s N ) ={s}.

1.5 Pair Approximation

In the pair approximation, the probabilities (or the density matrix operators) P 1 (s j ; t) for the single spin s j , and the pair probability P 2 (s i ; s j ; t) associated with a pair of neighbouring spins s i ; s j ; are given by:

$$ P_{1} {\left( {s_{i} ;t} \right)} = \frac{1} {2}{\left( {1 + m_{i} {\left( t \right)}s_{i} } \right)} $$
(19)

and

$$ P_{2} {\left( {s_{i} ,s_{j} ;t} \right)} = \frac{1} {4}{\left( {1 + m_{i} {\left( t \right)}s_{i} + m_{j} {\left( t \right)}s_{j} + r_{{ij}} {\left( t \right)}s_{i} s_{j} } \right)} $$
(20)

with m i = <s i > and r i,j = <s i s j >.

We now have to examine the probabilities of occupation of the configuration of clusters of q+1 spins, which are formed by the central spin surrounded by its q neighbours. The probability P q+1 (s i , {s i+α }; t), of such a cluster is approximated by using an elegant formulation due to Mamada and Takano [64], in which the authors considered P q+1 (s i , {s i+α }; t) ≈ P 1 (s i ,; t) ×...× P (s i+α ,∣s j ; t) ×...× P (s i+qα ,∣s j ; t), where P (s i ∣s j ; t) is the conditional probability at time t of s j at fixed value of spin s i . Using the identity P 2 (s i , s j ; t) =P 1 (s j ; t) × P(s j ∣s i ; t), we obtain:

$$ P_{{q + 1}} {\left( {s_{1} ,{\left\{ {s_{{i + \alpha }} } \right\}};t} \right)} = P_{1} {\left( {s_{i} ;t} \right)}{\mathop \Pi \limits_{\alpha = 1}^q }\frac{{P_{2} {\left( {s_{i} ,s_{{i + \alpha }} ;t} \right)}}} {{P_{1} {\left( {s_{i} ;t} \right)}}} $$
(21)

where the subscript α runs over the neighbouring spins of s i . Inserting Eq. 21 in the right-hand side of Eqs. 17, 18, we obtain the closed set of motion equations of the system, presented in the next section.

1.6 Relaxation under photo-excitation

For this first attempt, the lattice is assumed to be spatially invariant; then we put m i = m and r ij = r | i-j| = r. Substituting now the probability of flipping site i, W i Therm (s i ), W i Opt (s i ) and P q+1 (s i , {s i+α }; t) for their corresponding expressions (15–21), we obtain, after some calculations, the following evolution equations for the long- and short-range order parameters, respectively:

$$ \begin{aligned} 2\tau \frac{{{\text{d}}m}} {{{\text{d}}t}} = {\left( {x + x'} \right)}{\left( {1 - m} \right)}{\left( {y + y'\frac{{m - r}} {{1 - m}}} \right)}^{q} - {\left( {x - x'} \right)}{\left( {1 + m} \right)}{\left( {y - y'\frac{{m + r}} {{1 + m}}} \right)}^{q} & \\ {\text{ }} + {\text{2I}}_{{\text{o}}} \omega {\left( {1 - m} \right)} & \\ \end{aligned} $$
(22)

and

$$ \begin{aligned} \tau \frac{{{\text{d}}r}} {{{\text{d}}t}} &= {\left( {x + x'} \right)}{\left( {1 - m} \right)}{\left( {y\frac{{m - r}} {{1 - m}} + y'} \right)}^{{}} {\left( {y + y'\frac{{m - r}} {{1 - m}}} \right)}^{{q - 1}} \\ & - {\left( {x - x'} \right)}{\left( {1 + m} \right)}{\left( {y\frac{{m + r}} {{1 + m}} - y'} \right)}{\left( {y - y'\frac{{m + r}} {{1 + m}}} \right)}^{{q - 1}} + {\text{4}}I_{{\text{o}}} \omega {\left( {m - r} \right)} \\ \end{aligned} $$
(23)

with (x+x’) = exp(b) and (x-x’) = exp(-b), where b, y and y’ are given by: b = β [Gm+(1/2)kT ln (g+/g-) - Δ], y = coshβJ, and y’ = sinhβJ.

For convenience, it is useful to re-express the latter equations in terms of the fractions of the high spin molecules (n H) and the pairs HS-LS molecules (n HL), respectively n H (t) = (1+m(t))/2 and n HL (t)=(1-r(t))/4 [59]. They give, in the low-temperature region in which we are looking for the relaxation of the HS fraction, the following non-linear equations:

$$ \begin{aligned} \frac{{{\text{d}}n_{{{\text{HS}}}} }} {{{\text{d}}t}} = - \frac{{n_{{{\text{HS}}}} }} {{2\tau _{o} }}e^{{ - {\left( {\beta E^{o}_{a} + b} \right)}}} {\text{ }}{\left( {e^{{ - \beta J}} + 2\sinh \beta J\frac{{n_{{{\text{HL}}}} }} {{n_{{{\text{HS}}}} }}} \right)}^{q} + {\text{2I}}_{{\text{o}}} \omega {\left( {1 - n_{{{\text{HS}}}} } \right)} & \\ {\text{ }} & \\ \end{aligned} $$
(24)

and

$$ \begin{aligned} & \frac{{{\text{d}}n_{{{\text{HL}}}} }} {{{\text{d}}t}} = - \frac{{n_{{{\text{HS}}}} }} {{2\tau _{o} }}e^{{ - {\left( {\beta E^{o}_{a} + b} \right)}}} {\left( {e^{{ - \beta J}} + 2\cosh \beta J\frac{{n_{{{\text{HL}}}} }} {{n_{{{\text{HS}}}} }}} \right)}{\text{ }}{\left( {e^{{ - \beta J}} + 2\sinh \beta J\frac{{n_{{{\text{HL}}}} }} {{n_{{{\text{HS}}}} }}} \right)}^{{q - 1}} \\ & {\text{ }} + {\text{8I}}_{{\text{o}}} \omega {\left( {n_{{{\text{HS}}}} + 2n_{{{\text{HL}}}} - 1} \right)} \\ \end{aligned} $$
(25)

The photo-excitation effect depends on the time t w at which the light is switched on. This time has to be compared with the characteristic time t c at which the correlation onsets in sizeable amount. t c should be considered as an incubation time, defined as the time at which the transition rate exhibits a sizeable departure from the linear mean-field behaviour. The t c value is of course determined numerically. We obtain the following results:

  1. 1.

    t w <t c : the lifetime of the metastable HS state is increased; however, the relaxation tail is reduced. The light drives the system to the mean-field behavior. We stress on the paradoxical effect that finally light speeds up relaxation in the late stage of the relaxation.

  2. 2.

    t w >t c : in a first stage, light slows down relaxation; even, above a threshold value of intensity, an increase of the HS population may be observed. In a further stage, i.e. after some incubation process, the light starts destroying the already established correlations and the final effect is to speed up relaxation.

    (Figure 10 curves (b), (c)). The paradoxical effect is remarkably rapid and efficient.

Systematic computations have shown that the above effects are exclusively associated with the short-range interaction. An extensive investigation including short- and long-range interactions is under progress.

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Varret, F., Boukheddaden, K., Codjovi, E., Enachescu, C., Linarès, J. On the Competition Between Relaxation and Photoexcitations in Spin Crossover Solids under Continuous Irradiation. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95417

Download citation

  • DOI: https://doi.org/10.1007/b95417

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics