Skip to main content

Structural Investigations of Tetrazole Complexes of Iron(II)

  • Chapter
Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

The results of X-ray diffraction studies of spin crossover complexes of iron(II) with R=1-propyl- (ptz), 1- methyl- (mtz) and 1-ethyltetrazole (etz) ligands, [Fe(Rtz)6](BF4)2, as a function of temperature (down to 10 K) and after light-induced conversion to long-lived metastable spin states (LIESST) are reviewed. Not only has the most prominent member of this class of spin crossover compounds, viz. [Fe(ptz)6](BF4)2, been studied very extensively, particularly in relation to its photophysical properties and cooperative interactions in solids, but this general class of spin crossover complexes has also attracted much interest from a crystallographic point of view. [Fe(ptz)6](BF4)2 has only one type of lattice site for the iron(II) centres, but it is possible to generate five different phases depending on the rate of cooling the sample on the one hand and on irradiation with light on the other. The methyl and ethyl-tetrazole derivatives, also being mononuclear systems, show the peculiarity that the iron(II) ions occupy two different lattice sites (A and B), with ratio 1:1 in the mtz complex and 2:1 in the etz complex, where only A site ions undergo thermal spin transition but B site ions remain in the high spin state at all temperatures under study. The LIESST phenomenon has been verified at A and B lattice sites generating metastable HS states at A sites with green light and metastable LS states at B sites. Three possible phases created this way in the case of the mtz complex have been structurally characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SCO:

Spin crossover

HS:

High spin

LS:

Low spin

γHS :

Molar fraction of HS molecules

LIESST:

Light induced excited spin state trapping

T1/2 :

Spin transition temperature (temperature of 50% conversion of all SCO-active complex molecules)

mtz:

1-Methyl-tetrazole

etz:

1-Ethyl-tetrazole

ptz:

1-n-Propyl-tetrazole

pic:

2-Picolylamine

phen:

1,10-Phenanthroline

References

  1. König E, Watson KJ (1970) Chem Phys Lett 6:457

    Google Scholar 

  2. Leipoldt JG, Coppens P (1973) Inorg Chem 12:2269

    Google Scholar 

  3. König E (1987) Progr Inorg Chem 35:527

    Google Scholar 

  4. Köppen H, Müller EW, Köhler CP, Spiering H, Meissner E, Gütlich P (1982) Chem Phys Lett 91:348

    Google Scholar 

  5. Wiehl L, Kiel G, Köhler CP, Spiering H, Gütlich P (1986) Inorg Chem 25:1565

    Google Scholar 

  6. Gallois B, Real JA, Hauw C, Zarembowitch (1990) Inorg Chem 29:1152

    Google Scholar 

  7. Müller EW, Spiering H, Gütlich P (1982) Chem Phys Lett 93:567

    Google Scholar 

  8. Kambara T (1979) J Chem Phys 7:4199; Kambara T (1980) J Phys Soc Jpn 49:1806

    Google Scholar 

  9. Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) Chem Phys 68:65

    Google Scholar 

  10. Sanner I, Meissner E, Köppen H, Spiering H, Gütlich P (1984) Chem Phys 86:227; Willenbacher N, Spiering H (1988) J Phys C Solid State Phys 21:1423; Spiering H, Willenbacher N (1989) J Phys Condens Matter 1:10089

    Google Scholar 

  11. Kusz J, Böhm H (2002) J Appl Cryst 35:8

    Google Scholar 

  12. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 105:1; Decurtins S, Gütlich P, Hasselbach KM, Hauser A, Spiering H (1985) Inorg Chem 24:2174

    Google Scholar 

  13. Franke PL (1982) Thesis, Rijks University, Leiden

    Google Scholar 

  14. Franke PL, Haasnoot JG, Zuur AP (1982) Inorg Chim Acta 59:5

    Google Scholar 

  15. Wiehl L (1993) Acta Cryst B 49:289

    Google Scholar 

  16. Yamaura J, Kato R, Nagai Y, Saito H, Hyodo T (1998) Phys Rev B 58:14098

    Google Scholar 

  17. Nagai Y, Saito H, Hyodo T, Vertes A, Süvegh K (1998) Phys Rev B 57:14119

    Google Scholar 

  18. Ozarowski A, McGarvey BR (1989) Inorg Chem 28:2262

    Google Scholar 

  19. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  20. Wiehl L, Spiering H, Gütlich P, Knorr K (1990) J Appl Cryst 23:151

    Google Scholar 

  21. Kusz J, Spiering H, Hinek R, Gütlich P (1996) Workshop on Aperiodic Structures, Kraków, p 185

    Google Scholar 

  22. Jung J, Schmitt G, Wiehl L, Hauser A, Knorr K, Spiering H, Gütlich P (1996) Z Physik B 100:523

    Google Scholar 

  23. Kusz J, Spiering H, Gütlich P (2000) J Appl Cryst 33:201

    Google Scholar 

  24. Moritomo Y, Kato K, Nakamoto A, Kojima N, Nishibori E, Takata M, Sakata M (2002) J Phys Soc Jpn 71:1015

    Google Scholar 

  25. Moritomo Y, Kato K, Nakamoto A, Kojima N, Nishibori E, Takata M, Sakata M (2002) J Phys Soc Jpn 71:2009

    Google Scholar 

  26. Kusz J, Böhm H, Gütlich P (2001) In: Morawiec H, Stróz D (eds) Proceedings of XVIII Conference on Applied Crystallography, World Scientific, p 104

    Google Scholar 

  27. Poganiuch P, Gütlich P (1988) Hyperfine Interact 40:331

    Google Scholar 

  28. Poganiuch P, Decurtins S, Gütlich P (1990) J Am Chem Soc 112:3270

    Google Scholar 

  29. Kusz J, Spiering H, Gütlich P (2001) J Appl Cryst 34:229

    Google Scholar 

  30. Wijnands PEM (1989) Thesis, Univ. Leiden, The Netherlands

    Google Scholar 

  31. Hinek R, Spiering H, Schollmeyer D, Gütlich P, Hauser A (1996) Chem Eur J 2:1427

    Google Scholar 

  32. Hinek R, Spiering H, Gütlich P, Hauser A (1996) Chem Eur J 2:1435

    Google Scholar 

  33. Hinek R (1995) Thesis, Universität Mainz

    Google Scholar 

  34. Hauser A (1986) Chem Phys Lett 124:543

    Google Scholar 

  35. Gütlich P, Jung J (1995) J Mol Struct 347:21

    Google Scholar 

  36. Juhasz G, Hayami S, Sato O, Maeda Y (2002) Chem Phys Lett 364:164

    Google Scholar 

  37. Kusz J, Gütlich P, Spiering H (2004) (to be published)

    Google Scholar 

  38. Marchivie M, Guionneau P, Howard JAK, Goeta AE, Chastanet G, Létard JF, Chasseau D (2002) J Am Chem Soc 124:194

    Google Scholar 

  39. Goodwin HA (1976) Coord Chem Rev 18:293

    Google Scholar 

  40. Gütlich P (1981) Struct Bond (Berlin) 44:83

    Google Scholar 

  41. Ohnishi S, Sugano S (1981) J Phys C Solid State Phys 14:39

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the European Community (TMR Network No. ERB-FMRX-CT98-0199, “Thermal and Optical Switching of Molecular Spin States”, TOSS) and the Materialwissenschaftliches Forschungszentrum der Universität Mainz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joachim Kusz or Philipp Gütlich .

Additional information

Dedicated to Professor Hans Bock on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kusz, J., Gütlich, P., Spiering, H. Structural Investigations of Tetrazole Complexes of Iron(II). In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95415

Download citation

  • DOI: https://doi.org/10.1007/b95415

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics