Skip to main content

Spin-State Transition in LaCoO3 and Related Materials

  • Chapter
Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

Of the several inorganic systems that exhibit spin-state transitions, LaCoO3 and related cobaltates represent an important category of oxides exhibiting a transition from the low-spin (LS) state to a state of higher spin with increasing temperature. It was first considered that the transition was from the LS (1A1) to the high-spin (HS, 5T2) state and a variety of investigations were performed on this transition by employing magnetic susceptibility, Mössbauer spectroscopy, NMR spectroscopy and other measurements. These studies not only showed the evolution of the high-spin state with temperature but also the ordering of the two spin states and other related phenomena. The spin-gap energy in LaCoO3 is smaller than the charge-gap energy. The transition temperature varies depending on the rare earth ion in the LnCoO3 series. In recent years, it has been demonstrated that the spin-state transition in LaCoO3 occurs initially from the LS state to the intermediate spin (IS, 3T1) state rather than to the HS state with increase in temperature. The intermediate spin-state Co3+ is a Jahn-Teller (JT) ion. The spin-state transition is therefore associated with lattice distortion, which is readily studied by infrared spectroscopy. Raman spectroscopy yields valuable information on the spin-state transition. Electronic structure calculations have been performed and the results verified experimentally by photon emission spectroscopy and other techniques. Recent studies indicate that it may be necessary to employ a three spin-state (LS-IS-HS) model rather than a two spin-state (LS-IS) model to fully explain the observed transition. Several theoretical models have been proposed to explain the spin-state transition in LaCoO3. These include the singlet-triplet transition model, the two-sublattice model, and the two-phonon model. The effect of hole doping on the spin-state transition has been examined in compounds like La1-xSrxCoO3. In this article, we discuss the various experimental and theoretical studies of LaCoO3 and related cobaltates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao CNR, Raveau B (1998) Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Heikes RR, Miller RC, Mazelsky A (1964) Physica 30:1600

    Google Scholar 

  3. Jonker GH (1966) J Appl Phys 37:1424

    Google Scholar 

  4. Raccah PM, Goodenough JB (1967) Phys Rev 155:932

    Google Scholar 

  5. Bhide VG, Rajoria DS, Rao GR, Rao CNR (1972) Phys Rev B 6:1021

    Google Scholar 

  6. Rao CNR (1985) Int Rev Phys Chem 4:19

    Google Scholar 

  7. Señarís-Rodríguez MA, Goodenough LB (1995) J Solid State Chem 116:224

    Google Scholar 

  8. Korotin MA, Ezhov SY, Solovyev IV, Anisimov VI, Khomskii D, Sawatzky GA (1996) Phys Rev B 54:5309

    Google Scholar 

  9. Arunarkavalli T, Kulkarni GU, Rao CNR (1993) J Solid State Chem 107:299

    Google Scholar 

  10. Thornton G, Owen IW, Diakun GP (1991) J Phys-Condens Mat 3:417

    Google Scholar 

  11. Madhusudan WH, Jagannathan K, Ganguly P, Rao CNR (1980) J Chem Soc Dalt Trans 1397

    Google Scholar 

  12. Yamaguchi S, Okimoto Y, Taniguchi H, Tokura Y (1996) Phys Rev B 53:R2926

    Google Scholar 

  13. Barman SR, Sarma DD (1994) Phys Rev B 49:13979

    Google Scholar 

  14. Itoh M, Sugahara M, Natori I, Motoya K (1995) J Phys Soc Jpn 64:3967

    Google Scholar 

  15. Yamaguchi S, Okimoto Y, Tokura Y (1997) Phys Rev B 55:R8666

    Google Scholar 

  16. Tokura Y, Okimoto Y, Yamaguchi S, Taniguchi H, Kimura T, Takagi H (1998) Phys Rev B 58:R1699

    Google Scholar 

  17. Murata S, Isida S, Suzuki M, Kobayashi Y, Asai K, Kohn K (1999) Physica B 263–264:647

    Google Scholar 

  18. Asai K, Yokokura O, Suzuki M, Naka T, Matsumoto T, Takahashi H, Môri N, Kohn K (1997) J Phys Soc Jpn 66:967

    Google Scholar 

  19. Asai K, Yoneda A, Yokokura O, Tranquada JM, Shirane G, Kohn K (1998) J Phys Soc Jpn 67:290

    Google Scholar 

  20. Sudheendra L, Seikh MM, Raju AR, Narayana C (2001) Chem Phys Lett 340:275

    Google Scholar 

  21. Tajima S, Masaki A, Uchida S, Matsuura T, Fueki K, Sugai S (1987) J Phys C Solid State Phys 20:3469

    Google Scholar 

  22. Seikh MM, Sudheendra L, Narayana C, Rao CNR (unpublished results)

    Google Scholar 

  23. Iliev MN, Abrashev MV (2001) J Raman Spectrosc 32:805

    Google Scholar 

  24. Radaelli PG, Cheong S-W (2002), Phys Rev B 66:094408

    Google Scholar 

  25. Abbate M, Fuggle JC, Fujimori A, Tjeng LH, Chen CT, Potze R, Sawatzky GA, Eisaki H, Uchida S (1993) Phys Rev B 47:16124

    Google Scholar 

  26. Saito T, Mizokawa T, Fujimori A, Abbate M, Takeda Y, Takano M (1997) Phys Rev B 55:4257

    Google Scholar 

  27. Takahashi M, Igarashi J (1997) Phys Rev B 55:13557

    Google Scholar 

  28. Zhuang M, Zhang W, Ming N (1998) Phys Rev B 57:10705

    Google Scholar 

  29. Señarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 118:323

    Google Scholar 

  30. Bhide VG, Rajoria DS, Rao CNR, Rao GR, Jadhao VG (1975) Phys Rev B 12:2832

    Google Scholar 

  31. Bahadur D, Kollali S, Rao CNR, Patni MJ, Srivastava CM (1979) J Phys Chem Solids 40:981

    Google Scholar 

  32. Saitoh T, Mizokawa T, Fujimori A, Abbate M, Tokura Y, Takano M (1997) Phys Rev B 56:1290

    Google Scholar 

  33. Ravindran P, Fjellvag H, Kjekshus A, Blaha P, Schwarz K, Luitz J (2001) Cond-Mat 0104308

    Google Scholar 

  34. Zhuang M, Zhang W, Hu A, Ming N (1998) Phys Rev B 57:13655

    Google Scholar 

  35. Mahendiran R, Raychaudhuri AK (1996) Phys Rev B 54:16044

    Google Scholar 

  36. G£tlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  37. Chesnut DB (1964) J Chem Phys 40:405

    Google Scholar 

  38. Bari RA, Sivardiere J (1972) Phys Rev B 5:4466

    Google Scholar 

  39. Kurzynski M (1976) J Phys C 9:3731

    Google Scholar 

  40. Zimmermann R, König E (1977) J Phys Chem Solids 38:779

    Google Scholar 

  41. Ramasesha S, Ramakrishnan TV, Rao CNR (1979) J Phys C 12:1307

    Google Scholar 

  42. Kambara T (1979) J Chem Phys 70:4199

    Google Scholar 

  43. Kambara T (1981) J Chem Phys 74:4557

    Google Scholar 

Download references

Acknowledgements

The authors thank BRNS (DAE) for supporting this research. One of us (M. M. S.) thanks CSIR (India) for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. R. Rao .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Rao, C.N.R., Seikh, M.M., Narayana, C. Spin-State Transition in LaCoO3 and Related Materials. In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95410

Download citation

  • DOI: https://doi.org/10.1007/b95410

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics